rallyunlimited-engine/code/renderer/tr_bsp.c
2024-02-02 19:46:17 +03:00

2279 lines
64 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_map.c
#include "tr_local.h"
/*
Loads and prepares a map file for scene rendering.
A single entry point:
void RE_LoadWorldMap( const char *name );
*/
static world_t s_worldData;
static byte *fileBase;
static int c_gridVerts;
//===============================================================================
static void HSVtoRGB( float h, float s, float v, float rgb[3] )
{
int i;
float f;
float p, q, t;
h *= 5;
i = floor( h );
f = h - i;
p = v * ( 1 - s );
q = v * ( 1 - s * f );
t = v * ( 1 - s * ( 1 - f ) );
switch ( i )
{
case 0:
rgb[0] = v;
rgb[1] = t;
rgb[2] = p;
break;
case 1:
rgb[0] = q;
rgb[1] = v;
rgb[2] = p;
break;
case 2:
rgb[0] = p;
rgb[1] = v;
rgb[2] = t;
break;
case 3:
rgb[0] = p;
rgb[1] = q;
rgb[2] = v;
break;
case 4:
rgb[0] = t;
rgb[1] = p;
rgb[2] = v;
break;
case 5:
rgb[0] = v;
rgb[1] = p;
rgb[2] = q;
break;
}
}
/*
===============
R_ColorShiftLightingBytes
===============
*/
void R_ColorShiftLightingBytes( const byte in[4], byte out[4], qboolean hasAlpha ) {
int shift, r, g, b;
// shift the color data based on overbright range
shift = r_mapOverBrightBits->integer - tr.overbrightBits;
// shift the data based on overbright range
if ( shift >= 0 ) {
r = in[0] << shift;
g = in[1] << shift;
b = in[2] << shift;
// normalize by color instead of saturating to white
if ( ( r | g | b ) > 255 ) {
int max = r > g ? r : g;
max = max > b ? max : b;
r = r * 255 / max;
g = g * 255 / max;
b = b * 255 / max;
}
} else {
r = in[0] >> -shift;
g = in[1] >> -shift;
b = in[2] >> -shift;
}
if ( r_mapGreyScale->integer ) {
const byte luma = LUMA( r, g, b );
out[0] = luma;
out[1] = luma;
out[2] = luma;
} else if( r_mapGreyScale->value ) {
const float scale = fabs( r_mapGreyScale->value );
const float luma = LUMA( r, g, b );
out[0] = LERP( r, luma, scale );
out[1] = LERP( g, luma, scale );
out[2] = LERP( b, luma, scale );
} else if ( r_mapColorScale->integer ) {
const float scaler = r_mapColorRedW->value;
const float scaleg = r_mapColorGreenW->value;
const float scaleb = r_mapColorBlueW->value;
const float scalerw = r_mapColorRed->value;
const float scalegw = r_mapColorGreen->value;
const float scalebw = r_mapColorBlue->value;
const float luma = LUMA( r, g, b );
out[0] = LERP( r*scalerw, luma, scaler );
out[1] = LERP( g*scalegw, luma, scaleg );
out[2] = LERP( b*scalebw, luma, scaleb );
} else {
out[0] = r;
out[1] = g;
out[2] = b;
}
if ( hasAlpha ) {
out[3] = in[3];
}
}
#define LIGHTMAP_SIZE 128
#define LIGHTMAP_BORDER 2
#define LIGHTMAP_LEN (LIGHTMAP_SIZE + LIGHTMAP_BORDER*2)
static const int lightmapFlags = IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_LIGHTMAP | IMGFLAG_NOSCALE;
static int lightmapWidth;
static int lightmapHeight;
static int lightmapCountX;
static int lightmapCountY;
static void FillBorders( byte *img )
{
#define PIX(xx,yy,offs) img[((yy)*LIGHTMAP_LEN + (xx))*4+(offs)]
int x0, y0;
int x1, y1;
int n, len, i;
for ( n = LIGHTMAP_BORDER; n > 0; n-- )
{
x0 = n - 1; x1 = LIGHTMAP_LEN - n;
y0 = n - 1; y1 = LIGHTMAP_LEN - n;
len = LIGHTMAP_SIZE + (LIGHTMAP_BORDER*2 - n);
for ( i = n; i < len; i++ )
{
PIX( i, y0, 0 ) = PIX( i, y0+1, 0 );
PIX( i, y0, 1 ) = PIX( i, y0+1, 1 );
PIX( i, y0, 2 ) = PIX( i, y0+1, 2 );
PIX( i, y0, 3 ) = PIX( i, y0+1, 3 );
PIX( x0, i, 0 ) = PIX( x0+1, i, 0 );
PIX( x0, i, 1 ) = PIX( x0+1, i, 1 );
PIX( x0, i, 2 ) = PIX( x0+1, i, 2 );
PIX( x0, i, 3 ) = PIX( x0+1, i, 3 );
PIX( i, y1, 0 ) = PIX( i, y1-1, 0 );
PIX( i, y1, 1 ) = PIX( i, y1-1, 1 );
PIX( i, y1, 2 ) = PIX( i, y1-1, 2 );
PIX( i, y1, 3 ) = PIX( i, y1-1, 3 );
PIX( x1, i, 0 ) = PIX( x1-1, i, 0 );
PIX( x1, i, 1 ) = PIX( x1-1, i, 1 );
PIX( x1, i, 2 ) = PIX( x1-1, i, 2 );
PIX( x1, i, 3 ) = PIX( x1-1, i, 3 );
}
// interpolate corners
PIX( x0, y0, 0 ) = (int)(PIX( x0, y0+1, 0 ) + PIX( x0+1, y0, 0 )) >> 1;
PIX( x0, y0, 1 ) = (int)(PIX( x0, y0+1, 1 ) + PIX( x0+1, y0, 1 )) >> 1;
PIX( x0, y0, 2 ) = (int)(PIX( x0, y0+1, 2 ) + PIX( x0+1, y0, 2 )) >> 1;
PIX( x0, y0, 3 ) = (int)(PIX( x0, y0+1, 3 ) + PIX( x0+1, y0, 3 )) >> 1;
PIX( x1, y0, 0 ) = (int)(PIX( x1-1, y0, 0 ) + PIX( x1, y0+1, 0 )) >> 1;
PIX( x1, y0, 1 ) = (int)(PIX( x1-1, y0, 1 ) + PIX( x1, y0+1, 1 )) >> 1;
PIX( x1, y0, 2 ) = (int)(PIX( x1-1, y0, 2 ) + PIX( x1, y0+1, 2 )) >> 1;
PIX( x1, y0, 3 ) = (int)(PIX( x1-1, y0, 3 ) + PIX( x1, y0+1, 3 )) >> 1;
PIX( x0, y1, 0 ) = (int)(PIX( x0, y1-1, 0 ) + PIX( x0+1, y1, 0 )) >> 1;
PIX( x0, y1, 1 ) = (int)(PIX( x0, y1-1, 1 ) + PIX( x0+1, y1, 1 )) >> 1;
PIX( x0, y1, 2 ) = (int)(PIX( x0, y1-1, 2 ) + PIX( x0+1, y1, 2 )) >> 1;
PIX( x0, y1, 3 ) = (int)(PIX( x0, y1-1, 3 ) + PIX( x0+1, y1, 3 )) >> 1;
PIX( x1, y1, 0 ) = (int)(PIX( x1, y1-1, 0 ) + PIX( x1-1, y1, 0 )) >> 1;
PIX( x1, y1, 1 ) = (int)(PIX( x1, y1-1, 1 ) + PIX( x1-1, y1, 1 )) >> 1;
PIX( x1, y1, 2 ) = (int)(PIX( x1, y1-1, 2 ) + PIX( x1-1, y1, 2 )) >> 1;
PIX( x1, y1, 3 ) = (int)(PIX( x1, y1-1, 3 ) + PIX( x1-1, y1, 3 )) >> 1;
}
}
/*
===============
R_ProcessLightmap
expand the 24 bit on-disk to 32 bit and return max.intensity
===============
*/
static float R_ProcessLightmap( byte *image, const byte *buf_p, float maxIntensity )
{
int x, y;
if ( 0 && r_lightmap->integer == 2 ) {
int j;
// color code by intensity as development tool (FIXME: check range)
for ( j = 0; j < LIGHTMAP_SIZE * LIGHTMAP_SIZE; j++ )
{
float r = buf_p[j*3+0];
float g = buf_p[j*3+1];
float b = buf_p[j*3+2];
float intensity;
float out[3] = {0.0, 0.0, 0.0};
intensity = 0.33f * r + 0.685f * g + 0.063f * b;
if ( intensity > 255 )
intensity = 1.0f;
else
intensity /= 255.0f;
if ( intensity > maxIntensity )
maxIntensity = intensity;
HSVtoRGB( intensity, 1.00, 0.50, out );
image[j*4+0] = out[0] * 255;
image[j*4+1] = out[1] * 255;
image[j*4+2] = out[2] * 255;
image[j*4+3] = 255;
}
} else {
if ( r_mergeLightmaps->integer ) {
for ( y = 0 ; y < LIGHTMAP_SIZE; y++ ) {
for ( x = 0 ; x < LIGHTMAP_SIZE; x++ ) {
byte *dst = &image[((y + LIGHTMAP_BORDER) * LIGHTMAP_LEN + x + LIGHTMAP_BORDER) * 4];
R_ColorShiftLightingBytes( buf_p, dst, qfalse );
dst[3] = 255;
buf_p += 3;
}
}
FillBorders( image );
} else {
// legacy path
for ( y = 0 ; y < LIGHTMAP_SIZE; y++ ) {
for ( x = 0 ; x < LIGHTMAP_SIZE; x++ ) {
byte *dst = &image[(y * LIGHTMAP_SIZE + x) * 4];
R_ColorShiftLightingBytes( buf_p, dst, qfalse );
dst[3] = 255;
buf_p += 3;
}
}
}
}
return maxIntensity;
}
static int SetLightmapParams( int numLightmaps, int maxTextureSize )
{
lightmapWidth = log2pad( LIGHTMAP_LEN, 1 );
lightmapHeight = log2pad( LIGHTMAP_LEN, 1 );
lightmapCountX = 1;
lightmapCountY = 1;
while ( lightmapWidth < maxTextureSize && lightmapCountX * lightmapCountY < numLightmaps )
{
lightmapWidth = log2pad( lightmapWidth + LIGHTMAP_LEN, 1 );
lightmapCountX = lightmapWidth / LIGHTMAP_LEN;
if ( lightmapCountX * lightmapCountY >= numLightmaps )
break;
lightmapHeight = log2pad( lightmapHeight + LIGHTMAP_LEN, 1 );
lightmapCountY = lightmapHeight / LIGHTMAP_LEN;
}
tr.lightmapMod = lightmapCountX * lightmapCountY;
tr.lightmapScale[0] = (double)LIGHTMAP_SIZE / (double) lightmapWidth;
tr.lightmapScale[1] = (double)LIGHTMAP_SIZE / (double) lightmapHeight;
numLightmaps = ( numLightmaps + tr.lightmapMod - 1 ) / tr.lightmapMod;
return numLightmaps;
}
int R_GetLightmapCoords( const int lightmapIndex, float *x, float *y )
{
const int lightmapNum = lightmapIndex / tr.lightmapMod;
const int cN = lightmapIndex % tr.lightmapMod;
const int cX = cN % lightmapCountX;
const int cY = cN / lightmapCountX;
*x = (float)( LIGHTMAP_BORDER + cX * LIGHTMAP_LEN ) / (float) lightmapWidth;
*y = (float)( LIGHTMAP_BORDER + cY * LIGHTMAP_LEN ) / (float) lightmapHeight;
return lightmapNum;
}
/*
===============
R_LoadMergedLightmaps
===============
*/
static void R_LoadMergedLightmaps( const lump_t *l, byte *image )
{
const byte *buf;
int offs;
int i, x, y;
float maxIntensity = 0;
if ( l->filelen < LIGHTMAP_SIZE * LIGHTMAP_SIZE * 3 )
return;
buf = fileBase + l->fileofs;
// create all the lightmaps
tr.numLightmaps = l->filelen / (LIGHTMAP_SIZE * LIGHTMAP_SIZE * 3);
// we are about to upload textures
//R_IssuePendingRenderCommands();
tr.numLightmaps = SetLightmapParams( tr.numLightmaps, glConfig.maxTextureSize );
tr.lightmaps = ri.Hunk_Alloc( tr.numLightmaps * sizeof(image_t *), h_low );
for ( offs = 0, i = 0 ; i < tr.numLightmaps; i++ ) {
tr.lightmaps[ i ] = R_CreateImage( va( "*mergedLightmap%d", i ), NULL, NULL,
lightmapWidth, lightmapHeight, lightmapFlags | IMGFLAG_CLAMPTOBORDER );
for ( y = 0; y < lightmapCountY; y++ ) {
if ( offs >= l->filelen )
break;
for ( x = 0; x < lightmapCountX; x++ ) {
if ( offs >= l->filelen )
break;
R_ProcessLightmap( image, buf + offs, maxIntensity );
R_UploadSubImage( image, x * LIGHTMAP_LEN, y * LIGHTMAP_LEN,
LIGHTMAP_LEN, LIGHTMAP_LEN, tr.lightmaps[ i ] );
offs += LIGHTMAP_SIZE * LIGHTMAP_SIZE * 3;
}
}
ri.Printf( PRINT_DEVELOPER, "lightmaps[%i]=%i\n", i, tr.lightmaps[i]->texnum );
}
//if ( r_lightmap->integer == 2 ) {
// ri.Printf( PRINT_ALL, "Brightest lightmap value: %d\n", ( int ) ( maxIntensity * 255 ) );
//}
}
/*
===============
R_LoadLightmaps
===============
*/
static void R_LoadLightmaps( const lump_t *l ) {
const byte *buf;
byte image[LIGHTMAP_LEN*LIGHTMAP_LEN*4];
int i;
float maxIntensity = 0;
tr.numLightmaps = 0;
tr.lightmapScale[0] = 1.0f;
tr.lightmapScale[1] = 1.0f;
tr.lightmapOffset[0] = 0.0f;
tr.lightmapOffset[1] = 0.0f;
tr.lightmapMod = MAX_QINT;
lightmapWidth = LIGHTMAP_SIZE;
lightmapHeight = LIGHTMAP_SIZE;
lightmapCountX = 1;
lightmapCountY = 1;
if ( l->filelen < LIGHTMAP_SIZE * LIGHTMAP_SIZE * 3 ) {
return;
}
// if we are in r_vertexLight mode, we don't need the lightmaps at all
if ( r_vertexLight->integer || glConfig.hardwareType == GLHW_PERMEDIA2 ) {
return;
}
if ( r_mergeLightmaps->integer ) {
R_LoadMergedLightmaps( l, image ); // reuse stack space
return;
}
buf = fileBase + l->fileofs;
// create all the lightmaps
tr.numLightmaps = l->filelen / (LIGHTMAP_SIZE * LIGHTMAP_SIZE * 3);
// we are about to upload textures
//R_IssuePendingRenderCommands();
tr.lightmaps = ri.Hunk_Alloc( tr.numLightmaps * sizeof(image_t *), h_low );
for ( i = 0 ; i < tr.numLightmaps ; i++ ) {
maxIntensity = R_ProcessLightmap( image, buf + i * LIGHTMAP_SIZE * LIGHTMAP_SIZE * 3, maxIntensity );
tr.lightmaps[i] = R_CreateImage( va( "*lightmap%d", i ), NULL, image, LIGHTMAP_SIZE, LIGHTMAP_SIZE,
lightmapFlags | IMGFLAG_CLAMPTOEDGE );
}
//if ( r_lightmap->integer == 2 ) {
// ri.Printf( PRINT_ALL, "Brightest lightmap value: %d\n", ( int ) ( maxIntensity * 255 ) );
//}
}
/*
=================
RE_SetWorldVisData
This is called by the clipmodel subsystem so we can share the 1.8 megs of
space in big maps...
=================
*/
void RE_SetWorldVisData( const byte *vis ) {
tr.externalVisData = vis;
}
/*
=================
R_LoadVisibility
=================
*/
static void R_LoadVisibility( const lump_t *l ) {
int len;
byte *buf;
len = PAD( s_worldData.numClusters, 64 );
s_worldData.novis = ri.Hunk_Alloc( len, h_low );
Com_Memset( s_worldData.novis, 0xff, len );
len = l->filelen;
if ( !len ) {
return;
}
buf = fileBase + l->fileofs;
s_worldData.numClusters = LittleLong( ((int *)buf)[0] );
s_worldData.clusterBytes = LittleLong( ((int *)buf)[1] );
// CM_Load should have given us the vis data to share, so
// we don't need to allocate another copy
if ( tr.externalVisData ) {
s_worldData.vis = tr.externalVisData;
} else {
byte *dest;
dest = ri.Hunk_Alloc( len - 8, h_low );
Com_Memcpy( dest, buf + 8, len - 8 );
s_worldData.vis = dest;
}
}
//===============================================================================
/*
===============
ShaderForShaderNum
===============
*/
static shader_t *ShaderForShaderNum( const int shaderNum, int lightmapNum ) {
shader_t *shader;
const dshader_t *dsh;
if ( shaderNum < 0 || shaderNum >= s_worldData.numShaders ) {
ri.Error( ERR_DROP, "ShaderForShaderNum: bad num %i", shaderNum );
}
dsh = &s_worldData.shaders[ shaderNum ];
if ( ( r_vertexLight->integer && tr.vertexLightingAllowed ) || glConfig.hardwareType == GLHW_PERMEDIA2 ) {
lightmapNum = LIGHTMAP_BY_VERTEX;
}
if ( r_fullbright->integer ) {
lightmapNum = LIGHTMAP_WHITEIMAGE;
}
shader = R_FindShader( dsh->shader, lightmapNum, qtrue );
// if the shader had errors, just use default shader
if ( shader->defaultShader ) {
return tr.defaultShader;
}
if ( r_singleShader->integer && !shader->isSky ) {
return tr.defaultShader;
}
return shader;
}
static void GenerateNormals( srfSurfaceFace_t *face )
{
vec3_t ba, ca, cross;
float *v1, *v2, *v3, *n1, *n2, *n3;
int i, *indices, i0, i1, i2;
indices = ((int *)((byte *)face + face->ofsIndices));
// store as vec4_t so we can simply use memcpy() during tesselation
face->normals = ri.Hunk_Alloc( face->numPoints * sizeof( tess.normal[0] ), h_low );
for ( i = 0; i < face->numIndices; i += 3 ) {
i0 = indices[i+0];
i1 = indices[i+1];
i2 = indices[i+2];
if ( i0 >= face->numPoints || i1 >= face->numPoints || i2 >= face->numPoints )
continue;
v1 = face->points[i0];
v2 = face->points[i1];
v3 = face->points[i2];
VectorSubtract( v3, v1, ca );
VectorSubtract( v2, v1, ba );
CrossProduct( ca, ba, cross );
n1 = face->normals + indices[i+0]*4;
n2 = face->normals + indices[i+1]*4;
n3 = face->normals + indices[i+2]*4;
VectorAdd( n1, cross, n1 );
VectorAdd( n2, cross, n2 );
VectorAdd( n3, cross, n3 );
}
for ( i = 0; i < face->numPoints; i++ ) {
n1 = face->normals + i*4;
VectorNormalize2( n1, n1 );
}
}
/*
===============
ParseFace
===============
*/
static void ParseFace( const dsurface_t *ds, const drawVert_t *verts, msurface_t *surf, int *indexes ) {
int i, j;
srfSurfaceFace_t *cv;
int numPoints, numIndexes;
int lightmapNum;
float lightmapX, lightmapY;
int sfaceSize, ofsIndexes;
// get fog volume
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
lightmapNum = LittleLong( ds->lightmapNum );
if ( lightmapNum >= 0 && r_mergeLightmaps->integer ) {
lightmapNum = R_GetLightmapCoords( lightmapNum, &lightmapX, &lightmapY );
} else {
lightmapX = lightmapY = 0.0f;
}
tr.lightmapOffset[0] = lightmapX;
tr.lightmapOffset[1] = lightmapY;
// get shader value
surf->shader = ShaderForShaderNum( LittleLong( ds->shaderNum ), lightmapNum );
numPoints = LittleLong( ds->numVerts );
if (numPoints > MAX_FACE_POINTS) {
ri.Printf( PRINT_WARNING, "WARNING: MAX_FACE_POINTS exceeded: %i\n", numPoints);
numPoints = MAX_FACE_POINTS;
surf->shader = tr.defaultShader;
}
numIndexes = LittleLong( ds->numIndexes );
// create the srfSurfaceFace_t
sfaceSize = sizeof( *cv ) - sizeof( cv->points ) + sizeof( cv->points[0] ) * numPoints;
ofsIndexes = sfaceSize;
sfaceSize += sizeof( int ) * numIndexes;
cv = ri.Hunk_Alloc( sfaceSize, h_low );
cv->surfaceType = SF_FACE;
cv->numPoints = numPoints;
cv->numIndices = numIndexes;
cv->ofsIndices = ofsIndexes;
verts += LittleLong( ds->firstVert );
for ( i = 0 ; i < numPoints ; i++ ) {
for ( j = 0 ; j < 3 ; j++ ) {
cv->points[i][j] = LittleFloat( verts[i].xyz[j] );
}
for ( j = 0 ; j < 2 ; j++ ) {
cv->points[i][3+j] = LittleFloat( verts[i].st[j] );
cv->points[i][5+j] = LittleFloat( verts[i].lightmap[j] );
}
R_ColorShiftLightingBytes( verts[i].color.rgba, (byte *)&cv->points[i][7], qtrue );
if ( lightmapNum >= 0 && r_mergeLightmaps->integer ) {
// adjust lightmap coords
cv->points[i][5] = cv->points[i][5] * tr.lightmapScale[0] + lightmapX;
cv->points[i][6] = cv->points[i][6] * tr.lightmapScale[1] + lightmapY;
}
}
indexes += LittleLong( ds->firstIndex );
for ( i = 0 ; i < numIndexes ; i++ ) {
((int *)((byte *)cv + cv->ofsIndices ))[i] = LittleLong( indexes[ i ] );
}
// take the plane information from the lightmap vector
for ( i = 0 ; i < 3 ; i++ ) {
cv->plane.normal[i] = LittleFloat( ds->lightmapVecs[2][i] );
}
#ifdef USE_PMLIGHT
if ( surf->shader->numUnfoggedPasses && surf->shader->lightingStage >= 0 ) {
if ( fabs( cv->plane.normal[0] ) < 0.01 && fabs( cv->plane.normal[1] ) < 0.01 && fabs( cv->plane.normal[2] ) < 0.01 ) {
// Zero-normals case:
// might happen if surface contains multiple non-coplanar faces for terrain simulation
// like in 'Pyramid of the Magician', 'tvy-bench' or 'terrast' maps
// which results in non-working new per-pixel dynamic lighting.
// So we will try to regenerate normals and apply smooth shading
// for normals that is shared between multiple faces.
// It is not a big problem for incorrectly (negative) generated normals
// because it is unlikely for shared ones and will result in the same non-working lighting.
// Also we will NOT update existing face->plane.normal to avoid potential surface culling issues
GenerateNormals( cv );
}
}
#endif
cv->plane.dist = DotProduct( cv->points[0], cv->plane.normal );
SetPlaneSignbits( &cv->plane );
cv->plane.type = PlaneTypeForNormal( cv->plane.normal );
surf->data = (surfaceType_t *)cv;
}
/*
===============
ParseMesh
===============
*/
static void ParseMesh( const dsurface_t *ds, const drawVert_t *verts, msurface_t *surf ) {
srfGridMesh_t *grid;
int i, j;
int width, height, numPoints;
drawVert_t points[MAX_PATCH_SIZE*MAX_PATCH_SIZE];
int lightmapNum;
float lightmapX, lightmapY;
vec3_t bounds[2];
vec3_t tmpVec;
static surfaceType_t skipData = SF_SKIP;
// get fog volume
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
lightmapNum = LittleLong( ds->lightmapNum );
if ( lightmapNum >= 0 && r_mergeLightmaps->integer ) {
lightmapNum = R_GetLightmapCoords( lightmapNum, &lightmapX, &lightmapY );
} else {
lightmapX = lightmapY = 0.0f;
}
tr.lightmapOffset[0] = lightmapX;
tr.lightmapOffset[1] = lightmapY;
// get shader value
surf->shader = ShaderForShaderNum( LittleLong( ds->shaderNum ), lightmapNum );
// we may have a nodraw surface, because they might still need to
// be around for movement clipping
if ( s_worldData.shaders[ LittleLong( ds->shaderNum ) ].surfaceFlags & SURF_NODRAW ) {
surf->data = &skipData;
return;
}
width = LittleLong( ds->patchWidth );
height = LittleLong( ds->patchHeight );
verts += LittleLong( ds->firstVert );
numPoints = width * height;
for ( i = 0 ; i < numPoints ; i++ ) {
for ( j = 0 ; j < 3 ; j++ ) {
points[i].xyz[j] = LittleFloat( verts[i].xyz[j] );
points[i].normal[j] = LittleFloat( verts[i].normal[j] );
}
for ( j = 0 ; j < 2 ; j++ ) {
points[i].st[j] = LittleFloat( verts[i].st[j] );
points[i].lightmap[j] = LittleFloat( verts[i].lightmap[j] );
}
R_ColorShiftLightingBytes( verts[i].color.rgba, points[i].color.rgba, qtrue );
if ( lightmapNum >= 0 && r_mergeLightmaps->integer ) {
// adjust lightmap coords
points[i].lightmap[0] = points[i].lightmap[0] * tr.lightmapScale[0] + lightmapX;
points[i].lightmap[1] = points[i].lightmap[1] * tr.lightmapScale[1] + lightmapY;
}
}
// pre-tesseleate
grid = R_SubdividePatchToGrid( width, height, points );
surf->data = (surfaceType_t *)grid;
// copy the level of detail origin, which is the center
// of the group of all curves that must subdivide the same
// to avoid cracking
for ( i = 0 ; i < 3 ; i++ ) {
bounds[0][i] = LittleFloat( ds->lightmapVecs[0][i] );
bounds[1][i] = LittleFloat( ds->lightmapVecs[1][i] );
}
VectorAdd( bounds[0], bounds[1], bounds[1] );
VectorScale( bounds[1], 0.5f, grid->lodOrigin );
VectorSubtract( bounds[0], grid->lodOrigin, tmpVec );
grid->lodRadius = VectorLength( tmpVec );
}
/*
===============
ParseTriSurf
===============
*/
static void ParseTriSurf( const dsurface_t *ds, const drawVert_t *verts, msurface_t *surf, int *indexes ) {
srfTriangles_t *tri;
int i, j;
int numVerts, numIndexes;
int lightmapNum;
float lightmapX, lightmapY;
// get fog volume
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
lightmapNum = LittleLong( ds->lightmapNum );
if ( lightmapNum >= 0 && r_mergeLightmaps->integer ) {
lightmapNum = R_GetLightmapCoords( lightmapNum, &lightmapX, &lightmapY );
} else {
lightmapX = lightmapY = 0;
}
tr.lightmapOffset[0] = lightmapX;
tr.lightmapOffset[1] = lightmapY;
// get shader
surf->shader = ShaderForShaderNum( LittleLong( ds->shaderNum ), LIGHTMAP_BY_VERTEX );
numVerts = LittleLong( ds->numVerts );
numIndexes = LittleLong( ds->numIndexes );
tri = ri.Hunk_Alloc( sizeof( *tri ) + numVerts * sizeof( tri->verts[0] )
+ numIndexes * sizeof( tri->indexes[0] ), h_low );
tri->surfaceType = SF_TRIANGLES;
tri->numVerts = numVerts;
tri->numIndexes = numIndexes;
tri->verts = (drawVert_t *)(tri + 1);
tri->indexes = (int *)(tri->verts + tri->numVerts );
surf->data = (surfaceType_t *)tri;
// copy vertexes
ClearBounds( tri->bounds[0], tri->bounds[1] );
verts += LittleLong( ds->firstVert );
for ( i = 0 ; i < numVerts ; i++ ) {
for ( j = 0 ; j < 3 ; j++ ) {
tri->verts[i].xyz[j] = LittleFloat( verts[i].xyz[j] );
tri->verts[i].normal[j] = LittleFloat( verts[i].normal[j] );
}
AddPointToBounds( tri->verts[i].xyz, tri->bounds[0], tri->bounds[1] );
for ( j = 0 ; j < 2 ; j++ ) {
tri->verts[i].st[j] = LittleFloat( verts[i].st[j] );
tri->verts[i].lightmap[j] = LittleFloat( verts[i].lightmap[j] );
}
R_ColorShiftLightingBytes( verts[i].color.rgba, tri->verts[i].color.rgba, qtrue );
if ( lightmapNum >= 0 && r_mergeLightmaps->integer ) {
// adjust lightmap coords
tri->verts[i].lightmap[0] = tri->verts[i].lightmap[0] * tr.lightmapScale[0] + lightmapX;
tri->verts[i].lightmap[1] = tri->verts[i].lightmap[1] * tr.lightmapScale[1] + lightmapY;
}
}
// copy indexes
indexes += LittleLong( ds->firstIndex );
for ( i = 0 ; i < numIndexes ; i++ ) {
tri->indexes[i] = LittleLong( indexes[i] );
if ( tri->indexes[i] < 0 || tri->indexes[i] >= numVerts ) {
ri.Error( ERR_DROP, "Bad index in triangle surface" );
}
}
}
/*
===============
ParseFlare
===============
*/
static void ParseFlare( const dsurface_t *ds, const drawVert_t *verts, msurface_t *surf, int *indexes ) {
srfFlare_t *flare;
int i;
// get fog volume
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
// get shader
surf->shader = ShaderForShaderNum( LittleLong( ds->shaderNum ), LIGHTMAP_BY_VERTEX );
flare = ri.Hunk_Alloc( sizeof( *flare ), h_low );
flare->surfaceType = SF_FLARE;
surf->data = (surfaceType_t *)flare;
for ( i = 0 ; i < 3 ; i++ ) {
flare->origin[i] = LittleFloat( ds->lightmapOrigin[i] );
flare->color[i] = LittleFloat( ds->lightmapVecs[0][i] );
flare->normal[i] = LittleFloat( ds->lightmapVecs[2][i] );
}
}
/*
=================
R_MergedWidthPoints
returns qtrue if there are grid points merged on a width edge
=================
*/
static qboolean R_MergedWidthPoints( const srfGridMesh_t *grid, int offset ) {
int i, j;
for (i = 1; i < grid->width-1; i++) {
for (j = i + 1; j < grid->width-1; j++) {
if ( fabs(grid->verts[i + offset].xyz[0] - grid->verts[j + offset].xyz[0]) > .1) continue;
if ( fabs(grid->verts[i + offset].xyz[1] - grid->verts[j + offset].xyz[1]) > .1) continue;
if ( fabs(grid->verts[i + offset].xyz[2] - grid->verts[j + offset].xyz[2]) > .1) continue;
return qtrue;
}
}
return qfalse;
}
/*
=================
R_MergedHeightPoints
returns qtrue if there are grid points merged on a height edge
=================
*/
static qboolean R_MergedHeightPoints( const srfGridMesh_t *grid, int offset ) {
int i, j;
for (i = 1; i < grid->height-1; i++) {
for (j = i + 1; j < grid->height-1; j++) {
if ( fabs(grid->verts[grid->width * i + offset].xyz[0] - grid->verts[grid->width * j + offset].xyz[0]) > .1) continue;
if ( fabs(grid->verts[grid->width * i + offset].xyz[1] - grid->verts[grid->width * j + offset].xyz[1]) > .1) continue;
if ( fabs(grid->verts[grid->width * i + offset].xyz[2] - grid->verts[grid->width * j + offset].xyz[2]) > .1) continue;
return qtrue;
}
}
return qfalse;
}
/*
=================
R_FixSharedVertexLodError_r
NOTE: never sync LoD through grid edges with merged points!
FIXME: write generalized version that also avoids cracks between a patch and one that meets half way?
=================
*/
static void R_FixSharedVertexLodError_r( int start, srfGridMesh_t *grid1 ) {
int j, k, l, m, n, offset1, offset2, touch;
srfGridMesh_t *grid2;
for ( j = start; j < s_worldData.numsurfaces; j++ ) {
//
grid2 = (srfGridMesh_t *) s_worldData.surfaces[j].data;
// if this surface is not a grid
if ( grid2->surfaceType != SF_GRID ) continue;
// if the LOD errors are already fixed for this patch
if ( grid2->lodFixed == 2 ) continue;
// grids in the same LOD group should have the exact same lod radius
if ( grid1->lodRadius != grid2->lodRadius ) continue;
// grids in the same LOD group should have the exact same lod origin
if ( grid1->lodOrigin[0] != grid2->lodOrigin[0] ) continue;
if ( grid1->lodOrigin[1] != grid2->lodOrigin[1] ) continue;
if ( grid1->lodOrigin[2] != grid2->lodOrigin[2] ) continue;
//
touch = qfalse;
for (n = 0; n < 2; n++) {
//
if (n) offset1 = (grid1->height-1) * grid1->width;
else offset1 = 0;
if (R_MergedWidthPoints(grid1, offset1)) continue;
for (k = 1; k < grid1->width-1; k++) {
for (m = 0; m < 2; m++) {
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
if (R_MergedWidthPoints(grid2, offset2)) continue;
for ( l = 1; l < grid2->width-1; l++) {
//
if ( fabs(grid1->verts[k + offset1].xyz[0] - grid2->verts[l + offset2].xyz[0]) > .1) continue;
if ( fabs(grid1->verts[k + offset1].xyz[1] - grid2->verts[l + offset2].xyz[1]) > .1) continue;
if ( fabs(grid1->verts[k + offset1].xyz[2] - grid2->verts[l + offset2].xyz[2]) > .1) continue;
// ok the points are equal and should have the same lod error
grid2->widthLodError[l] = grid1->widthLodError[k];
touch = qtrue;
}
}
for (m = 0; m < 2; m++) {
if (m) offset2 = grid2->width-1;
else offset2 = 0;
if (R_MergedHeightPoints(grid2, offset2)) continue;
for ( l = 1; l < grid2->height-1; l++) {
//
if ( fabs(grid1->verts[k + offset1].xyz[0] - grid2->verts[grid2->width * l + offset2].xyz[0]) > .1) continue;
if ( fabs(grid1->verts[k + offset1].xyz[1] - grid2->verts[grid2->width * l + offset2].xyz[1]) > .1) continue;
if ( fabs(grid1->verts[k + offset1].xyz[2] - grid2->verts[grid2->width * l + offset2].xyz[2]) > .1) continue;
// ok the points are equal and should have the same lod error
grid2->heightLodError[l] = grid1->widthLodError[k];
touch = qtrue;
}
}
}
}
for (n = 0; n < 2; n++) {
//
if (n) offset1 = grid1->width-1;
else offset1 = 0;
if (R_MergedHeightPoints(grid1, offset1)) continue;
for (k = 1; k < grid1->height-1; k++) {
for (m = 0; m < 2; m++) {
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
if (R_MergedWidthPoints(grid2, offset2)) continue;
for ( l = 1; l < grid2->width-1; l++) {
//
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[0] - grid2->verts[l + offset2].xyz[0]) > .1) continue;
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[1] - grid2->verts[l + offset2].xyz[1]) > .1) continue;
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[2] - grid2->verts[l + offset2].xyz[2]) > .1) continue;
// ok the points are equal and should have the same lod error
grid2->widthLodError[l] = grid1->heightLodError[k];
touch = qtrue;
}
}
for (m = 0; m < 2; m++) {
if (m) offset2 = grid2->width-1;
else offset2 = 0;
if (R_MergedHeightPoints(grid2, offset2)) continue;
for ( l = 1; l < grid2->height-1; l++) {
//
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[0] - grid2->verts[grid2->width * l + offset2].xyz[0]) > .1) continue;
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[1] - grid2->verts[grid2->width * l + offset2].xyz[1]) > .1) continue;
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[2] - grid2->verts[grid2->width * l + offset2].xyz[2]) > .1) continue;
// ok the points are equal and should have the same lod error
grid2->heightLodError[l] = grid1->heightLodError[k];
touch = qtrue;
}
}
}
}
if (touch) {
grid2->lodFixed = 2;
R_FixSharedVertexLodError_r ( start, grid2 );
//NOTE: this would be correct but makes things really slow
//grid2->lodFixed = 1;
}
}
}
/*
=================
R_FixSharedVertexLodError
This function assumes that all patches in one group are nicely stitched together for the highest LoD.
If this is not the case this function will still do its job but won't fix the highest LoD cracks.
=================
*/
static void R_FixSharedVertexLodError( void ) {
int i;
srfGridMesh_t *grid1;
for ( i = 0; i < s_worldData.numsurfaces; i++ ) {
//
grid1 = (srfGridMesh_t *) s_worldData.surfaces[i].data;
// if this surface is not a grid
if ( grid1->surfaceType != SF_GRID )
continue;
//
if ( grid1->lodFixed )
continue;
//
grid1->lodFixed = 2;
// recursively fix other patches in the same LOD group
R_FixSharedVertexLodError_r( i + 1, grid1);
}
}
/*
===============
R_StitchPatches
===============
*/
static int R_StitchPatches( int grid1num, int grid2num ) {
float *v1, *v2;
srfGridMesh_t *grid1, *grid2;
int k, l, m, n, offset1, offset2, row, column;
grid1 = (srfGridMesh_t *) s_worldData.surfaces[grid1num].data;
grid2 = (srfGridMesh_t *) s_worldData.surfaces[grid2num].data;
for (n = 0; n < 2; n++) {
//
if (n) offset1 = (grid1->height-1) * grid1->width;
else offset1 = 0;
if (R_MergedWidthPoints(grid1, offset1))
continue;
for (k = 0; k < grid1->width-2; k += 2) {
for (m = 0; m < 2; m++) {
if ( grid2->width >= MAX_GRID_SIZE )
break;
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
for ( l = 0; l < grid2->width-1; l++) {
//
v1 = grid1->verts[k + offset1].xyz;
v2 = grid2->verts[l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[k + 2 + offset1].xyz;
v2 = grid2->verts[l + 1 + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[l + offset2].xyz;
v2 = grid2->verts[l + 1 + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert column into grid2 right after column l
if (m) row = grid2->height-1;
else row = 0;
grid2 = R_GridInsertColumn( grid2, l+1, row,
grid1->verts[k + 1 + offset1].xyz, grid1->widthLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
for (m = 0; m < 2; m++) {
if (grid2->height >= MAX_GRID_SIZE)
break;
if (m) offset2 = grid2->width-1;
else offset2 = 0;
for ( l = 0; l < grid2->height-1; l++) {
//
v1 = grid1->verts[k + offset1].xyz;
v2 = grid2->verts[grid2->width * l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[k + 2 + offset1].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[grid2->width * l + offset2].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert row into grid2 right after row l
if (m) column = grid2->width-1;
else column = 0;
grid2 = R_GridInsertRow( grid2, l+1, column,
grid1->verts[k + 1 + offset1].xyz, grid1->widthLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
}
}
for (n = 0; n < 2; n++) {
//
if (n) offset1 = grid1->width-1;
else offset1 = 0;
if (R_MergedHeightPoints(grid1, offset1))
continue;
for (k = 0; k < grid1->height-2; k += 2) {
for (m = 0; m < 2; m++) {
if ( grid2->width >= MAX_GRID_SIZE )
break;
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
for ( l = 0; l < grid2->width-1; l++) {
//
v1 = grid1->verts[grid1->width * k + offset1].xyz;
v2 = grid2->verts[l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[grid1->width * (k + 2) + offset1].xyz;
v2 = grid2->verts[l + 1 + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[l + offset2].xyz;
v2 = grid2->verts[(l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert column into grid2 right after column l
if (m) row = grid2->height-1;
else row = 0;
grid2 = R_GridInsertColumn( grid2, l+1, row,
grid1->verts[grid1->width * (k + 1) + offset1].xyz, grid1->heightLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
for (m = 0; m < 2; m++) {
if (grid2->height >= MAX_GRID_SIZE)
break;
if (m) offset2 = grid2->width-1;
else offset2 = 0;
for ( l = 0; l < grid2->height-1; l++) {
//
v1 = grid1->verts[grid1->width * k + offset1].xyz;
v2 = grid2->verts[grid2->width * l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[grid1->width * (k + 2) + offset1].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[grid2->width * l + offset2].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert row into grid2 right after row l
if (m) column = grid2->width-1;
else column = 0;
grid2 = R_GridInsertRow( grid2, l+1, column,
grid1->verts[grid1->width * (k + 1) + offset1].xyz, grid1->heightLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
}
}
for (n = 0; n < 2; n++) {
//
if (n) offset1 = (grid1->height-1) * grid1->width;
else offset1 = 0;
if (R_MergedWidthPoints(grid1, offset1))
continue;
for (k = grid1->width-1; k > 1; k -= 2) {
for (m = 0; m < 2; m++) {
if ( !grid2 || grid2->width >= MAX_GRID_SIZE )
break;
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
for ( l = 0; l < grid2->width-1; l++) {
//
v1 = grid1->verts[k + offset1].xyz;
v2 = grid2->verts[l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[k - 2 + offset1].xyz;
v2 = grid2->verts[l + 1 + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[l + offset2].xyz;
v2 = grid2->verts[(l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert column into grid2 right after column l
if (m) row = grid2->height-1;
else row = 0;
grid2 = R_GridInsertColumn( grid2, l+1, row,
grid1->verts[k - 1 + offset1].xyz, grid1->widthLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
for (m = 0; m < 2; m++) {
if (!grid2 || grid2->height >= MAX_GRID_SIZE)
break;
if (m) offset2 = grid2->width-1;
else offset2 = 0;
for ( l = 0; l < grid2->height-1; l++) {
//
v1 = grid1->verts[k + offset1].xyz;
v2 = grid2->verts[grid2->width * l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[k - 2 + offset1].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[grid2->width * l + offset2].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert row into grid2 right after row l
if (m) column = grid2->width-1;
else column = 0;
grid2 = R_GridInsertRow( grid2, l+1, column,
grid1->verts[k - 1 + offset1].xyz, grid1->widthLodError[k+1]);
if (!grid2)
break;
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
}
}
for (n = 0; n < 2; n++) {
//
if (n) offset1 = grid1->width-1;
else offset1 = 0;
if (R_MergedHeightPoints(grid1, offset1))
continue;
for (k = grid1->height-1; k > 1; k -= 2) {
for (m = 0; m < 2; m++) {
if ( !grid2 || grid2->width >= MAX_GRID_SIZE )
break;
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
for ( l = 0; l < grid2->width-1; l++) {
//
v1 = grid1->verts[grid1->width * k + offset1].xyz;
v2 = grid2->verts[l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[grid1->width * (k - 2) + offset1].xyz;
v2 = grid2->verts[l + 1 + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[l + offset2].xyz;
v2 = grid2->verts[(l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert column into grid2 right after column l
if (m) row = grid2->height-1;
else row = 0;
grid2 = R_GridInsertColumn( grid2, l+1, row,
grid1->verts[grid1->width * (k - 1) + offset1].xyz, grid1->heightLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
for (m = 0; m < 2; m++) {
if (!grid2 || grid2->height >= MAX_GRID_SIZE)
break;
if (m) offset2 = grid2->width-1;
else offset2 = 0;
for ( l = 0; l < grid2->height-1; l++) {
//
v1 = grid1->verts[grid1->width * k + offset1].xyz;
v2 = grid2->verts[grid2->width * l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[grid1->width * (k - 2) + offset1].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[grid2->width * l + offset2].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert row into grid2 right after row l
if (m) column = grid2->width-1;
else column = 0;
grid2 = R_GridInsertRow( grid2, l+1, column,
grid1->verts[grid1->width * (k - 1) + offset1].xyz, grid1->heightLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
}
}
return qfalse;
}
/*
===============
R_TryStitchPatch
This function will try to stitch patches in the same LoD group together for the highest LoD.
Only single missing vertex cracks will be fixed.
Vertices will be joined at the patch side a crack is first found, at the other side
of the patch (on the same row or column) the vertices will not be joined and cracks
might still appear at that side.
===============
*/
static int R_TryStitchingPatch( int grid1num ) {
int j, numstitches;
srfGridMesh_t *grid1, *grid2;
numstitches = 0;
grid1 = (srfGridMesh_t *) s_worldData.surfaces[grid1num].data;
for ( j = 0; j < s_worldData.numsurfaces; j++ ) {
//
grid2 = (srfGridMesh_t *) s_worldData.surfaces[j].data;
// if this surface is not a grid
if ( grid2->surfaceType != SF_GRID ) continue;
// grids in the same LOD group should have the exact same lod radius
if ( grid1->lodRadius != grid2->lodRadius ) continue;
// grids in the same LOD group should have the exact same lod origin
if ( grid1->lodOrigin[0] != grid2->lodOrigin[0] ) continue;
if ( grid1->lodOrigin[1] != grid2->lodOrigin[1] ) continue;
if ( grid1->lodOrigin[2] != grid2->lodOrigin[2] ) continue;
//
while (R_StitchPatches(grid1num, j))
{
numstitches++;
}
}
return numstitches;
}
/*
===============
R_StitchAllPatches
===============
*/
static void R_StitchAllPatches( void ) {
int i, stitched, numstitches;
srfGridMesh_t *grid1;
numstitches = 0;
do
{
stitched = qfalse;
for ( i = 0; i < s_worldData.numsurfaces; i++ ) {
//
grid1 = (srfGridMesh_t *) s_worldData.surfaces[i].data;
// if this surface is not a grid
if ( grid1->surfaceType != SF_GRID )
continue;
//
if ( grid1->lodStitched )
continue;
//
grid1->lodStitched = qtrue;
stitched = qtrue;
//
numstitches += R_TryStitchingPatch( i );
}
}
while (stitched);
ri.Printf( PRINT_ALL, "stitched %d LoD cracks\n", numstitches );
}
/*
===============
R_MovePatchSurfacesToHunk
===============
*/
static void R_MovePatchSurfacesToHunk( void ) {
int i, size;
srfGridMesh_t *grid, *hunkgrid;
for ( i = 0; i < s_worldData.numsurfaces; i++ ) {
//
grid = (srfGridMesh_t *) s_worldData.surfaces[i].data;
// if this surface is not a grid
if ( grid->surfaceType != SF_GRID )
continue;
//
size = (grid->width * grid->height - 1) * sizeof( drawVert_t ) + sizeof( *grid );
hunkgrid = ri.Hunk_Alloc( size, h_low );
Com_Memcpy(hunkgrid, grid, size);
hunkgrid->widthLodError = ri.Hunk_Alloc( grid->width * 4, h_low );
Com_Memcpy( hunkgrid->widthLodError, grid->widthLodError, grid->width * 4 );
hunkgrid->heightLodError = ri.Hunk_Alloc( grid->height * 4, h_low );
Com_Memcpy( hunkgrid->heightLodError, grid->heightLodError, grid->height * 4 );
R_FreeSurfaceGridMesh( grid );
s_worldData.surfaces[i].data = (void *) hunkgrid;
}
}
/*
===============
R_LoadSurfaces
===============
*/
static void R_LoadSurfaces( const lump_t *surfs, const lump_t *verts, const lump_t *indexLump ) {
const dsurface_t *in;
msurface_t *out;
const drawVert_t *dv;
int *indexes;
int count;
int numFaces, numMeshes, numTriSurfs, numFlares;
int i;
numFaces = 0;
numMeshes = 0;
numTriSurfs = 0;
numFlares = 0;
in = (void *)(fileBase + surfs->fileofs);
if (surfs->filelen % sizeof(*in))
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
count = surfs->filelen / sizeof(*in);
dv = (void *)(fileBase + verts->fileofs);
if (verts->filelen % sizeof(*dv))
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
indexes = (void *)(fileBase + indexLump->fileofs);
if ( indexLump->filelen % sizeof(*indexes))
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
out = ri.Hunk_Alloc( count * sizeof(*out), h_low );
s_worldData.surfaces = out;
s_worldData.numsurfaces = count;
for ( i = 0 ; i < count ; i++, in++, out++ ) {
switch ( LittleLong( in->surfaceType ) ) {
case MST_PATCH:
ParseMesh( in, dv, out );
numMeshes++;
break;
case MST_TRIANGLE_SOUP:
ParseTriSurf( in, dv, out, indexes );
numTriSurfs++;
break;
case MST_PLANAR:
ParseFace( in, dv, out, indexes );
numFaces++;
break;
case MST_FLARE:
ParseFlare( in, dv, out, indexes );
numFlares++;
break;
default:
ri.Error( ERR_DROP, "Bad surfaceType %i", LittleLong( in->surfaceType ) );
}
}
#ifdef PATCH_STITCHING
R_StitchAllPatches();
#endif
R_FixSharedVertexLodError();
#ifdef PATCH_STITCHING
R_MovePatchSurfacesToHunk();
#endif
ri.Printf( PRINT_ALL, "...loaded %d faces, %i meshes, %i trisurfs, %i flares\n",
numFaces, numMeshes, numTriSurfs, numFlares );
}
/*
=================
R_LoadSubmodels
=================
*/
static void R_LoadSubmodels( const lump_t *l ) {
const dmodel_t *in;
bmodel_t *out;
int i, j, count;
in = (void *)(fileBase + l->fileofs);
if (l->filelen % sizeof(*in))
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
count = l->filelen / sizeof(*in);
s_worldData.bmodels = out = ri.Hunk_Alloc( count * sizeof(*out), h_low );
for ( i=0 ; i<count ; i++, in++, out++ ) {
model_t *model;
model = R_AllocModel();
if ( model == NULL ) {
ri.Error( ERR_DROP, "R_LoadSubmodels: R_AllocModel() failed" );
}
model->type = MOD_BRUSH;
model->bmodel = out;
Com_sprintf( model->name, sizeof( model->name ), "*%d", i );
for (j=0 ; j<3 ; j++) {
out->bounds[0][j] = LittleFloat (in->mins[j]);
out->bounds[1][j] = LittleFloat (in->maxs[j]);
}
out->firstSurface = s_worldData.surfaces + LittleLong( in->firstSurface );
out->numSurfaces = LittleLong( in->numSurfaces );
}
}
//==================================================================
/*
=================
R_SetParent
=================
*/
static void R_SetParent( mnode_t *node, mnode_t *parent )
{
node->parent = parent;
if ( node->contents != CONTENTS_NODE )
return;
R_SetParent( node->children[0], node );
R_SetParent( node->children[1], node );
}
/*
=================
R_LoadNodesAndLeafs
=================
*/
static void R_LoadNodesAndLeafs( const lump_t *nodeLump, const lump_t *leafLump ) {
int i, j, p;
const dnode_t *in;
dleaf_t *inLeaf;
mnode_t *out;
int numNodes, numLeafs;
in = (void *)(fileBase + nodeLump->fileofs);
if (nodeLump->filelen % sizeof(dnode_t) ||
leafLump->filelen % sizeof(dleaf_t) ) {
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
}
numNodes = nodeLump->filelen / sizeof(dnode_t);
numLeafs = leafLump->filelen / sizeof(dleaf_t);
out = ri.Hunk_Alloc ( (numNodes + numLeafs) * sizeof(*out), h_low);
s_worldData.nodes = out;
s_worldData.numnodes = numNodes + numLeafs;
s_worldData.numDecisionNodes = numNodes;
// load nodes
for ( i=0 ; i<numNodes; i++, in++, out++)
{
for (j=0 ; j<3 ; j++)
{
out->mins[j] = LittleLong (in->mins[j]);
out->maxs[j] = LittleLong (in->maxs[j]);
}
p = LittleLong(in->planeNum);
out->plane = s_worldData.planes + p;
out->contents = CONTENTS_NODE; // differentiate from leafs
for (j=0 ; j<2 ; j++)
{
p = LittleLong (in->children[j]);
if (p >= 0)
out->children[j] = s_worldData.nodes + p;
else
out->children[j] = s_worldData.nodes + numNodes + (-1 - p);
}
}
// load leafs
inLeaf = (void *)(fileBase + leafLump->fileofs);
for ( i=0 ; i<numLeafs ; i++, inLeaf++, out++)
{
for (j=0 ; j<3 ; j++)
{
out->mins[j] = LittleLong (inLeaf->mins[j]);
out->maxs[j] = LittleLong (inLeaf->maxs[j]);
}
out->cluster = LittleLong(inLeaf->cluster);
out->area = LittleLong(inLeaf->area);
if ( out->cluster >= s_worldData.numClusters ) {
s_worldData.numClusters = out->cluster + 1;
}
out->firstmarksurface = s_worldData.marksurfaces +
LittleLong(inLeaf->firstLeafSurface);
out->nummarksurfaces = LittleLong(inLeaf->numLeafSurfaces);
}
// chain descendants
R_SetParent (s_worldData.nodes, NULL);
}
//=============================================================================
/*
=================
R_ReplaceShaders
replaces some buggy map shaders
=================
*/
static void R_ReplaceMapShaders( dshader_t *out, int count )
{
if ( Q_stricmp( s_worldData.baseName, "mapel4b" ) == 0 && count == 86 ) {
if ( crc32_buffer( (const byte*)out, count*sizeof(*out) ) == 0x1593623C ) {
if ( strcmp( out[72].shader, "textures/mapel4/crate1_top3" ) == 0 ) {
strcpy( out[72].shader, "textures/mapel4/crate1_top2" );
}
}
}
}
/*
=================
R_LoadShaders
=================
*/
static void R_LoadShaders( const lump_t *l ) {
int i, count;
dshader_t *in, *out;
in = (void *)(fileBase + l->fileofs);
if (l->filelen % sizeof(*in))
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
count = l->filelen / sizeof(*in);
out = ri.Hunk_Alloc ( count*sizeof(*out), h_low );
s_worldData.shaders = out;
s_worldData.numShaders = count;
Com_Memcpy( out, in, count*sizeof(*out) );
R_ReplaceMapShaders( out, count );
for ( i=0 ; i<count ; i++ ) {
out[i].surfaceFlags = LittleLong( out[i].surfaceFlags );
out[i].contentFlags = LittleLong( out[i].contentFlags );
}
}
/*
=================
R_LoadMarksurfaces
=================
*/
static void R_LoadMarksurfaces( const lump_t *l )
{
int i, j, count;
int *in;
msurface_t **out;
in = (void *)(fileBase + l->fileofs);
if (l->filelen % sizeof(*in))
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
count = l->filelen / sizeof(*in);
out = ri.Hunk_Alloc ( count*sizeof(*out), h_low);
s_worldData.marksurfaces = out;
s_worldData.nummarksurfaces = count;
for ( i=0 ; i<count ; i++)
{
j = LittleLong(in[i]);
out[i] = s_worldData.surfaces + j;
}
}
/*
=================
R_LoadPlanes
=================
*/
static void R_LoadPlanes( const lump_t *l ) {
int i, j;
cplane_t *out;
const dplane_t *in;
int count;
int bits;
in = (void *)(fileBase + l->fileofs);
if (l->filelen % sizeof(*in))
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
count = l->filelen / sizeof(*in);
out = ri.Hunk_Alloc( count*2*sizeof(*out), h_low );
s_worldData.planes = out;
s_worldData.numplanes = count;
for ( i=0 ; i<count ; i++, in++, out++) {
bits = 0;
for (j=0 ; j<3 ; j++) {
out->normal[j] = LittleFloat (in->normal[j]);
if (out->normal[j] < 0) {
bits |= 1<<j;
}
}
out->dist = LittleFloat (in->dist);
out->type = PlaneTypeForNormal( out->normal );
out->signbits = bits;
}
}
/*
=================
R_LoadFogs
=================
*/
static void R_LoadFogs( const lump_t *l, const lump_t *brushesLump, const lump_t *sidesLump ) {
int i, n;
fog_t *out;
const dfog_t *fogs;
const dbrush_t *brushes, *brush;
const dbrushside_t *sides;
int count, brushesCount, sidesCount;
int sideNum;
int planeNum;
shader_t *shader;
float d;
int firstSide;
vec3_t fogColor;
fogs = (void *)(fileBase + l->fileofs);
if (l->filelen % sizeof(*fogs)) {
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
}
count = l->filelen / sizeof(*fogs);
// create fog structures for them
s_worldData.numfogs = count + 1;
s_worldData.fogs = ri.Hunk_Alloc( s_worldData.numfogs*sizeof(*out), h_low);
out = s_worldData.fogs + 1;
if ( !count ) {
return;
}
brushes = (void *)(fileBase + brushesLump->fileofs);
if (brushesLump->filelen % sizeof(*brushes)) {
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
}
brushesCount = brushesLump->filelen / sizeof(*brushes);
sides = (void *)(fileBase + sidesLump->fileofs);
if (sidesLump->filelen % sizeof(*sides)) {
ri.Error( ERR_DROP, "%s(): funny lump size in %s", __func__, s_worldData.name );
}
sidesCount = sidesLump->filelen / sizeof(*sides);
for ( i=0 ; i<count ; i++, fogs++) {
out->originalBrushNumber = LittleLong( fogs->brushNum );
if ( (unsigned)out->originalBrushNumber >= brushesCount ) {
ri.Error( ERR_DROP, "fog brushNumber out of range" );
}
brush = brushes + out->originalBrushNumber;
firstSide = LittleLong( brush->firstSide );
if ( (unsigned)firstSide > sidesCount - 6 ) {
ri.Error( ERR_DROP, "fog brush sideNumber out of range" );
}
// brushes are always sorted with the axial sides first
sideNum = firstSide + 0;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[0][0] = -s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 1;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[1][0] = s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 2;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[0][1] = -s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 3;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[1][1] = s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 4;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[0][2] = -s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 5;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[1][2] = s_worldData.planes[ planeNum ].dist;
// get information from the shader for fog parameters
shader = R_FindShader( fogs->shader, LIGHTMAP_NONE, qtrue );
VectorCopy( shader->fogParms.color, fogColor );
if ( r_mapGreyScale->value > 0 ) {
float luminance;
luminance = LUMA( fogColor[0], fogColor[1], fogColor[2] );
fogColor[0] = LERP( fogColor[0], luminance, r_mapGreyScale->value );
fogColor[1] = LERP( fogColor[1], luminance, r_mapGreyScale->value );
fogColor[2] = LERP( fogColor[2], luminance, r_mapGreyScale->value );
}
if ( r_mapColorScale->value > 0 ) {
float luminance;
luminance = LUMA( fogColor[0], fogColor[1], fogColor[2] );
fogColor[0] = LERP( fogColor[0], luminance, r_mapColorRedT->value );
fogColor[1] = LERP( fogColor[1], luminance, r_mapColorGreenT->value );
fogColor[2] = LERP( fogColor[2], luminance, r_mapColorBlueT->value );
}
out->parms = shader->fogParms;
out->colorInt.rgba[0] = ( fogColor[0] * tr.identityLight ) * 255.0f;
out->colorInt.rgba[1] = ( fogColor[1] * tr.identityLight ) * 255.0f;
out->colorInt.rgba[2] = ( fogColor[2] * tr.identityLight ) * 255.0f;
out->colorInt.rgba[3] = 255;
for ( n = 0; n < 4; n++ )
out->color[ n ] = (float) out->colorInt.rgba[ n ] / 255.0f;
d = shader->fogParms.depthForOpaque < 1 ? 1 : shader->fogParms.depthForOpaque;
out->tcScale = 1.0f / ( d * 8 );
// set the gradient vector
sideNum = LittleLong( fogs->visibleSide );
if ( sideNum == -1 ) {
out->hasSurface = qfalse;
} else {
int sideOffset = firstSide + sideNum;
if ( (unsigned)sideOffset >= sidesCount ) {
ri.Printf( PRINT_WARNING, "bad fog side offset %i\n", sideOffset );
out->hasSurface = qfalse;
} else {
out->hasSurface = qtrue;
planeNum = LittleLong( sides[ sideOffset ].planeNum );
VectorSubtract( vec3_origin, s_worldData.planes[ planeNum ].normal, out->surface );
out->surface[3] = -s_worldData.planes[ planeNum ].dist;
}
}
out++;
}
}
/*
================
R_LoadLightGrid
================
*/
static void R_LoadLightGrid( const lump_t *l ) {
int i;
vec3_t maxs;
int numGridPoints;
world_t *w;
float *wMins, *wMaxs;
w = &s_worldData;
w->lightGridInverseSize[0] = 1.0f / w->lightGridSize[0];
w->lightGridInverseSize[1] = 1.0f / w->lightGridSize[1];
w->lightGridInverseSize[2] = 1.0f / w->lightGridSize[2];
wMins = w->bmodels[0].bounds[0];
wMaxs = w->bmodels[0].bounds[1];
for ( i = 0 ; i < 3 ; i++ ) {
w->lightGridOrigin[i] = w->lightGridSize[i] * ceil( wMins[i] / w->lightGridSize[i] );
maxs[i] = w->lightGridSize[i] * floor( wMaxs[i] / w->lightGridSize[i] );
w->lightGridBounds[i] = (maxs[i] - w->lightGridOrigin[i])/w->lightGridSize[i] + 1;
}
numGridPoints = w->lightGridBounds[0] * w->lightGridBounds[1] * w->lightGridBounds[2];
if ( l->filelen != numGridPoints * 8 ) {
ri.Printf( PRINT_WARNING, "WARNING: light grid mismatch\n" );
w->lightGridData = NULL;
return;
}
w->lightGridData = ri.Hunk_Alloc( l->filelen, h_low );
Com_Memcpy( w->lightGridData, (void *)(fileBase + l->fileofs), l->filelen );
// deal with overbright bits
for ( i = 0 ; i < numGridPoints ; i++ ) {
R_ColorShiftLightingBytes( &w->lightGridData[i*8], &w->lightGridData[i*8], qfalse );
R_ColorShiftLightingBytes( &w->lightGridData[i*8+3], &w->lightGridData[i*8+3], qfalse );
}
}
/*
================
R_LoadEntities
================
*/
static void R_LoadEntities( const lump_t *l ) {
const char *p, *token, *s;
char keyname[MAX_TOKEN_CHARS];
char value[MAX_TOKEN_CHARS], *v[3];
world_t *w;
w = &s_worldData;
w->lightGridSize[0] = 64;
w->lightGridSize[1] = 64;
w->lightGridSize[2] = 128;
p = (const char *)(fileBase + l->fileofs);
// store for reference by the cgame
w->entityString = ri.Hunk_Alloc( l->filelen + 1, h_low );
strcpy( w->entityString, p );
w->entityParsePoint = w->entityString;
token = COM_ParseExt( &p, qtrue );
if (*token != '{') {
return;
}
// only parse the world spawn
while ( 1 ) {
// parse key
token = COM_ParseExt( &p, qtrue );
if ( !*token || *token == '}' ) {
break;
}
Q_strncpyz(keyname, token, sizeof(keyname));
// parse value
token = COM_ParseExt( &p, qtrue );
if ( !*token || *token == '}' ) {
break;
}
Q_strncpyz(value, token, sizeof(value));
// check for remapping of shaders for vertex lighting
s = "vertexremapshader";
if (!Q_strncmp(keyname, s, strlen(s)) ) {
char *vs = strchr(value, ';');
if (!vs) {
ri.Printf( PRINT_WARNING, "WARNING: no semi colon in vertexshaderremap '%s'\n", value );
break;
}
*vs++ = '\0';
if ( r_vertexLight->integer && tr.vertexLightingAllowed ) {
RE_RemapShader(value, s, "0");
}
continue;
}
// check for remapping of shaders
s = "remapshader";
if (!Q_strncmp(keyname, s, (int)strlen(s)) ) {
char *vs = strchr(value, ';');
if (!vs) {
ri.Printf( PRINT_WARNING, "WARNING: no semi colon in shaderremap '%s'\n", value );
break;
}
*vs++ = '\0';
RE_RemapShader(value, s, "0");
continue;
}
// check for a different grid size
if (!Q_stricmp(keyname, "gridsize")) {
//sscanf(value, "%f %f %f", &w->lightGridSize[0], &w->lightGridSize[1], &w->lightGridSize[2] );
Com_Split( value, v, 3, ' ' );
w->lightGridSize[0] = Q_atof( v[0] );
w->lightGridSize[1] = Q_atof( v[1] );
w->lightGridSize[2] = Q_atof( v[2] );
continue;
}
}
}
/*
=================
RE_GetEntityToken
=================
*/
qboolean RE_GetEntityToken( char *buffer, int size ) {
const char *s;
s = COM_Parse( &s_worldData.entityParsePoint );
Q_strncpyz( buffer, s, size );
if ( !s_worldData.entityParsePoint && !s[0] ) {
s_worldData.entityParsePoint = s_worldData.entityString;
return qfalse;
} else {
return qtrue;
}
}
/*
=================
RE_LoadWorldMap
Called directly from cgame
=================
*/
void RE_LoadWorldMap( const char *name ) {
int i;
int32_t size;
dheader_t *header;
union {
byte *b;
void *v;
} buffer;
byte *startMarker;
if ( tr.worldMapLoaded ) {
ri.Error( ERR_DROP, "ERROR: attempted to redundantly load world map" );
}
// set default sun direction to be used if it isn't
// overridden by a shader
tr.sunDirection[0] = 0.45f;
tr.sunDirection[1] = 0.3f;
tr.sunDirection[2] = 0.9f;
VectorNormalize( tr.sunDirection );
tr.worldMapLoaded = qtrue;
// load it
size = ri.FS_ReadFile( name, &buffer.v );
if ( !buffer.b ) {
ri.Error( ERR_DROP, "%s: couldn't load %s", __func__, name );
}
if ( size < sizeof( dheader_t ) ) {
ri.Error( ERR_DROP, "%s: %s has truncated header", __func__, name );
}
tr.mapLoading = qtrue;
// clear tr.world so if the level fails to load, the next
// try will not look at the partially loaded version
tr.world = NULL;
Com_Memset( &s_worldData, 0, sizeof( s_worldData ) );
Q_strncpyz( s_worldData.name, name, sizeof( s_worldData.name ) );
Q_strncpyz( s_worldData.baseName, COM_SkipPath( s_worldData.name ), sizeof( s_worldData.name ) );
COM_StripExtension(s_worldData.baseName, s_worldData.baseName, sizeof(s_worldData.baseName));
startMarker = ri.Hunk_Alloc(0, h_low);
c_gridVerts = 0;
header = (dheader_t *)buffer.b;
fileBase = (byte *)header;
// swap all the lumps
for ( i = 0; i < sizeof( dheader_t ) / 4; i++ ) {
( (int32_t *)header )[i] = LittleLong( ( (int32_t *)header )[i] );
}
//if ( header->version != BSP_VERSION ) {
// ri.Error( ERR_DROP, "%s: %s has wrong version number (%i should be %i)", __func__, name, header->version, BSP_VERSION );
//}
for ( i = 0; i < HEADER_LUMPS; i++ ) {
int32_t ofs = header->lumps[i].fileofs;
int32_t len = header->lumps[i].filelen;
if ( (uint32_t)ofs > MAX_QINT || (uint32_t)len > MAX_QINT || ofs + len > size || ofs + len < 0 ) {
ri.Error( ERR_DROP, "%s: %s has wrong lump[%i] size/offset", __func__, name, i );
}
}
// load into heap
R_LoadLightmaps( &header->lumps[LUMP_LIGHTMAPS] );
R_LoadShaders( &header->lumps[LUMP_SHADERS] );
R_LoadPlanes( &header->lumps[LUMP_PLANES] );
R_LoadFogs( &header->lumps[LUMP_FOGS], &header->lumps[LUMP_BRUSHES], &header->lumps[LUMP_BRUSHSIDES] );
R_LoadSurfaces( &header->lumps[LUMP_SURFACES], &header->lumps[LUMP_DRAWVERTS], &header->lumps[LUMP_DRAWINDEXES] );
R_LoadMarksurfaces( &header->lumps[LUMP_LEAFSURFACES] );
R_LoadNodesAndLeafs( &header->lumps[LUMP_NODES], &header->lumps[LUMP_LEAFS] );
R_LoadSubmodels( &header->lumps[LUMP_MODELS] );
R_LoadVisibility( &header->lumps[LUMP_VISIBILITY] );
R_LoadEntities( &header->lumps[LUMP_ENTITIES] );
R_LoadLightGrid( &header->lumps[LUMP_LIGHTGRID] );
R_BuildWorldVBO( s_worldData.surfaces, s_worldData.numsurfaces );
tr.mapLoading = qfalse;
s_worldData.dataSize = (byte *)ri.Hunk_Alloc(0, h_low) - startMarker;
// only set tr.world now that we know the entire level has loaded properly
tr.world = &s_worldData;
ri.FS_FreeFile( buffer.v );
}