rallyunlimited-engine/code/renderervk/tr_shade.c
2024-02-02 19:46:17 +03:00

1426 lines
33 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_shade.c
#include "tr_local.h"
/*
THIS ENTIRE FILE IS BACK END
This file deals with applying shaders to surface data in the tess struct.
*/
/*
==================
R_DrawElements
==================
*/
#ifndef USE_VULKAN
void R_DrawElements( int numIndexes, const glIndex_t *indexes ) {
qglDrawElements( GL_TRIANGLES, numIndexes, GL_INDEX_TYPE, indexes );
}
#endif
/*
=============================================================
SURFACE SHADERS
=============================================================
*/
shaderCommands_t tess;
#ifndef USE_VULKAN
static qboolean setArraysOnce;
#endif
/*
=================
R_BindAnimatedImage
=================
*/
static void R_BindAnimatedImage( const textureBundle_t *bundle ) {
int64_t index;
double v;
if ( bundle->isVideoMap ) {
ri.CIN_RunCinematic(bundle->videoMapHandle);
ri.CIN_UploadCinematic(bundle->videoMapHandle);
return;
}
if ( bundle->isScreenMap /*&& backEnd.viewParms.frameSceneNum == 1*/ ) {
if ( !backEnd.screenMapDone )
GL_Bind( tr.blackImage );
else
vk_update_descriptor( glState.currenttmu + 2, vk.screenMap.color_descriptor );
return;
}
if ( bundle->numImageAnimations <= 1 ) {
GL_Bind( bundle->image[0] );
return;
}
// it is necessary to do this messy calc to make sure animations line up
// exactly with waveforms of the same frequency
//v = tess.shaderTime * bundle->imageAnimationSpeed * FUNCTABLE_SIZE;
//index = v;
//index >>= FUNCTABLE_SIZE2;
v = tess.shaderTime * bundle->imageAnimationSpeed; // fix for frameloss bug -EC-
index = v;
if ( index < 0 ) {
index = 0; // may happen with shader time offsets
}
index %= bundle->numImageAnimations;
GL_Bind( bundle->image[ index ] );
}
/*
================
DrawTris
Draws triangle outlines for debugging
================
*/
static void DrawTris( const shaderCommands_t *input ) {
#ifdef USE_VULKAN
uint32_t pipeline;
if ( r_showtris->integer == 1 && backEnd.drawConsole )
return;
if ( tess.numIndexes == 0 )
return;
if ( r_fastsky->integer && input->shader->isSky )
return;
#ifdef USE_VBO
if ( tess.vboIndex ) {
#ifdef USE_PMLIGHT
if ( tess.dlightPass )
pipeline = backEnd.viewParms.portalView == PV_MIRROR ? vk.tris_mirror_debug_red_pipeline : vk.tris_debug_red_pipeline;
else
#endif
pipeline = backEnd.viewParms.portalView == PV_MIRROR ? vk.tris_mirror_debug_green_pipeline : vk.tris_debug_green_pipeline;
} else
#endif
{
#ifdef USE_PMLIGHT
if ( tess.dlightPass )
pipeline = backEnd.viewParms.portalView == PV_MIRROR ? vk.tris_mirror_debug_red_pipeline : vk.tris_debug_red_pipeline;
else
#endif
pipeline = backEnd.viewParms.portalView == PV_MIRROR ? vk.tris_mirror_debug_pipeline : vk.tris_debug_pipeline;
}
vk_bind_pipeline( pipeline );
vk_draw_geometry( DEPTH_RANGE_ZERO, qtrue );
#else
if ( r_showtris->integer == 1 && backEnd.drawConsole )
return;
GL_ClientState( 0, CLS_NONE );
qglDisable( GL_TEXTURE_2D );
qglColor4f( 1, 1, 1, 1 );
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE );
qglDepthRange( 0, 0 );
qglVertexPointer( 3, GL_FLOAT, sizeof( input->xyz[0] ), input->xyz );
if ( qglLockArraysEXT ) {
qglLockArraysEXT( 0, input->numVertexes );
}
R_DrawElements( input->numIndexes, input->indexes );
if ( qglUnlockArraysEXT ) {
qglUnlockArraysEXT();
}
qglEnable( GL_TEXTURE_2D );
qglDepthRange( 0, 1 );
#endif
}
/*
================
DrawNormals
Draws vertex normals for debugging
================
*/
static void DrawNormals( const shaderCommands_t *input ) {
int i;
#ifdef USE_VULKAN
#ifdef USE_VBO
if ( tess.vboIndex )
return; // must be handled specially
#endif
GL_Bind( tr.whiteImage );
tess.numIndexes = 0;
for ( i = 0; i < tess.numVertexes; i++ ) {
VectorMA( tess.xyz[i], 2.0, tess.normal[i], tess.xyz[i + tess.numVertexes] );
tess.indexes[ tess.numIndexes + 0 ] = i;
tess.indexes[ tess.numIndexes + 1 ] = i + tess.numVertexes;
tess.numIndexes += 2;
}
tess.numVertexes *= 2;
Com_Memset( tess.svars.colors[0][0].rgba, tr.identityLightByte, tess.numVertexes * sizeof( color4ub_t ) );
vk_bind_pipeline( vk.normals_debug_pipeline );
vk_bind_index();
vk_bind_geometry( TESS_XYZ | TESS_RGBA0 );
vk_draw_geometry( DEPTH_RANGE_ZERO, qtrue );
#else
GL_ClientState( 0, CLS_NONE );
qglDisable( GL_TEXTURE_2D );
qglColor4f( 1, 1, 1, 1 );
qglDepthRange( 0, 0 ); // never occluded
GL_State( GLS_DEPTHMASK_TRUE );
for ( i = tess.numVertexes-1; i >= 0; i-- ) {
VectorMA( tess.xyz[i], 2.0, tess.normal[i], tess.xyz[i*2 + 1] );
VectorCopy( tess.xyz[i], tess.xyz[i*2] );
}
qglVertexPointer( 3, GL_FLOAT, sizeof( tess.xyz[0] ), tess.xyz );
if ( qglLockArraysEXT ) {
qglLockArraysEXT( 0, tess.numVertexes * 2 );
}
qglDrawArrays( GL_LINES, 0, tess.numVertexes * 2 );
if ( qglUnlockArraysEXT ) {
qglUnlockArraysEXT();
}
qglEnable( GL_TEXTURE_2D );
qglDepthRange( 0, 1 );
#endif
}
/*
==============
RB_BeginSurface
We must set some things up before beginning any tesselation,
because a surface may be forced to perform a RB_End due
to overflow.
==============
*/
void RB_BeginSurface( shader_t *shader, int fogNum ) {
shader_t *state;
#ifdef USE_VBO
if ( shader->isStaticShader && !shader->remappedShader ) {
tess.allowVBO = qtrue;
} else {
tess.allowVBO = qfalse;
}
#endif
if ( shader->remappedShader ) {
state = shader->remappedShader;
} else {
state = shader;
}
#ifdef USE_PMLIGHT
if ( tess.fogNum != fogNum ) {
tess.dlightUpdateParams = qtrue;
}
#endif
#ifdef USE_TESS_NEEDS_NORMAL
#ifdef USE_PMLIGHT
tess.needsNormal = state->needsNormal || tess.dlightPass || r_shownormals->integer;
#else
tess.needsNormal = state->needsNormal || r_shownormals->integer;
#endif
#endif
#ifdef USE_TESS_NEEDS_ST2
tess.needsST2 = state->needsST2;
#endif
tess.numIndexes = 0;
tess.numVertexes = 0;
tess.shader = state;
tess.fogNum = fogNum;
#ifdef USE_LEGACY_DLIGHTS
tess.dlightBits = 0; // will be OR'd in by surface functions
#endif
tess.xstages = state->stages;
tess.numPasses = state->numUnfoggedPasses;
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
if ( tess.shader->clampTime && tess.shaderTime >= tess.shader->clampTime ) {
tess.shaderTime = tess.shader->clampTime;
}
}
/*
===================
DrawMultitextured
output = t0 * t1 or t0 + t1
t0 = most upstream according to spec
t1 = most downstream according to spec
===================
*/
#ifndef USE_VULKAN
static void DrawMultitextured( const shaderCommands_t *input, int stage ) {
const shaderStage_t *pStage;
pStage = tess.xstages[ stage ];
GL_State( pStage->stateBits );
if ( !setArraysOnce ) {
R_ComputeColors( 0, tess.svars.colors[0], pStage );
R_ComputeTexCoords( 0, &pStage->bundle[0] );
R_ComputeTexCoords( 1, &pStage->bundle[1] );
GL_ClientState( 0, CLS_TEXCOORD_ARRAY | CLS_COLOR_ARRAY );
qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoordPtr[0] );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, input->svars.colors[0].rgba );
GL_ClientState( 1, CLS_TEXCOORD_ARRAY );
qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoordPtr[1] );
}
//
// base
//
GL_SelectTexture( 0 );
R_BindAnimatedImage( &pStage->bundle[0] );
//
// lightmap/secondary pass
//
GL_SelectTexture( 1 );
qglEnable( GL_TEXTURE_2D );
R_BindAnimatedImage( &pStage->bundle[1] );
if ( r_lightmap->integer ) {
GL_TexEnv( GL_REPLACE );
} else {
GL_TexEnv( pStage->mtEnv );
}
R_DrawElements( input->numIndexes, input->indexes );
//
// disable texturing on TEXTURE1, then select TEXTURE0
//
//GL_ClientState( 1, CLS_NONE );
qglDisable( GL_TEXTURE_2D );
GL_SelectTexture( 0 );
}
#endif
#ifdef USE_LEGACY_DLIGHTS
/*
===================
ProjectDlightTexture
Perform dynamic lighting with another rendering pass
===================
*/
static void ProjectDlightTexture_scalar( void ) {
int i, l;
vec3_t origin;
float *texCoords;
byte *colors;
byte clipBits[SHADER_MAX_VERTEXES];
#ifdef USE_VULKAN
uint32_t pipeline;
#else
float texCoordsArray[SHADER_MAX_VERTEXES][2];
byte colorArray[SHADER_MAX_VERTEXES][4];
#endif
glIndex_t hitIndexes[SHADER_MAX_INDEXES];
int numIndexes;
float scale;
float radius;
float modulate = 0.0f;
const dlight_t *dl;
if ( !backEnd.refdef.num_dlights ) {
return;
}
for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) {
if ( !( tess.dlightBits & ( 1 << l ) ) ) {
continue; // this surface definitely doesn't have any of this light
}
#ifdef USE_VULKAN
texCoords = (float*)&tess.svars.texcoords[0][0];
tess.svars.texcoordPtr[0] = tess.svars.texcoords[0];
colors = tess.svars.colors[0][0].rgba;
#else
texCoords = texCoordsArray[0];
colors = colorArray[0];
#endif
dl = &backEnd.refdef.dlights[l];
VectorCopy( dl->transformed, origin );
radius = dl->radius;
scale = 1.0f / radius;
for ( i = 0 ; i < tess.numVertexes ; i++, texCoords += 2, colors += 4 ) {
int clip = 0;
vec3_t dist;
VectorSubtract( origin, tess.xyz[i], dist );
backEnd.pc.c_dlightVertexes++;
texCoords[0] = 0.5f + dist[0] * scale;
texCoords[1] = 0.5f + dist[1] * scale;
if ( !r_dlightBacks->integer &&
// dist . tess.normal[i]
( dist[0] * tess.normal[i][0] +
dist[1] * tess.normal[i][1] +
dist[2] * tess.normal[i][2] ) < 0.0f ) {
clip = 63;
} else {
if ( texCoords[0] < 0.0f ) {
clip |= 1;
} else if ( texCoords[0] > 1.0f ) {
clip |= 2;
}
if ( texCoords[1] < 0.0f ) {
clip |= 4;
} else if ( texCoords[1] > 1.0f ) {
clip |= 8;
}
// modulate the strength based on the height and color
if ( dist[2] > radius ) {
clip |= 16;
modulate = 0.0f;
} else if ( dist[2] < -radius ) {
clip |= 32;
modulate = 0.0f;
} else {
//*((int*)&dist[2]) &= 0x7FFFFFFF;
dist[2] = fabsf( dist[2] );
if ( dist[2] < radius * 0.5f ) {
modulate = 1.0 * 255.0;
} else {
modulate = 2.0f * (radius - dist[2]) * scale * 255.0;
}
}
}
clipBits[i] = clip;
colors[0] = dl->color[0] * modulate;
colors[1] = dl->color[1] * modulate;
colors[2] = dl->color[2] * modulate;
colors[3] = 255;
}
// build a list of triangles that need light
numIndexes = 0;
for ( i = 0 ; i < tess.numIndexes ; i += 3 ) {
int a, b, c;
a = tess.indexes[i];
b = tess.indexes[i+1];
c = tess.indexes[i+2];
if ( clipBits[a] & clipBits[b] & clipBits[c] ) {
continue; // not lighted
}
hitIndexes[numIndexes] = a;
hitIndexes[numIndexes+1] = b;
hitIndexes[numIndexes+2] = c;
numIndexes += 3;
}
if ( !numIndexes ) {
continue;
}
#ifndef USE_VULKAN
GL_ClientState( 1, CLS_NONE );
GL_ClientState( 0, CLS_TEXCOORD_ARRAY | CLS_COLOR_ARRAY );
qglTexCoordPointer( 2, GL_FLOAT, 0, texCoordsArray[0] );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray );
#endif
GL_Bind( tr.dlightImage );
#ifdef USE_VULKAN
pipeline = vk.dlight_pipelines[dl->additive > 0 ? 1 : 0][tess.shader->cullType][tess.shader->polygonOffset];
vk_bind_pipeline( pipeline );
vk_bind_index_ext( numIndexes, hitIndexes );
vk_bind_geometry( TESS_RGBA0 | TESS_ST0 );
vk_draw_geometry( DEPTH_RANGE_NORMAL, qtrue );
#else
// include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light
// where they aren't rendered
if ( dl->additive ) {
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
} else {
GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
}
R_DrawElements( numIndexes, hitIndexes );
#endif
backEnd.pc.c_totalIndexes += numIndexes;
backEnd.pc.c_dlightIndexes += numIndexes;
}
}
static void ProjectDlightTexture( void ) {
ProjectDlightTexture_scalar();
}
#endif // USE_LEGACY_DLIGHTS
uint32_t VK_PushUniform( const vkUniform_t *uniform );
void VK_SetFogParams( vkUniform_t *uniform, int *fogStage );
static vkUniform_t uniform;
/*
===================
RB_FogPass
Blends a fog texture on top of everything else
===================
*/
static void RB_FogPass( void ) {
#ifdef USE_VULKAN
uint32_t pipeline = vk.fog_pipelines[tess.shader->fogPass - 1][tess.shader->cullType][tess.shader->polygonOffset];
#ifdef USE_FOG_ONLY
int fog_stage;
// fog parameters
vk_bind_pipeline( pipeline );
VK_SetFogParams( &uniform, &fog_stage );
VK_PushUniform( &uniform );
vk_update_descriptor( 3, tr.fogImage->descriptor );
vk_draw_geometry( DEPTH_RANGE_NORMAL, qtrue );
#else
const fog_t *fog;
int i;
fog = tr.world->fogs + tess.fogNum;
for ( i = 0; i < tess.numVertexes; i++ ) {
tess.svars.colors[0][i].u32 = fog->colorInt.u32;
}
RB_CalcFogTexCoords( ( float * ) tess.svars.texcoords[0] );
tess.svars.texcoordPtr[ 0 ] = tess.svars.texcoords[ 0 ];
GL_Bind( tr.fogImage );
vk_bind_pipeline( pipeline );
vk_bind_geometry( TESS_ST0 | TESS_RGBA0 );
vk_draw_geometry( DEPTH_RANGE_NORMAL, qtrue );
#endif
#else
const fog_t *fog;
int i;
RB_CalcFogTexCoords( ( float * ) tess.svars.texcoords[0] );
GL_ClientState( 1, CLS_NONE );
GL_ClientState( 0, CLS_TEXCOORD_ARRAY | CLS_COLOR_ARRAY );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors[0].rgba );
qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoords[0] );
GL_SelectTexture( 0 );
GL_Bind( tr.fogImage );
if ( tess.shader->fogPass == FP_EQUAL ) {
GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL );
} else {
GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA );
}
R_DrawElements( tess.numIndexes, tess.indexes );
#endif
}
/*
===============
R_ComputeColors
===============
*/
void R_ComputeColors( const int b, color4ub_t *dest, const shaderStage_t *pStage )
{
int i;
if ( !tess.numVertexes )
return;
//
// rgbGen
//
switch ( pStage->bundle[b].rgbGen )
{
case CGEN_IDENTITY:
Com_Memset( dest, 0xff, tess.numVertexes * 4 );
break;
default:
case CGEN_IDENTITY_LIGHTING:
Com_Memset( dest, tr.identityLightByte, tess.numVertexes * 4 );
break;
case CGEN_LIGHTING_DIFFUSE:
RB_CalcDiffuseColor( ( unsigned char * ) dest );
break;
case CGEN_EXACT_VERTEX:
Com_Memcpy( dest, tess.vertexColors, tess.numVertexes * sizeof( tess.vertexColors[0] ) );
break;
case CGEN_CONST:
for ( i = 0; i < tess.numVertexes; i++ ) {
dest[i].u32 = pStage->bundle[b].constantColor.u32;
}
break;
case CGEN_VERTEX:
if ( tr.identityLight == 1 )
{
Com_Memcpy( dest, tess.vertexColors, tess.numVertexes * sizeof( tess.vertexColors[0] ) );
}
else
{
for ( i = 0; i < tess.numVertexes; i++ )
{
dest[i].rgba[0] = tess.vertexColors[i].rgba[0] * tr.identityLight;
dest[i].rgba[1] = tess.vertexColors[i].rgba[1] * tr.identityLight;
dest[i].rgba[2] = tess.vertexColors[i].rgba[2] * tr.identityLight;
dest[i].rgba[3] = tess.vertexColors[i].rgba[3];
}
}
break;
case CGEN_ONE_MINUS_VERTEX:
if ( tr.identityLight == 1 )
{
for ( i = 0; i < tess.numVertexes; i++ )
{
dest[i].rgba[0] = 255 - tess.vertexColors[i].rgba[0];
dest[i].rgba[1] = 255 - tess.vertexColors[i].rgba[1];
dest[i].rgba[2] = 255 - tess.vertexColors[i].rgba[2];
}
}
else
{
for ( i = 0; i < tess.numVertexes; i++ )
{
dest[i].rgba[0] = ( 255 - tess.vertexColors[i].rgba[0] ) * tr.identityLight;
dest[i].rgba[1] = ( 255 - tess.vertexColors[i].rgba[1] ) * tr.identityLight;
dest[i].rgba[2] = ( 255 - tess.vertexColors[i].rgba[2] ) * tr.identityLight;
}
}
break;
case CGEN_FOG:
{
const fog_t *fog;
fog = tr.world->fogs + tess.fogNum;
for ( i = 0; i < tess.numVertexes; i++ ) {
dest[i].u32 = fog->colorInt.u32;
}
}
break;
case CGEN_WAVEFORM:
RB_CalcWaveColor( &pStage->bundle[b].rgbWave, dest->rgba );
break;
case CGEN_ENTITY:
RB_CalcColorFromEntity( dest->rgba );
break;
case CGEN_ONE_MINUS_ENTITY:
RB_CalcColorFromOneMinusEntity( dest->rgba );
break;
}
//
// alphaGen
//
switch ( pStage->bundle[b].alphaGen )
{
case AGEN_SKIP:
break;
case AGEN_IDENTITY:
if ( ( pStage->bundle[b].rgbGen == CGEN_VERTEX && tr.identityLight != 1 ) ||
pStage->bundle[b].rgbGen != CGEN_VERTEX ) {
for ( i = 0; i < tess.numVertexes; i++ ) {
dest[i].rgba[3] = 255;
}
}
break;
case AGEN_CONST:
for ( i = 0; i < tess.numVertexes; i++ ) {
dest[i].rgba[3] = pStage->bundle[b].constantColor.rgba[3];
}
break;
case AGEN_WAVEFORM:
RB_CalcWaveAlpha( &pStage->bundle[b].alphaWave, dest->rgba );
break;
case AGEN_LIGHTING_SPECULAR:
RB_CalcSpecularAlpha( dest->rgba );
break;
case AGEN_ENTITY:
RB_CalcAlphaFromEntity( dest->rgba );
break;
case AGEN_ONE_MINUS_ENTITY:
RB_CalcAlphaFromOneMinusEntity( dest->rgba );
break;
case AGEN_VERTEX:
for ( i = 0; i < tess.numVertexes; i++ ) {
dest[i].rgba[3] = tess.vertexColors[i].rgba[3];
}
break;
case AGEN_ONE_MINUS_VERTEX:
for ( i = 0; i < tess.numVertexes; i++ )
{
dest[i].rgba[3] = 255 - tess.vertexColors[i].rgba[3];
}
break;
case AGEN_PORTAL:
{
for ( i = 0; i < tess.numVertexes; i++ )
{
unsigned char alpha;
float len;
vec3_t v;
VectorSubtract( tess.xyz[i], backEnd.viewParms.or.origin, v );
len = VectorLength( v ) * tess.shader->portalRangeR;
if ( len > 1 )
{
alpha = 0xff;
}
else
{
alpha = len * 0xff;
}
dest[i].rgba[3] = alpha;
}
}
break;
}
//
// fog adjustment for colors to fade out as fog increases
//
if ( tess.fogNum )
{
switch ( pStage->bundle[b].adjustColorsForFog )
{
case ACFF_MODULATE_RGB:
RB_CalcModulateColorsByFog( dest->rgba );
break;
case ACFF_MODULATE_ALPHA:
RB_CalcModulateAlphasByFog( dest->rgba );
break;
case ACFF_MODULATE_RGBA:
RB_CalcModulateRGBAsByFog( dest->rgba );
break;
case ACFF_NONE:
break;
}
}
}
/*
===============
R_ComputeTexCoords
===============
*/
void R_ComputeTexCoords( const int b, const textureBundle_t *bundle ) {
int i;
int tm;
vec2_t *src, *dst;
if ( !tess.numVertexes )
return;
src = dst = tess.svars.texcoords[b];
//
// generate the texture coordinates
//
switch ( bundle->tcGen )
{
case TCGEN_IDENTITY:
src = tess.texCoords00;
break;
case TCGEN_TEXTURE:
src = tess.texCoords[0];
break;
case TCGEN_LIGHTMAP:
src = tess.texCoords[1];
break;
case TCGEN_VECTOR:
for ( i = 0 ; i < tess.numVertexes ; i++ ) {
dst[i][0] = DotProduct( tess.xyz[i], bundle->tcGenVectors[0] );
dst[i][1] = DotProduct( tess.xyz[i], bundle->tcGenVectors[1] );
}
break;
case TCGEN_FOG:
RB_CalcFogTexCoords( ( float * ) dst );
break;
case TCGEN_ENVIRONMENT_MAPPED:
RB_CalcEnvironmentTexCoords( ( float * ) dst );
break;
case TCGEN_ENVIRONMENT_MAPPED_FP:
RB_CalcEnvironmentTexCoordsFP( ( float * ) dst, bundle->isScreenMap );
break;
case TCGEN_BAD:
return;
}
//
// alter texture coordinates
//
for ( tm = 0; tm < bundle->numTexMods ; tm++ ) {
switch ( bundle->texMods[tm].type )
{
case TMOD_NONE:
tm = TR_MAX_TEXMODS; // break out of for loop
break;
case TMOD_TURBULENT:
RB_CalcTurbulentTexCoords( &bundle->texMods[tm].wave, (float *)src, (float *) dst );
src = dst;
break;
case TMOD_ENTITY_TRANSLATE:
RB_CalcScrollTexCoords( backEnd.currentEntity->e.shaderTexCoord, (float *)src, (float *) dst );
src = dst;
break;
case TMOD_SCROLL:
RB_CalcScrollTexCoords( bundle->texMods[tm].scroll, (float *)src, (float *) dst );
src = dst;
break;
case TMOD_SCALE:
RB_CalcScaleTexCoords( bundle->texMods[tm].scale, (float *) src, (float *) dst );
src = dst;
break;
case TMOD_OFFSET:
for ( i = 0; i < tess.numVertexes; i++ ) {
dst[i][0] = src[i][0] + bundle->texMods[tm].offset[0];
dst[i][1] = src[i][1] + bundle->texMods[tm].offset[1];
}
src = dst;
break;
case TMOD_SCALE_OFFSET:
for ( i = 0; i < tess.numVertexes; i++ ) {
dst[i][0] = (src[i][0] * bundle->texMods[tm].scale[0] ) + bundle->texMods[tm].offset[0];
dst[i][1] = (src[i][1] * bundle->texMods[tm].scale[1] ) + bundle->texMods[tm].offset[1];
}
src = dst;
break;
case TMOD_STRETCH:
RB_CalcStretchTexCoords( &bundle->texMods[tm].wave, (float *)src, (float *) dst );
src = dst;
break;
case TMOD_TRANSFORM:
RB_CalcTransformTexCoords( &bundle->texMods[tm], (float *)src, (float *) dst );
src = dst;
break;
case TMOD_ROTATE:
RB_CalcRotateTexCoords( bundle->texMods[tm].rotateSpeed, (float *) src, (float *) dst );
src = dst;
break;
default:
ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'", bundle->texMods[tm].type, tess.shader->name );
break;
}
}
tess.svars.texcoordPtr[ b ] = src;
}
/*
** RB_IterateStagesGeneric
*/
#ifdef USE_VULKAN
static void RB_IterateStagesGeneric( const shaderCommands_t *input, qboolean fogCollapse )
#else
static void RB_IterateStagesGeneric( const shaderCommands_t *input )
#endif
{
const shaderStage_t *pStage;
int tess_flags;
int stage, i;
#ifdef USE_VULKAN
uint32_t pipeline;
int fog_stage;
vk_bind_index();
tess_flags = input->shader->tessFlags;
#ifdef USE_FOG_COLLAPSE
if ( fogCollapse ) {
VK_SetFogParams( &uniform, &fog_stage );
VectorCopy( backEnd.or.viewOrigin, uniform.eyePos );
VK_PushUniform( &uniform );
vk_update_descriptor( 5, tr.fogImage->descriptor );
} else
#endif
{
fog_stage = 0;
if ( tess_flags & TESS_VPOS ) {
VectorCopy( backEnd.or.viewOrigin, uniform.eyePos );
VK_PushUniform( &uniform );
tess_flags &= ~TESS_VPOS;
}
}
#endif // USE_VULKAN
for ( stage = 0; stage < MAX_SHADER_STAGES; stage++ )
{
pStage = tess.xstages[ stage ];
if ( !pStage )
break;
#ifdef USE_VBO
tess.vboStage = stage;
#endif
#ifdef USE_VULKAN
tess_flags |= pStage->tessFlags;
for ( i = 0; i < pStage->numTexBundles; i++ ) {
if ( pStage->bundle[i].image[0] != NULL ) {
GL_SelectTexture( i );
R_BindAnimatedImage( &pStage->bundle[i] );
if ( tess_flags & ( TESS_ST0 << i ) ) {
R_ComputeTexCoords( i, &pStage->bundle[i] );
}
if ( tess_flags & ( TESS_RGBA0 << i ) ) {
R_ComputeColors( i, tess.svars.colors[i], pStage );
}
}
}
GL_SelectTexture( 0 );
if ( backEnd.viewParms.portalView == PV_MIRROR )
pipeline = pStage->vk_mirror_pipeline[ fog_stage ];
else
pipeline = pStage->vk_pipeline[ fog_stage ];
if ( r_lightmap->integer && pStage->bundle[1].lightmap != LIGHTMAP_INDEX_NONE ) {
//GL_SelectTexture( 0 );
GL_Bind( tr.whiteImage ); // replace diffuse texture with a white one thus effectively render only lightmap
}
vk_bind_pipeline( pipeline );
vk_bind_geometry( tess_flags );
vk_draw_geometry( tess.depthRange, qtrue );
if ( pStage->depthFragment ) {
if ( backEnd.viewParms.portalView == PV_MIRROR )
pipeline = pStage->vk_mirror_pipeline_df;
else
pipeline = pStage->vk_pipeline_df;
vk_bind_pipeline( pipeline );
vk_draw_geometry( tess.depthRange, qtrue );
}
#else
R_ComputeColors( 0, tess.svars.colors[0].rgba, pStage );
R_ComputeTexCoords( 0, &pStage->bundle[0] );
//
// do multitexture
//
if ( pStage->bundle[1].image[0] != NULL )
{
DrawMultitextured( input, stage );
}
else
{
if ( !setArraysOnce )
{
R_ComputeTexCoords( 0, &pStage->bundle[0] );
R_ComputeColors( 0, tess.svars.colors[0], pStage );
GL_ClientState( 1, CLS_NONE );
GL_ClientState( 0, CLS_TEXCOORD_ARRAY | CLS_COLOR_ARRAY );
qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoordPtr[0] );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, input->svars.colors[0].rgba );
}
//
// set state
//
R_BindAnimatedImage( &pStage->bundle[0] );
GL_State( pStage->stateBits );
//
// draw
//
R_DrawElements( input->numIndexes, input->indexes );
}
#endif
// allow skipping out to show just lightmaps during development
if ( r_lightmap->integer && ( pStage->bundle[0].lightmap != LIGHTMAP_INDEX_NONE || pStage->bundle[1].lightmap != LIGHTMAP_INDEX_NONE ) )
break;
tess_flags = 0;
}
#ifdef USE_VULKAN
if ( tess_flags ) // fog-only shaders?
vk_bind_geometry( tess_flags );
#endif
}
#ifdef USE_VULKAN
void VK_SetFogParams( vkUniform_t *uniform, int *fogStage )
{
if ( tess.fogNum && tess.shader->fogPass ) {
const fogProgramParms_t *fp = RB_CalcFogProgramParms();
// vertex data
Vector4Copy( fp->fogDistanceVector, uniform->fogDistanceVector );
Vector4Copy( fp->fogDepthVector, uniform->fogDepthVector );
uniform->fogEyeT[0] = fp->eyeT;
if ( fp->eyeOutside ) {
uniform->fogEyeT[1] = 0.0; // fog eye out
} else {
uniform->fogEyeT[1] = 1.0; // fog eye in
}
// fragment data
Vector4Copy( fp->fogColor, uniform->fogColor );
*fogStage = 1;
} else {
*fogStage = 0;
}
}
#ifdef USE_PMLIGHT
static void VK_SetLightParams( vkUniform_t *uniform, const dlight_t *dl ) {
float radius;
#ifdef USE_VULKAN
if ( !glConfig.deviceSupportsGamma && !vk.fboActive )
#else
if ( !glConfig.deviceSupportsGamma )
#endif
VectorScale( dl->color, 2 * powf( r_intensity->value, r_gamma->value ), uniform->lightColor);
else
VectorCopy( dl->color, uniform->lightColor );
radius = dl->radius;
// vertex data
VectorCopy( backEnd.or.viewOrigin, uniform->eyePos ); uniform->eyePos[3] = 0.0f;
VectorCopy( dl->transformed, uniform->lightPos ); uniform->lightPos[3] = 0.0f;
// fragment data
uniform->lightColor[3] = 1.0f / Square( radius );
if ( dl->linear )
{
vec4_t ab;
VectorSubtract( dl->transformed2, dl->transformed, ab );
ab[3] = 1.0f / DotProduct( ab, ab );
Vector4Copy( ab, uniform->lightVector );
}
}
#endif
uint32_t VK_PushUniform( const vkUniform_t *uniform ) {
const uint32_t offset = vk.cmd->uniform_read_offset = PAD( vk.cmd->vertex_buffer_offset, vk.uniform_alignment );
if ( offset + vk.uniform_item_size > vk.geometry_buffer_size )
return ~0U;
// push uniform
Com_Memcpy( vk.cmd->vertex_buffer_ptr + offset, uniform, sizeof( *uniform ) );
vk.cmd->vertex_buffer_offset = offset + vk.uniform_item_size;
vk_reset_descriptor( 1 );
vk_update_descriptor( 1, vk.cmd->uniform_descriptor );
vk_update_descriptor_offset( 1, vk.cmd->uniform_read_offset );
return offset;
}
#ifdef USE_PMLIGHT
void VK_LightingPass( void )
{
static uint32_t uniform_offset;
static int fog_stage;
uint32_t pipeline;
const shaderStage_t *pStage;
cullType_t cull;
int abs_light;
if ( tess.shader->lightingStage < 0 )
return;
pStage = tess.xstages[ tess.shader->lightingStage ];
// we may need to update programs for fog transitions
if ( tess.dlightUpdateParams ) {
// fog parameters
VK_SetFogParams( &uniform, &fog_stage );
// light parameters
VK_SetLightParams( &uniform, tess.light );
uniform_offset = VK_PushUniform( &uniform );
tess.dlightUpdateParams = qfalse;
}
if ( uniform_offset == ~0 )
return; // no space left...
cull = tess.shader->cullType;
if ( backEnd.viewParms.portalView == PV_MIRROR ) {
switch ( cull ) {
case CT_FRONT_SIDED: cull = CT_BACK_SIDED; break;
case CT_BACK_SIDED: cull = CT_FRONT_SIDED; break;
default: break;
}
}
abs_light = /* (pStage->stateBits & GLS_ATEST_BITS) && */ (cull == CT_TWO_SIDED) ? 1 : 0;
if ( fog_stage )
vk_update_descriptor( 3, tr.fogImage->descriptor );
if ( tess.light->linear )
pipeline = vk.dlight1_pipelines_x[cull][tess.shader->polygonOffset][fog_stage][abs_light];
else
pipeline = vk.dlight_pipelines_x[cull][tess.shader->polygonOffset][fog_stage][abs_light];
GL_SelectTexture( 0 );
R_BindAnimatedImage( &pStage->bundle[ tess.shader->lightingBundle ] );
#ifdef USE_VBO
if ( tess.vboIndex == 0 )
#endif
{
R_ComputeTexCoords( tess.shader->lightingBundle, &pStage->bundle[ tess.shader->lightingBundle ] );
}
vk_bind_pipeline( pipeline );
vk_bind_index();
vk_bind_lighting( tess.shader->lightingStage, tess.shader->lightingBundle );
vk_draw_geometry( tess.depthRange, qtrue );
}
#endif // USE_PMLIGHT
void RB_StageIteratorGeneric( void )
{
qboolean fogCollapse = qfalse;
#ifdef USE_VBO
if ( tess.vboIndex != 0 ) {
VBO_PrepareQueues();
tess.vboStage = 0;
} else
#endif
RB_DeformTessGeometry();
#ifdef USE_PMLIGHT
if ( tess.dlightPass ) {
VK_LightingPass();
return;
}
#endif
#ifdef USE_FOG_COLLAPSE
fogCollapse = tess.fogNum && tess.shader->fogPass && tess.shader->fogCollapse;
#endif
// call shader function
RB_IterateStagesGeneric( &tess, fogCollapse );
// now do any dynamic lighting needed
#ifdef USE_LEGACY_DLIGHTS
#ifdef USE_PMLIGHT
if ( r_dlightMode->integer == 0 )
#endif
if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE && !(tess.shader->surfaceFlags & (SURF_NODLIGHT | SURF_SKY) ) ) {
if ( !fogCollapse ) {
ProjectDlightTexture();
}
}
#endif // USE_LEGACY_DLIGHTS
// now do fog
if ( tess.fogNum && tess.shader->fogPass && !fogCollapse ) {
RB_FogPass();
}
}
#else
/*
** RB_StageIteratorGeneric
*/
void RB_StageIteratorGeneric( void )
{
const shaderCommands_t *input;
shader_t *shader;
RB_DeformTessGeometry();
input = &tess;
shader = input->shader;
//
// set face culling appropriately
//
GL_Cull( shader->cullType );
// set polygon offset if necessary
if ( shader->polygonOffset )
{
qglEnable( GL_POLYGON_OFFSET_FILL );
qglPolygonOffset( r_offsetFactor->value, r_offsetUnits->value );
}
//
// if there is only a single pass then we can enable color
// and texture arrays before we compile, otherwise we need
// to avoid compiling those arrays since they will change
// during multipass rendering
//
if ( tess.numPasses > 1 )
{
setArraysOnce = qfalse;
GL_ClientState( 1, CLS_NONE );
GL_ClientState( 0, CLS_NONE );
}
else
{
// FIXME: we can't do that if going to lighting/fog later?
setArraysOnce = qtrue;
GL_ClientState( 0, CLS_COLOR_ARRAY | CLS_TEXCOORD_ARRAY );
if ( tess.xstages[0] )
{
R_ComputeColors( 0, tess.svars.colors, tess.xstages[0] );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors[0].rgba );
R_ComputeTexCoords( 0, &tess.xstages[0]->bundle[0] );
qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoordPtr[0] );
if ( shader->multitextureEnv )
{
GL_ClientState( 1, CLS_TEXCOORD_ARRAY );
R_ComputeTexCoords( 1, &tess.xstages[0]->bundle[1] );
qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoordPtr[1] );
}
else
{
GL_ClientState( 1, CLS_NONE );
}
}
}
qglVertexPointer( 3, GL_FLOAT, sizeof( input->xyz[0] ), input->xyz ); // padded for SIMD
//
// lock XYZ
//
if ( qglLockArraysEXT )
{
qglLockArraysEXT( 0, input->numVertexes );
}
//
// call shader function
//
RB_IterateStagesGeneric( input );
//
// now do any dynamic lighting needed
//
if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE && !(tess.shader->surfaceFlags & (SURF_NODLIGHT | SURF_SKY) ) )
{
ProjectDlightTexture();
}
//
// now do fog
//
if ( tess.fogNum && tess.shader->fogPass )
{
RB_FogPass();
}
//
// unlock arrays
//
if ( qglUnlockArraysEXT )
{
qglUnlockArraysEXT();
}
GL_ClientState( 1, CLS_NONE );
//
// reset polygon offset
//
if ( shader->polygonOffset )
{
qglDisable( GL_POLYGON_OFFSET_FILL );
}
}
#endif // !USE_VULKAN
/*
** RB_EndSurface
*/
void RB_EndSurface( void ) {
const shaderCommands_t *input;
input = &tess;
if ( input->numIndexes == 0 ) {
//VBO_UnBind();
return;
}
if ( input->numIndexes > SHADER_MAX_INDEXES ) {
ri.Error( ERR_DROP, "RB_EndSurface() - SHADER_MAX_INDEXES hit" );
}
if ( input->numVertexes > SHADER_MAX_VERTEXES ) {
ri.Error( ERR_DROP, "RB_EndSurface() - SHADER_MAX_VERTEXES hit" );
}
if ( tess.shader == tr.shadowShader ) {
RB_ShadowTessEnd();
return;
}
// for debugging of sort order issues, stop rendering after a given sort value
if ( r_debugSort->integer && r_debugSort->integer < tess.shader->sort && !backEnd.doneSurfaces ) {
#ifdef USE_VBO
tess.vboIndex = 0; //VBO_UnBind();
#endif
return;
}
//
// update performance counters
//
#ifdef USE_PMLIGHT
if ( tess.dlightPass ) {
backEnd.pc.c_lit_batches++;
backEnd.pc.c_lit_vertices += tess.numVertexes;
backEnd.pc.c_lit_indices += tess.numIndexes;
} else
#endif
{
backEnd.pc.c_shaders++;
backEnd.pc.c_vertexes += tess.numVertexes;
backEnd.pc.c_indexes += tess.numIndexes;
}
backEnd.pc.c_totalIndexes += tess.numIndexes * tess.numPasses;
//
// call off to shader specific tess end function
//
tess.shader->optimalStageIteratorFunc();
//
// draw debugging stuff
//
if ( r_showtris->integer ) {
DrawTris( input );
}
if ( r_shownormals->integer ) {
DrawNormals( input );
}
// clear shader so we can tell we don't have any unclosed surfaces
tess.numIndexes = 0;
tess.numVertexes = 0;
#ifdef USE_VBO
tess.vboIndex = 0;
//VBO_ClearQueue();
#endif
}