rallyunlimited-engine/code/renderer/tr_image.c
2024-02-02 19:46:17 +03:00

1793 lines
40 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_image.c
#include "tr_local.h"
static byte s_intensitytable[256];
static byte s_gammatable[256];
static byte s_gammatable_linear[256];
GLint gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
GLint gl_filter_max = GL_LINEAR;
#define FILE_HASH_SIZE 1024
static image_t* hashTable[FILE_HASH_SIZE];
/*
================
return a hash value for the filename
================
*/
#define generateHashValue(fname) Com_GenerateHashValue((fname),FILE_HASH_SIZE)
/*
** R_GammaCorrect
*/
void R_GammaCorrect( byte *buffer, int bufSize ) {
int i;
if ( fboEnabled )
return;
if ( !gls.deviceSupportsGamma )
return;
for ( i = 0; i < bufSize; i++ ) {
buffer[i] = s_gammatable[buffer[i]];
}
}
typedef struct {
const char *name;
GLint minimize, maximize;
} textureMode_t;
static const textureMode_t modes[] = {
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
};
/*
===============
GL_TextureMode
===============
*/
void GL_TextureMode( const char *string ) {
const textureMode_t *mode;
image_t *img;
int i;
mode = NULL;
for ( i = 0 ; i < ARRAY_LEN( modes ) ; i++ ) {
if ( !Q_stricmp( modes[i].name, string ) ) {
mode = &modes[i];
break;
}
}
if ( mode == NULL ) {
ri.Printf( PRINT_ALL, "bad texture filter name '%s'\n", string );
return;
}
gl_filter_min = mode->minimize;
gl_filter_max = mode->maximize;
// hack to prevent trilinear from being set on voodoo,
// because their driver freaks...
if ( glConfig.hardwareType == GLHW_3DFX_2D3D && gl_filter_max == GL_LINEAR &&
gl_filter_min == GL_LINEAR_MIPMAP_LINEAR ) {
gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" );
}
// change all the existing mipmap texture objects
for ( i = 0; i < tr.numImages; i++ ) {
img = tr.images[ i ];
if ( img->flags & IMGFLAG_MIPMAP ) {
GL_Bind( img );
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min );
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max );
}
}
}
/*
===============
R_SumOfUsedImages
===============
*/
int R_SumOfUsedImages( void ) {
const image_t *img;
int i, total = 0;
for ( i = 0; i < tr.numImages; i++ ) {
img = tr.images[ i ];
if ( img->frameUsed == tr.frameCount ) {
total += img->uploadWidth * img->uploadHeight;
}
}
return total;
}
/*
===============
R_ImageList_f
===============
*/
void R_ImageList_f( void ) {
const image_t *image;
int i, estTotalSize = 0;
char *name, buf[MAX_QPATH*2 + 5];
ri.Printf( PRINT_ALL, "\n -n- --w-- --h-- type -size- --name-------\n" );
for ( i = 0; i < tr.numImages; i++ )
{
const char *format = "???? ";
const char *sizeSuffix;
int estSize;
int displaySize;
image = tr.images[ i ];
estSize = image->uploadHeight * image->uploadWidth;
switch ( image->internalFormat )
{
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
format = "DXT1 ";
// 64 bits per 16 pixels, so 4 bits per pixel
estSize /= 2;
break;
case GL_RGB4_S3TC:
format = "S3TC ";
// same as DXT1?
estSize /= 2;
break;
case GL_RGBA4:
case GL_RGBA8:
case GL_RGBA:
format = "RGBA ";
// 4 bytes per pixel
estSize *= 4;
break;
case GL_RGB5:
case GL_RGB8:
case GL_RGB:
format = "RGB ";
// 3 bytes per pixel?
estSize *= 3;
break;
}
// mipmap adds about 50%
if (image->flags & IMGFLAG_MIPMAP)
estSize += estSize / 2;
sizeSuffix = "b ";
displaySize = estSize;
if ( displaySize >= 2048 )
{
displaySize = ( displaySize + 1023 ) / 1024;
sizeSuffix = "kb";
}
if ( displaySize >= 2048 )
{
displaySize = ( displaySize + 1023 ) / 1024;
sizeSuffix = "Mb";
}
if ( displaySize >= 2048 )
{
displaySize = ( displaySize + 1023 ) / 1024;
sizeSuffix = "Gb";
}
if ( Q_stricmp( image->imgName, image->imgName2 ) == 0 ) {
name = image->imgName;
} else {
Com_sprintf( buf, sizeof( buf ), "%s => " S_COLOR_YELLOW "%s",
image->imgName, image->imgName2 );
name = buf;
}
ri.Printf( PRINT_ALL, " %3i %5i %5i %s %4i%s %s\n", i, image->uploadWidth, image->uploadHeight, format, displaySize, sizeSuffix, name );
estTotalSize += estSize;
}
ri.Printf( PRINT_ALL, " -----------------------\n" );
ri.Printf( PRINT_ALL, " approx %i kbytes\n", (estTotalSize + 1023) / 1024 );
ri.Printf( PRINT_ALL, " %i total images\n\n", tr.numImages );
}
//=======================================================================
/*
================
ResampleTexture
Used to resample images in a more general than quartering fashion.
This will only be filtered properly if the resampled size
is greater than half the original size.
If a larger shrinking is needed, use the mipmap function
before or after.
================
*/
static void ResampleTexture( unsigned *in, int inwidth, int inheight, unsigned *out,
int outwidth, int outheight ) {
int i, j;
unsigned *inrow, *inrow2;
unsigned frac, fracstep;
unsigned p1[MAX_TEXTURE_SIZE];
unsigned p2[MAX_TEXTURE_SIZE];
byte *pix1, *pix2, *pix3, *pix4;
if ( outwidth > ARRAY_LEN( p1 ) )
ri.Error( ERR_DROP, "ResampleTexture: max width" );
fracstep = inwidth * 0x10000 / outwidth;
frac = fracstep>>2;
for ( i=0 ; i<outwidth ; i++ ) {
p1[i] = 4*(frac>>16);
frac += fracstep;
}
frac = 3*(fracstep>>2);
for ( i=0 ; i<outwidth ; i++ ) {
p2[i] = 4*(frac>>16);
frac += fracstep;
}
for (i=0 ; i<outheight ; i++, out += outwidth) {
inrow = in + inwidth*(int)((i+0.25)*inheight/outheight);
inrow2 = in + inwidth*(int)((i+0.75)*inheight/outheight);
for (j=0 ; j<outwidth ; j++) {
pix1 = (byte *)inrow + p1[j];
pix2 = (byte *)inrow + p2[j];
pix3 = (byte *)inrow2 + p1[j];
pix4 = (byte *)inrow2 + p2[j];
((byte *)(out+j))[0] = (pix1[0] + pix2[0] + pix3[0] + pix4[0])>>2;
((byte *)(out+j))[1] = (pix1[1] + pix2[1] + pix3[1] + pix4[1])>>2;
((byte *)(out+j))[2] = (pix1[2] + pix2[2] + pix3[2] + pix4[2])>>2;
((byte *)(out+j))[3] = (pix1[3] + pix2[3] + pix3[3] + pix4[3])>>2;
}
}
}
/*
================
R_LightScaleTexture
Scale up the pixel values in a texture to increase the
lighting range
================
*/
static void R_LightScaleTexture( byte *in, int inwidth, int inheight, qboolean only_gamma )
{
if ( in == NULL )
return;
if ( only_gamma )
{
if ( !glConfig.deviceSupportsGamma && !fboEnabled )
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[p[0]];
p[1] = s_gammatable[p[1]];
p[2] = s_gammatable[p[2]];
}
}
}
else
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
if ( glConfig.deviceSupportsGamma || fboEnabled )
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_intensitytable[p[0]];
p[1] = s_intensitytable[p[1]];
p[2] = s_intensitytable[p[2]];
}
}
else
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[s_intensitytable[p[0]]];
p[1] = s_gammatable[s_intensitytable[p[1]]];
p[2] = s_gammatable[s_intensitytable[p[2]]];
}
}
}
}
/*
================
R_MipMap2
Operates in place, quartering the size of the texture
Proper linear filter
================
*/
static void R_MipMap2( unsigned * const out, unsigned * const in, int inWidth, int inHeight ) {
int i, j, k;
byte *outpix;
int inWidthMask, inHeightMask;
int total;
int outWidth, outHeight;
unsigned *temp;
outWidth = inWidth >> 1;
outHeight = inHeight >> 1;
if ( out == in )
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
else
temp = out;
inWidthMask = inWidth - 1;
inHeightMask = inHeight - 1;
for ( i = 0 ; i < outHeight ; i++ ) {
for ( j = 0 ; j < outWidth ; j++ ) {
outpix = (byte *) ( temp + i * outWidth + j );
for ( k = 0 ; k < 4 ; k++ ) {
total =
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k];
outpix[k] = total / 36;
}
}
}
if ( out == in ) {
Com_Memcpy( out, temp, outWidth * outHeight * 4 );
ri.Hunk_FreeTempMemory( temp );
}
}
/*
================
R_MipMap
Operates in place, quartering the size of the texture
================
*/
static void R_MipMap( byte *out, byte *in, int width, int height ) {
int i, j;
int row;
if ( in == NULL )
return;
if ( !r_simpleMipMaps->integer ) {
R_MipMap2( (unsigned *)out, (unsigned *)in, width, height );
return;
}
if ( width == 1 && height == 1 ) {
return;
}
row = width * 4;
width >>= 1;
height >>= 1;
if ( width == 0 || height == 0 ) {
width += height; // get largest
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
out[0] = ( in[0] + in[4] )>>1;
out[1] = ( in[1] + in[5] )>>1;
out[2] = ( in[2] + in[6] )>>1;
out[3] = ( in[3] + in[7] )>>1;
}
return;
}
for (i=0 ; i<height ; i++, in+=row) {
for (j=0 ; j<width ; j++, out+=4, in+=8) {
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
}
}
}
/*
==================
R_BlendOverTexture
Apply a color blend over a set of pixels
==================
*/
static void R_BlendOverTexture( byte *data, int pixelCount, int mipLevel ) {
static const byte blendColors[][4] = {
{255,0,0,128},
{255,255,0,128},
{0,255,0,128},
{0,255,255,128},
{0,0,255,128},
{255,0,255,128}
};
const byte *blend;
int i;
int inverseAlpha;
int premult[3];
if ( data == NULL )
return;
if ( mipLevel <= 0 )
return;
blend = blendColors[ ( mipLevel - 1 ) % ARRAY_LEN( blendColors ) ];
inverseAlpha = 255 - blend[3];
premult[0] = blend[0] * blend[3];
premult[1] = blend[1] * blend[3];
premult[2] = blend[2] * blend[3];
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
}
}
static qboolean RawImage_HasAlpha( const byte *scan, const int numPixels )
{
int i;
if ( !scan )
return qtrue;
for ( i = 0; i < numPixels; i++ )
{
if ( scan[i*4 + 3] != 255 )
{
return qtrue;
}
}
return qfalse;
}
static GLint RawImage_GetInternalFormat( const byte *scan, int numPixels, qboolean lightMap, qboolean allowCompression )
{
GLint internalFormat;
if ( lightMap )
return GL_RGB;
if ( RawImage_HasAlpha( scan, numPixels ) )
{
if ( r_texturebits->integer == 16 )
{
internalFormat = GL_RGBA4;
}
else if ( r_texturebits->integer == 32 )
{
internalFormat = GL_RGBA8;
}
else
{
internalFormat = GL_RGBA;
}
}
else
{
if ( allowCompression && glConfig.textureCompression == TC_S3TC_ARB )
{
internalFormat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT;
}
else if ( allowCompression && glConfig.textureCompression == TC_S3TC )
{
internalFormat = GL_RGB4_S3TC;
}
else if ( r_texturebits->integer == 16 )
{
internalFormat = GL_RGB5;
}
else if ( r_texturebits->integer == 32 )
{
internalFormat = GL_RGB8;
}
else
{
internalFormat = GL_RGB;
}
}
return internalFormat;
}
static void LoadTexture( int miplevel, int x, int y, int width, int height, const byte *data, qboolean subImage, image_t *image )
{
if ( subImage )
qglTexSubImage2D( GL_TEXTURE_2D, miplevel, x, y, width, height, GL_RGBA, GL_UNSIGNED_BYTE, data );
else
qglTexImage2D( GL_TEXTURE_2D, miplevel, image->internalFormat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
}
/*
===============
Upload32
===============
*/
static void Upload32( byte *data, int x, int y, int width, int height, image_t *image, qboolean subImage )
{
qboolean allowCompression = !(image->flags & IMGFLAG_NO_COMPRESSION);
qboolean lightMap = image->flags & IMGFLAG_LIGHTMAP;
qboolean mipmap = image->flags & IMGFLAG_MIPMAP;
qboolean picmip = image->flags & IMGFLAG_PICMIP;
byte *resampledBuffer = NULL;
int scaled_width, scaled_height;
if ( image->flags & IMGFLAG_NOSCALE ) {
//
// keep original dimensions
//
scaled_width = width;
scaled_height = height;
} else {
//
// convert to exact power of 2 sizes
//
for (scaled_width = 1 ; scaled_width < width ; scaled_width<<=1)
;
for (scaled_height = 1 ; scaled_height < height ; scaled_height<<=1)
;
if ( r_roundImagesDown->integer && scaled_width > width )
scaled_width >>= 1;
if ( r_roundImagesDown->integer && scaled_height > height )
scaled_height >>= 1;
}
//
// clamp to the current texture size limit
// scale both axis down equally so we don't have to
// deal with a half mip resampling
//
while ( scaled_width > glConfig.maxTextureSize
|| scaled_height > glConfig.maxTextureSize ) {
scaled_width >>= 1;
scaled_height >>= 1;
x >>= 1;
y >>= 1;
}
if ( scaled_width != width || scaled_height != height ) {
if ( data ) {
resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
ResampleTexture( (unsigned*)data, width, height, (unsigned*)resampledBuffer, scaled_width, scaled_height );
data = resampledBuffer;
}
width = scaled_width;
height = scaled_height;
}
if ( image->flags & IMGFLAG_COLORSHIFT ) {
byte *p = data;
int i, n = width * height;
for ( i = 0; i < n; i++, p+=4 ) {
R_ColorShiftLightingBytes( p, p, qfalse );
}
}
//
// perform optional picmip operation
//
if ( picmip && ( tr.mapLoading || r_nomip->integer == 0 ) ) {
scaled_width >>= r_picmip->integer;
scaled_height >>= r_picmip->integer;
x >>= r_picmip->integer;
y >>= r_picmip->integer;
}
//
// clamp to minimum size
//
if (scaled_width < 1) {
scaled_width = 1;
}
if (scaled_height < 1) {
scaled_height = 1;
}
if ( !subImage ) {
// verify if the alpha channel is being used or not
if ( image->internalFormat == 0 ) {
image->internalFormat = RawImage_GetInternalFormat( data, width*height, lightMap, allowCompression );
}
image->uploadWidth = scaled_width;
image->uploadHeight = scaled_height;
}
// copy or resample data as appropriate for first MIP level
if ( ( scaled_width == width ) && ( scaled_height == height ) )
{
if ( !mipmap )
{
LoadTexture( 0, x, y, scaled_width, scaled_height, data, subImage, image );
goto done;
}
}
else
{
// use the normal mip-mapping function to go down from here
while ( width > scaled_width || height > scaled_height ) {
R_MipMap( data, data, width, height );
width = MAX( 1, width >> 1 );
height = MAX( 1, height >> 1 );
}
}
if ( !(image->flags & IMGFLAG_NOLIGHTSCALE) )
R_LightScaleTexture( data, scaled_width, scaled_height, !mipmap );
LoadTexture( 0, x, y, scaled_width, scaled_height, data, subImage, image );
if ( mipmap )
{
int miplevel = 0;
while (scaled_width > 1 || scaled_height > 1)
{
R_MipMap( data, data, scaled_width, scaled_height );
scaled_width = MAX( 1, scaled_width >> 1 );
scaled_height = MAX( 1, scaled_height >> 1 );
x >>= 1;
y >>= 1;
miplevel++;
if ( r_colorMipLevels->integer ) {
R_BlendOverTexture( data, scaled_width * scaled_height, miplevel );
}
LoadTexture( miplevel, x, y, scaled_width, scaled_height, data, subImage, image );
}
}
done:
if ( resampledBuffer != NULL )
ri.Hunk_FreeTempMemory( resampledBuffer );
GL_CheckErrors();
}
/*
================
R_UploadSubImage
================
*/
void R_UploadSubImage( byte *data, int x, int y, int width, int height, image_t *image )
{
if ( image )
{
GL_Bind( image );
Upload32( data, x, y, width, height, image, qtrue ); // subImage = qtrue
}
}
/*
================
R_CreateImage
This is the only way any image_t are created
Picture data may be modified in-place during mipmap processing
================
*/
image_t *R_CreateImage( const char *name, const char *name2, byte *pic, int width, int height, imgFlags_t flags ) {
image_t *image;
long hash;
GLint glWrapClampMode;
GLuint currTexture;
int currTMU;
int namelen, namelen2;
const char *slash;
namelen = (int)strlen( name ) + 1;
if ( namelen > MAX_QPATH ) {
ri.Error( ERR_DROP, "R_CreateImage: \"%s\" is too long", name );
}
if ( name2 && Q_stricmp( name, name2 ) != 0 ) {
// leave only file name
name2 = ( slash = strrchr( name2, '/' ) ) != NULL ? slash + 1 : name2;
namelen2 = (int)strlen( name2 ) + 1;
} else {
namelen2 = 0;
}
if ( tr.numImages == MAX_DRAWIMAGES ) {
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit" );
}
image = ri.Hunk_Alloc( sizeof( *image ) + namelen + namelen2, h_low );
image->imgName = (char *)( image + 1 );
strcpy( image->imgName, name );
if ( namelen2 ) {
image->imgName2 = image->imgName + namelen;
strcpy( image->imgName2, name2 );
} else {
image->imgName2 = image->imgName;
}
hash = generateHashValue( name );
image->next = hashTable[ hash ];
hashTable[ hash ] = image;
tr.images[ tr.numImages++ ] = image;
image->flags = flags;
image->width = width;
image->height = height;
if ( namelen > 6 && Q_stristr( image->imgName, "maps/" ) == image->imgName && Q_stristr( image->imgName + 6, "/lm_" ) != NULL ) {
// external lightmap atlases stored in maps/<mapname>/lm_XXXX textures
//image->flags = IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_NOSCALE | IMGFLAG_COLORSHIFT;
image->flags |= IMGFLAG_NO_COMPRESSION | IMGFLAG_NOSCALE;
}
if ( flags & IMGFLAG_RGB )
image->internalFormat = GL_RGB;
else
image->internalFormat = 0; // autodetect
if ( flags & IMGFLAG_CLAMPTOBORDER )
glWrapClampMode = GL_CLAMP_TO_BORDER;
else if ( flags & IMGFLAG_CLAMPTOEDGE )
glWrapClampMode = gl_clamp_mode;
else
glWrapClampMode = GL_REPEAT;
// save current state
currTMU = glState.currenttmu;
currTexture = glState.currenttextures[ glState.currenttmu ];
qglGenTextures( 1, &image->texnum );
// lightmaps are always allocated on TMU 1
if ( qglActiveTextureARB && (flags & IMGFLAG_LIGHTMAP) ) {
image->TMU = 1;
} else {
image->TMU = 0;
}
if ( qglActiveTextureARB ) {
GL_SelectTexture( image->TMU );
}
GL_Bind( image );
Upload32( pic, 0, 0, image->width, image->height, image, qfalse ); // subImage = qfalse
if ( image->flags & IMGFLAG_MIPMAP )
{
if ( textureFilterAnisotropic ) {
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (GLint) maxAnisotropy );
}
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min );
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max );
}
else
{
if ( textureFilterAnisotropic )
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode );
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode );
// restore original state
GL_SelectTexture( currTMU );
glState.currenttextures[ glState.currenttmu ] = currTexture;
qglBindTexture( GL_TEXTURE_2D, currTexture );
return image;
}
//===================================================================
typedef struct
{
const char *ext;
void (*ImageLoader)( const char *, unsigned char **, int *, int * );
} imageExtToLoaderMap_t;
// Note that the ordering indicates the order of preference used
// when there are multiple images of different formats available
static const imageExtToLoaderMap_t imageLoaders[] =
{
{ "png", R_LoadPNG },
{ "tga", R_LoadTGA },
{ "jpg", R_LoadJPG },
{ "jpeg", R_LoadJPG },
{ "pcx", R_LoadPCX },
{ "bmp", R_LoadBMP }
};
static const int numImageLoaders = ARRAY_LEN( imageLoaders );
/*
=================
R_LoadImage
Loads any of the supported image types into a canonical
32 bit format.
=================
*/
static const char *R_LoadImage( const char *name, byte **pic, int *width, int *height )
{
static char localName[ MAX_QPATH ];
const char *altName, *ext;
//qboolean orgNameFailed = qfalse;
int orgLoader = -1;
int i;
*pic = NULL;
*width = 0;
*height = 0;
Q_strncpyz( localName, name, sizeof( localName ) );
ext = COM_GetExtension( localName );
if ( *ext )
{
// Look for the correct loader and use it
for ( i = 0; i < numImageLoaders; i++ )
{
if ( !Q_stricmp( ext, imageLoaders[ i ].ext ) )
{
// Load
imageLoaders[ i ].ImageLoader( localName, pic, width, height );
break;
}
}
// A loader was found
if ( i < numImageLoaders )
{
if ( *pic == NULL )
{
// Loader failed, most likely because the file isn't there;
// try again without the extension
//orgNameFailed = qtrue;
orgLoader = i;
COM_StripExtension( name, localName, MAX_QPATH );
}
else
{
// Something loaded
return localName;
}
}
}
// Try and find a suitable match using all
// the image formats supported
for ( i = 0; i < numImageLoaders; i++ )
{
if ( i == orgLoader )
continue;
altName = va( "%s.%s", localName, imageLoaders[ i ].ext );
// Load
imageLoaders[ i ].ImageLoader( altName, pic, width, height );
if ( *pic )
{
#if 0
if ( orgNameFailed )
{
ri.Printf( PRINT_DEVELOPER, S_COLOR_YELLOW "WARNING: %s not present, using %s instead\n",
name, altName );
}
#endif
Q_strncpyz( localName, altName, sizeof( localName ) );
break;
}
}
return localName;
}
/*
===============
R_FindImageFile
Finds or loads the given image.
Returns NULL if it fails, not a default image.
==============
*/
image_t *R_FindImageFile( const char *name, imgFlags_t flags )
{
image_t *image;
const char *localName;
char strippedName[ MAX_QPATH ];
int width, height;
byte *pic;
int hash;
if ( !name ) {
return NULL;
}
hash = generateHashValue( name );
//
// see if the image is already loaded
//
for ( image = hashTable[ hash ]; image; image = image->next ) {
if ( !Q_stricmp( name, image->imgName ) ) {
// the white image can be used with any set of parms, but other mismatches are errors
if ( strcmp( name, "*white" ) ) {
if ( image->flags != flags ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed flags (%i vs %i)\n", name, image->flags, flags );
}
}
return image;
}
}
if ( strrchr( name, '.' ) > name ) {
// try with stripped extension
COM_StripExtension( name, strippedName, sizeof( strippedName ) );
for ( image = hashTable[ hash ]; image; image = image->next ) {
if ( !Q_stricmp( strippedName, image->imgName ) ) {
//if ( strcmp( strippedName, "*white" ) ) {
if ( image->flags != flags ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed flags (%i vs %i)\n", strippedName, image->flags, flags );
}
//}
return image;
}
}
}
//
// load the pic from disk
//
localName = R_LoadImage( name, &pic, &width, &height );
if ( pic == NULL ) {
return NULL;
}
if ( tr.mapLoading && r_mapGreyScale->value > 0 ) {
byte *img;
int i;
for ( i = 0, img = pic; i < width * height; i++, img += 4 ) {
if ( r_mapGreyScale->integer ) {
byte luma = LUMA( img[0], img[1], img[2] );
img[0] = luma;
img[1] = luma;
img[2] = luma;
} else {
float luma = LUMA( img[0], img[1], img[2] );
img[0] = LERP( img[0], luma, r_mapGreyScale->value );
img[1] = LERP( img[1], luma, r_mapGreyScale->value );
img[2] = LERP( img[2], luma, r_mapGreyScale->value );
}
}
}
if ( tr.mapLoading && r_mapColorScale->integer == 1 ) {
byte *img;
int i;
for ( i = 0, img = pic; i < width * height; i++, img += 4 ) {
float luma = LUMA( img[0], img[1], img[2] );
img[0] = LERP( img[0], luma, r_mapColorRedT->value );
img[1] = LERP( img[1], luma, r_mapColorGreenT->value );
img[2] = LERP( img[2], luma, r_mapColorBlueT->value );
}
}
image = R_CreateImage( name, localName, pic, width, height, flags );
ri.Free( pic );
return image;
}
/*
================
R_CreateDlightImage
================
*/
#define DLIGHT_SIZE 16
static void R_CreateDlightImage( void ) {
int x,y;
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
int b;
// make a centered inverse-square falloff blob for dynamic lighting
for (x=0 ; x<DLIGHT_SIZE ; x++) {
for (y=0 ; y<DLIGHT_SIZE ; y++) {
float d;
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
b = 4000 / d;
if (b > 255) {
b = 255;
} else if ( b < 75 ) {
b = 0;
}
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = b;
data[y][x][3] = 255;
}
}
tr.dlightImage = R_CreateImage( "*dlight", NULL, (byte*)data, DLIGHT_SIZE, DLIGHT_SIZE, IMGFLAG_CLAMPTOEDGE );
}
/*
=================
R_InitFogTable
=================
*/
void R_InitFogTable( void ) {
int i;
float d;
float exp;
exp = 0.5;
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
d = powf( (float)i/(FOG_TABLE_SIZE-1), exp );
tr.fogTable[i] = d;
}
}
/*
================
R_FogFactor
Returns a 0.0 to 1.0 fog density value
This is called for each texel of the fog texture on startup
and for each vertex of transparent shaders in fog dynamically
================
*/
float R_FogFactor( float s, float t ) {
float d;
s -= 1.0/512;
if ( s < 0 ) {
return 0;
}
if ( t < 1.0/32 ) {
return 0;
}
if ( t < 31.0/32 ) {
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
}
// we need to leave a lot of clamp range
s *= 8;
if ( s > 1.0 ) {
s = 1.0;
}
d = tr.fogTable[ (uint32_t)(s * (FOG_TABLE_SIZE-1)) ];
return d;
}
/*
================
R_CreateFogImage
================
*/
#define FOG_S 256
#define FOG_T 32
static void R_CreateFogImage( void ) {
int x,y;
byte *data;
float d;
data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
// S is distance, T is depth
for (x=0 ; x<FOG_S ; x++) {
for (y=0 ; y<FOG_T ; y++) {
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
data[(y*FOG_S+x)*4+0] =
data[(y*FOG_S+x)*4+1] =
data[(y*FOG_S+x)*4+2] = 255;
data[(y*FOG_S+x)*4+3] = 255*d;
}
}
tr.fogImage = R_CreateImage( "*fog", NULL, data, FOG_S, FOG_T, IMGFLAG_CLAMPTOEDGE );
ri.Hunk_FreeTempMemory( data );
}
static int Hex( char c )
{
if ( c >= '0' && c <= '9' ) {
return c - '0';
}
if ( c >= 'A' && c <= 'F' ) {
return 10 + c - 'A';
}
if ( c >= 'a' && c <= 'f' ) {
return 10 + c - 'a';
}
return -1;
}
/*
==================
R_BuildDefaultImage
Create solid color texture from following input formats (hex):
#rgb
#rrggbb
==================
*/
#define DEFAULT_SIZE 16
static qboolean R_BuildDefaultImage( const char *format ) {
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
byte color[4];
int i, len, hex[6];
int x, y;
if ( *format++ != '#' ) {
return qfalse;
}
len = (int)strlen( format );
if ( len <= 0 || len > 6 ) {
return qfalse;
}
for ( i = 0; i < len; i++ ) {
hex[i] = Hex( format[i] );
if ( hex[i] == -1 ) {
return qfalse;
}
}
switch ( len ) {
case 3: // #rgb
color[0] = hex[0] << 4 | hex[0];
color[1] = hex[1] << 4 | hex[1];
color[2] = hex[2] << 4 | hex[2];
color[3] = 255;
break;
case 6: // #rrggbb
color[0] = hex[0] << 4 | hex[1];
color[1] = hex[2] << 4 | hex[3];
color[2] = hex[4] << 4 | hex[5];
color[3] = 255;
break;
default: // unsupported format
return qfalse;
}
for ( y = 0; y < DEFAULT_SIZE; y++ ) {
for ( x = 0; x < DEFAULT_SIZE; x++ ) {
data[x][y][0] = color[0];
data[x][y][1] = color[1];
data[x][y][2] = color[2];
data[x][y][3] = color[3];
}
}
tr.defaultImage = R_CreateImage( "*default", NULL, (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGFLAG_MIPMAP );
return qtrue;
}
/*
==================
R_CreateDefaultImage
==================
*/
static void R_CreateDefaultImage( void ) {
int x;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
if ( r_defaultImage->string[0] )
{
// build from format
if ( R_BuildDefaultImage( r_defaultImage->string ) )
return;
// load from external file
tr.defaultImage = R_FindImageFile( r_defaultImage->string, IMGFLAG_MIPMAP | IMGFLAG_PICMIP );
if ( tr.defaultImage )
return;
}
// the default image will be a box, to allow you to see the mapping coordinates
Com_Memset( data, 32, sizeof( data ) );
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
data[0][x][0] =
data[0][x][1] =
data[0][x][2] =
data[0][x][3] = 255;
data[x][0][0] =
data[x][0][1] =
data[x][0][2] =
data[x][0][3] = 255;
data[DEFAULT_SIZE-1][x][0] =
data[DEFAULT_SIZE-1][x][1] =
data[DEFAULT_SIZE-1][x][2] =
data[DEFAULT_SIZE-1][x][3] = 255;
data[x][DEFAULT_SIZE-1][0] =
data[x][DEFAULT_SIZE-1][1] =
data[x][DEFAULT_SIZE-1][2] =
data[x][DEFAULT_SIZE-1][3] = 255;
}
tr.defaultImage = R_CreateImage( "*default", NULL, (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGFLAG_MIPMAP );
}
/*
==================
R_CreateBuiltinImages
==================
*/
static void R_CreateBuiltinImages( void ) {
int x,y;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
R_CreateDefaultImage();
// we use a solid white image instead of disabling texturing
Com_Memset( data, 255, sizeof( data ) );
tr.whiteImage = R_CreateImage( "*white", NULL, (byte *)data, 8, 8, IMGFLAG_NONE );
// with overbright bits active, we need an image which is some fraction of full color,
// for default lightmaps, etc
for (x=0 ; x<DEFAULT_SIZE ; x++) {
for (y=0 ; y<DEFAULT_SIZE ; y++) {
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = tr.identityLightByte;
data[y][x][3] = 255;
}
}
tr.identityLightImage = R_CreateImage( "*identityLight", NULL, (byte *)data, 8, 8, IMGFLAG_NONE );
//for ( x = 0; x < ARRAY_LEN( tr.scratchImage ); x++ ) {
// scratchimage is usually used for cinematic drawing
//tr.scratchImage[x] = R_CreateImage( "*scratch", NULL, DEFAULT_SIZE, DEFAULT_SIZE,
// IMGFLAG_PICMIP | IMGFLAG_CLAMPTOEDGE | IMGFLAG_RGB );
//}
R_CreateDlightImage();
R_CreateFogImage();
}
/*
===============
R_SetColorMappings
===============
*/
void R_SetColorMappings( void ) {
int i, j;
float g;
int inf;
int shift;
qboolean applyGamma;
if ( !tr.inited ) {
// it may be called from window handling functions where gamma flags is now yet known/set
return;
}
// setup the overbright lighting
// negative value will force gamma in windowed mode
tr.overbrightBits = abs( r_overBrightBits->integer );
// never overbright in windowed mode
if ( !glConfig.isFullscreen && r_overBrightBits->integer >= 0 && !fboEnabled ) {
tr.overbrightBits = 0;
applyGamma = qfalse;
} else {
if ( !glConfig.deviceSupportsGamma && !fboEnabled ) {
tr.overbrightBits = 0; // need hardware gamma for overbright
applyGamma = qfalse;
} else {
applyGamma = qtrue;
}
}
// allow 2 overbright bits in 24 bit, but only 1 in 16 bit
if ( glConfig.colorBits > 16 ) {
if ( tr.overbrightBits > 2 ) {
tr.overbrightBits = 2;
}
} else {
if ( tr.overbrightBits > 1 ) {
tr.overbrightBits = 1;
}
}
if ( tr.overbrightBits < 0 ) {
tr.overbrightBits = 0;
}
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
tr.identityLightByte = 255 * tr.identityLight;
g = r_gamma->value;
shift = tr.overbrightBits;
for ( i = 0; i < ARRAY_LEN( s_gammatable ); i++ ) {
if ( g == 1.0f ) {
inf = i;
} else {
inf = 255 * powf( i/255.0f, 1.0f / g ) + 0.5f;
}
inf <<= shift;
if (inf < 0) {
inf = 0;
}
if (inf > 255) {
inf = 255;
}
s_gammatable[i] = inf;
}
for ( i = 0; i < ARRAY_LEN( s_intensitytable ); i++ ) {
j = i * r_intensity->value;
if ( j > 255 ) {
j = 255;
}
s_intensitytable[i] = j;
}
if ( gls.deviceSupportsGamma ) {
if ( fboEnabled )
ri.GLimp_SetGamma( s_gammatable_linear, s_gammatable_linear, s_gammatable_linear );
else {
if ( applyGamma ) {
ri.GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
}
}
}
}
/*
===============
R_InitImages
===============
*/
void R_InitImages( void ) {
// initialize linear gamma table before setting color mappings for the first time
int i;
for ( i = 0; i < 256; i++ )
s_gammatable_linear[i] = (unsigned char)i;
Com_Memset( hashTable, 0, sizeof( hashTable ) );
// build brightness translation tables
R_SetColorMappings();
// create default texture and white texture
R_CreateBuiltinImages();
}
/*
===============
R_DeleteTextures
===============
*/
void R_DeleteTextures( void ) {
image_t *img;
int i;
for ( i = 0; i < tr.numImages; i++ ) {
img = tr.images[ i ];
qglDeleteTextures( 1, &img->texnum );
}
if ( qglActiveTextureARB ) {
for ( i = glConfig.numTextureUnits - 1; i >= 0; i-- ) {
qglActiveTextureARB( GL_TEXTURE0_ARB + i );
qglBindTexture( GL_TEXTURE_2D, 0 );
}
} else {
qglBindTexture( GL_TEXTURE_2D, 0 );
}
Com_Memset( tr.images, 0, sizeof( tr.images ) );
Com_Memset( tr.scratchImage, 0, sizeof( tr.scratchImage ) );
tr.numImages = 0;
Com_Memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
}
/*
============================================================================
SKINS
============================================================================
*/
/*
==================
CommaParse
This is unfortunate, but the skin files aren't
compatible with our normal parsing rules.
==================
*/
static char *CommaParse( const char **data_p ) {
int c, len;
const char *data;
static char com_token[ MAX_TOKEN_CHARS ];
data = *data_p;
com_token[0] = '\0';
// make sure incoming data is valid
if ( !data ) {
*data_p = NULL;
return com_token;
}
len = 0;
while ( 1 ) {
// skip whitespace
while ( (c = *data) <= ' ' ) {
if ( c == '\0' ) {
break;
}
data++;
}
c = *data;
// skip double slash comments
if ( c == '/' && data[1] == '/' )
{
data += 2;
while ( *data && *data != '\n' ) {
data++;
}
}
// skip /* */ comments
else if ( c == '/' && data[1] == '*' )
{
data += 2;
while ( *data && ( *data != '*' || data[1] != '/' ) )
{
data++;
}
if ( *data )
{
data += 2;
}
}
else
{
break;
}
}
if ( c == '\0' ) {
return "";
}
// handle quoted strings
if ( c == '\"' )
{
data++;
while (1)
{
c = *data;
if ( c == '\"' || c == '\0' )
{
if ( c == '\"' )
data++;
com_token[ len ] = '\0';
*data_p = data;
return com_token;
}
data++;
if ( len < MAX_TOKEN_CHARS-1 )
{
com_token[ len ] = c;
len++;
}
}
}
// parse a regular word
do
{
if ( len < MAX_TOKEN_CHARS-1 )
{
com_token[ len ] = c;
len++;
}
data++;
c = *data;
} while ( c > ' ' && c != ',' );
com_token[ len ] = '\0';
*data_p = data;
return com_token;
}
/*
===============
RE_RegisterSkin
===============
*/
qhandle_t RE_RegisterSkin( const char *name ) {
skinSurface_t parseSurfaces[MAX_SKIN_SURFACES];
qhandle_t hSkin;
skin_t *skin;
skinSurface_t *surf;
union {
char *c;
void *v;
} text;
const char *text_p;
const char *token;
char surfName[MAX_QPATH];
int totalSurfaces;
if ( !name || !name[0] ) {
ri.Printf( PRINT_DEVELOPER, "Empty name passed to RE_RegisterSkin\n" );
return 0;
}
if ( strlen( name ) >= MAX_QPATH ) {
ri.Printf( PRINT_DEVELOPER, "Skin name exceeds MAX_QPATH\n" );
return 0;
}
// see if the skin is already loaded
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
skin = tr.skins[hSkin];
if ( !Q_stricmp( skin->name, name ) ) {
if( skin->numSurfaces == 0 ) {
return 0; // default skin
}
return hSkin;
}
}
// allocate a new skin
if ( tr.numSkins == MAX_SKINS ) {
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
return 0;
}
tr.numSkins++;
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
tr.skins[hSkin] = skin;
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
skin->numSurfaces = 0;
//R_IssuePendingRenderCommands();
// If not a .skin file, load as a single shader
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
skin->numSurfaces = 1;
skin->surfaces = ri.Hunk_Alloc( sizeof( skinSurface_t ), h_low );
skin->surfaces[0].shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
return hSkin;
}
// load and parse the skin file
ri.FS_ReadFile( name, &text.v );
if ( !text.c ) {
return 0;
}
totalSurfaces = 0;
text_p = text.c;
while ( text_p && *text_p ) {
// get surface name
token = CommaParse( &text_p );
Q_strncpyz( surfName, token, sizeof( surfName ) );
if ( !token[0] ) {
break;
}
// lowercase the surface name so skin compares are faster
Q_strlwr( surfName );
if ( *text_p == ',' ) {
text_p++;
}
if ( strstr( token, "tag_" ) ) {
continue;
}
// parse the shader name
token = CommaParse( &text_p );
if ( skin->numSurfaces < MAX_SKIN_SURFACES ) {
surf = &parseSurfaces[skin->numSurfaces];
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
skin->numSurfaces++;
}
totalSurfaces++;
}
ri.FS_FreeFile( text.v );
if ( totalSurfaces > MAX_SKIN_SURFACES ) {
ri.Printf( PRINT_WARNING, "WARNING: Ignoring excess surfaces (found %d, max is %d) in skin '%s'!\n",
totalSurfaces, MAX_SKIN_SURFACES, name );
}
// never let a skin have 0 shaders
if ( skin->numSurfaces == 0 ) {
return 0; // use default skin
}
// copy surfaces to skin
skin->surfaces = ri.Hunk_Alloc( skin->numSurfaces * sizeof( skinSurface_t ), h_low );
memcpy( skin->surfaces, parseSurfaces, skin->numSurfaces * sizeof( skinSurface_t ) );
return hSkin;
}
/*
===============
R_InitSkins
===============
*/
void R_InitSkins( void ) {
skin_t *skin;
tr.numSkins = 1;
// make the default skin have all default shaders
skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
skin->numSurfaces = 1;
skin->surfaces = ri.Hunk_Alloc( sizeof( skinSurface_t ), h_low );
skin->surfaces[0].shader = tr.defaultShader;
}
/*
===============
R_GetSkinByHandle
===============
*/
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
return tr.skins[0];
}
return tr.skins[ hSkin ];
}
/*
===============
R_SkinList_f
===============
*/
void R_SkinList_f( void ) {
int i, j;
skin_t *skin;
ri.Printf (PRINT_ALL, "------------------\n");
for ( i = 0 ; i < tr.numSkins ; i++ ) {
skin = tr.skins[i];
ri.Printf( PRINT_ALL, "%3i:%s (%d surfaces)\n", i, skin->name, skin->numSurfaces );
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
ri.Printf( PRINT_ALL, " %s = %s\n",
skin->surfaces[j].name, skin->surfaces[j].shader->name );
}
}
ri.Printf (PRINT_ALL, "------------------\n");
}