rallyunlimited-engine/code/renderervk/tr_sky.c

901 lines
21 KiB
C
Raw Normal View History

2024-02-02 16:46:17 +00:00
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_sky.c
#include "tr_local.h"
#define SKY_SUBDIVISIONS 8
#define HALF_SKY_SUBDIVISIONS (SKY_SUBDIVISIONS/2)
static float s_cloudTexCoords[6][SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1][2];
/*
===================================================================================
POLYGON TO BOX SIDE PROJECTION
===================================================================================
*/
static const vec3_t sky_clip[6] =
{
{ 1, 1, 0},
{ 1,-1, 0},
{ 0,-1, 1},
{ 0, 1, 1},
{ 1, 0, 1},
{-1, 0, 1}
};
static float sky_mins[2][6], sky_maxs[2][6];
static float sky_min, sky_max;
static float sky_min_depth;
/*
================
AddSkyPolygon
================
*/
static void AddSkyPolygon (int nump, vec3_t vecs)
{
int i,j;
vec3_t v, av;
float s, t, dv;
int axis;
float *vp;
// s = [0]/[2], t = [1]/[2]
static const int vec_to_st[6][3] =
{
{-2,3,1},
{2,3,-1},
{1,3,2},
{-1,3,-2},
{-2,-1,3},
{-2,1,-3}
// {-1,2,3},
// {1,2,-3}
};
// decide which face it maps to
VectorCopy (vec3_origin, v);
for (i=0, vp=vecs ; i<nump ; i++, vp+=3)
{
VectorAdd (vp, v, v);
}
av[0] = fabs(v[0]);
av[1] = fabs(v[1]);
av[2] = fabs(v[2]);
if (av[0] > av[1] && av[0] > av[2])
{
if (v[0] < 0)
axis = 1;
else
axis = 0;
}
else if (av[1] > av[2] && av[1] > av[0])
{
if (v[1] < 0)
axis = 3;
else
axis = 2;
}
else
{
if (v[2] < 0)
axis = 5;
else
axis = 4;
}
// project new texture coords
for (i=0 ; i<nump ; i++, vecs+=3)
{
j = vec_to_st[axis][2];
if (j > 0)
dv = vecs[j - 1];
else
dv = -vecs[-j - 1];
if (dv < 0.001)
continue; // don't divide by zero
j = vec_to_st[axis][0];
if (j < 0)
s = -vecs[-j -1] / dv;
else
s = vecs[j-1] / dv;
j = vec_to_st[axis][1];
if (j < 0)
t = -vecs[-j -1] / dv;
else
t = vecs[j-1] / dv;
if (s < sky_mins[0][axis])
sky_mins[0][axis] = s;
if (t < sky_mins[1][axis])
sky_mins[1][axis] = t;
if (s > sky_maxs[0][axis])
sky_maxs[0][axis] = s;
if (t > sky_maxs[1][axis])
sky_maxs[1][axis] = t;
}
}
#define ON_EPSILON 0.1f // point on plane side epsilon
#define MAX_CLIP_VERTS 64
/*
================
ClipSkyPolygon
================
*/
static void ClipSkyPolygon (int nump, vec3_t vecs, int stage)
{
const float *norm;
float *v;
qboolean front, back;
float d, e;
float dists[MAX_CLIP_VERTS];
int sides[MAX_CLIP_VERTS];
vec3_t newv[2][MAX_CLIP_VERTS];
int newc[2];
int i, j;
if (nump > MAX_CLIP_VERTS-2)
ri.Error (ERR_DROP, "ClipSkyPolygon: MAX_CLIP_VERTS");
if (stage == 6)
{ // fully clipped, so draw it
AddSkyPolygon (nump, vecs);
return;
}
front = back = qfalse;
norm = sky_clip[stage];
for (i=0, v = vecs ; i<nump ; i++, v+=3)
{
d = DotProduct (v, norm);
if (d > ON_EPSILON)
{
front = qtrue;
sides[i] = SIDE_FRONT;
}
else if (d < -ON_EPSILON)
{
back = qtrue;
sides[i] = SIDE_BACK;
}
else
sides[i] = SIDE_ON;
dists[i] = d;
}
if (!front || !back)
{ // not clipped
ClipSkyPolygon (nump, vecs, stage+1);
return;
}
// clip it
sides[i] = sides[0];
dists[i] = dists[0];
VectorCopy (vecs, (vecs+(i*3)) );
newc[0] = newc[1] = 0;
for (i=0, v = vecs ; i<nump ; i++, v+=3)
{
switch (sides[i])
{
case SIDE_FRONT:
VectorCopy (v, newv[0][newc[0]]);
newc[0]++;
break;
case SIDE_BACK:
VectorCopy (v, newv[1][newc[1]]);
newc[1]++;
break;
case SIDE_ON:
VectorCopy (v, newv[0][newc[0]]);
newc[0]++;
VectorCopy (v, newv[1][newc[1]]);
newc[1]++;
break;
}
if (sides[i] == SIDE_ON || sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
continue;
d = dists[i] / (dists[i] - dists[i+1]);
for (j=0 ; j<3 ; j++)
{
e = v[j] + d*(v[j+3] - v[j]);
newv[0][newc[0]][j] = e;
newv[1][newc[1]][j] = e;
}
newc[0]++;
newc[1]++;
}
// continue
ClipSkyPolygon (newc[0], newv[0][0], stage+1);
ClipSkyPolygon (newc[1], newv[1][0], stage+1);
}
/*
==============
ClearSkyBox
==============
*/
static void ClearSkyBox (void) {
int i;
for (i=0 ; i<6 ; i++) {
sky_mins[0][i] = sky_mins[1][i] = 9999;
sky_maxs[0][i] = sky_maxs[1][i] = -9999;
}
}
/*
================
RB_ClipSkyPolygons
================
*/
static void RB_ClipSkyPolygons( const shaderCommands_t *input )
{
vec3_t p[5]; // need one extra point for clipping
int i, j;
ClearSkyBox();
for ( i = 0; i < input->numIndexes; i += 3 )
{
for (j = 0 ; j < 3 ; j++)
{
VectorSubtract( input->xyz[input->indexes[i+j]],
backEnd.viewParms.or.origin,
p[j] );
}
ClipSkyPolygon( 3, p[0], 0 );
}
}
/*
===================================================================================
CLOUD VERTEX GENERATION
===================================================================================
*/
/*
** MakeSkyVec
**
** Parms: s, t range from -1 to 1
*/
static void MakeSkyVec( float s, float t, int axis, vec3_t outXYZ )
{
// 1 = s, 2 = t, 3 = 2048
static const int st_to_vec[6][3] =
{
{3,-1,2},
{-3,1,2},
{1,3,2},
{-1,-3,2},
{-2,-1,3}, // 0 degrees yaw, look straight up
{2,-1,-3} // look straight down
};
vec3_t b;
int j, k;
float boxSize;
boxSize = backEnd.viewParms.zFar / 1.75; // div sqrt(3)
b[0] = s*boxSize;
b[1] = t*boxSize;
b[2] = boxSize;
for ( j = 0; j < 3; j++ )
{
k = st_to_vec[axis][j];
if ( k < 0 )
{
outXYZ[j] = -b[-k - 1];
}
else
{
outXYZ[j] = b[k - 1];
}
}
}
static const int sky_texorder[6] = {0, 2, 1, 3, 4, 5};
static vec3_t s_skyPoints[SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1];
static float s_skyTexCoords[SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1][2];
/*
=================
CullPoints
=================
*/
static qboolean CullPoints( vec4_t v[], const int count )
{
const cplane_t *frust;
int i, j;
float dist;
for ( i = 0; i < 5; i++ ) {
frust = &backEnd.viewParms.frustum[i];
for ( j = 0; j < count; j++ ) {
dist = DotProduct( v[j], frust->normal ) - frust->dist;
if ( dist >= 0 ) {
break;
}
}
// all points are completely behind at least of one frustum plane
if ( j == count ) {
return qtrue;
}
}
return qfalse;
}
static qboolean CullSkySide( const int mins[2], const int maxs[2] )
{
int s, t;
vec4_t v[4];
if ( r_nocull->integer )
return qfalse;
s = mins[0] + HALF_SKY_SUBDIVISIONS;
t = mins[1] + HALF_SKY_SUBDIVISIONS;
VectorAdd( s_skyPoints[t][s], backEnd.viewParms.or.origin, v[0] );
s = mins[0] + HALF_SKY_SUBDIVISIONS;
t = maxs[1] + HALF_SKY_SUBDIVISIONS;
VectorAdd( s_skyPoints[t][s], backEnd.viewParms.or.origin, v[1] );
s = maxs[0] + HALF_SKY_SUBDIVISIONS;
t = mins[1] + HALF_SKY_SUBDIVISIONS;
VectorAdd( s_skyPoints[t][s], backEnd.viewParms.or.origin, v[2] );
s = maxs[0] + HALF_SKY_SUBDIVISIONS;
t = maxs[1] + HALF_SKY_SUBDIVISIONS;
VectorAdd( s_skyPoints[t][s], backEnd.viewParms.or.origin, v[3] );
if ( CullPoints( v, 4 ) )
return qtrue;
return qfalse;
}
static void FillSkySide( const int mins[2], const int maxs[2], float skyTexCoords[SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1][2] )
{
const int vertexStart = tess.numVertexes;
const int tHeight = maxs[1] - mins[1] + 1;
const int sWidth = maxs[0] - mins[0] + 1;
int s, t;
if ( CullSkySide( mins, maxs ) )
return;
#if ( (SKY_SUBDIVISIONS+1) * (SKY_SUBDIVISIONS+1) * 6 > SHADER_MAX_VERTEXES )
if ( tess.numVertexes + tHeight * sWidth > SHADER_MAX_VERTEXES )
ri.Error( ERR_DROP, "SHADER_MAX_VERTEXES hit in %s()", __func__ );
#endif
#if ( SKY_SUBDIVISIONS * SKY_SUBDIVISIONS * 6 * 6 > SHADER_MAX_INDEXES )
if ( tess.numIndexes + (tHeight - 1) * (sWidth - 1) * 6 > SHADER_MAX_INDEXES )
ri.Error( ERR_DROP, "SHADER_MAX_INDEXES hit in %s()", __func__ );
#endif
for ( t = mins[1]+HALF_SKY_SUBDIVISIONS; t <= maxs[1]+HALF_SKY_SUBDIVISIONS; t++ )
{
for ( s = mins[0]+HALF_SKY_SUBDIVISIONS; s <= maxs[0]+HALF_SKY_SUBDIVISIONS; s++ )
{
VectorAdd( s_skyPoints[t][s], backEnd.viewParms.or.origin, tess.xyz[ tess.numVertexes ] );
tess.texCoords[0][tess.numVertexes][0] = skyTexCoords[t][s][0];
tess.texCoords[0][tess.numVertexes][1] = skyTexCoords[t][s][1];
tess.numVertexes++;
}
}
for ( t = 0; t < tHeight-1; t++ )
{
for ( s = 0; s < sWidth-1; s++ )
{
tess.indexes[tess.numIndexes] = vertexStart + s + t * ( sWidth );
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + ( t + 1 ) * ( sWidth );
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + t * ( sWidth );
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + ( t + 1 ) * ( sWidth );
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + ( t + 1 ) * ( sWidth );
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + t * ( sWidth );
tess.numIndexes++;
}
}
}
static void DrawSkySide( image_t *image, const int mins[2], const int maxs[2] )
{
tess.numVertexes = 0;
tess.numIndexes = 0;
FillSkySide( mins, maxs, s_skyTexCoords );
if ( tess.numIndexes )
{
GL_Bind( image );
#ifdef USE_VULKAN
tess.svars.texcoordPtr[0] = tess.texCoords[0];
vk_bind_pipeline( vk.skybox_pipeline );
vk_bind_index();
vk_bind_geometry( TESS_XYZ | TESS_ST0 );
vk_draw_geometry( r_showsky->integer ? DEPTH_RANGE_ZERO : DEPTH_RANGE_ONE, qtrue );
#else
qglVertexPointer( 3, GL_FLOAT, 16, tess.xyz );
qglTexCoordPointer( 2, GL_FLOAT, 0, tess.texCoords[0] );
R_DrawElements( tess.numIndexes, tess.indexes );
#endif
tess.numVertexes = 0;
tess.numIndexes = 0;
}
}
static void DrawSkyBox( const shader_t *shader )
{
int i;
sky_min = 0;
sky_max = 1;
for ( i = 0; i < 6; i++ )
{
int sky_mins_subd[2], sky_maxs_subd[2];
int s, t;
sky_mins[0][i] = floor( sky_mins[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_mins[1][i] = floor( sky_mins[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_maxs[0][i] = ceil( sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_maxs[1][i] = ceil( sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
if ( ( sky_mins[0][i] >= sky_maxs[0][i] ) || ( sky_mins[1][i] >= sky_maxs[1][i] ) )
{
continue;
}
sky_mins_subd[0] = sky_mins[0][i] * HALF_SKY_SUBDIVISIONS;
sky_mins_subd[1] = sky_mins[1][i] * HALF_SKY_SUBDIVISIONS;
sky_maxs_subd[0] = sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS;
sky_maxs_subd[1] = sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS;
if ( sky_mins_subd[0] < -HALF_SKY_SUBDIVISIONS )
sky_mins_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_mins_subd[0] > HALF_SKY_SUBDIVISIONS )
sky_mins_subd[0] = HALF_SKY_SUBDIVISIONS;
if ( sky_mins_subd[1] < -HALF_SKY_SUBDIVISIONS )
sky_mins_subd[1] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_mins_subd[1] > HALF_SKY_SUBDIVISIONS )
sky_mins_subd[1] = HALF_SKY_SUBDIVISIONS;
if ( sky_maxs_subd[0] < -HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_maxs_subd[0] > HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[0] = HALF_SKY_SUBDIVISIONS;
if ( sky_maxs_subd[1] < -HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[1] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_maxs_subd[1] > HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[1] = HALF_SKY_SUBDIVISIONS;
//
// iterate through the subdivisions
//
for ( t = sky_mins_subd[1]+HALF_SKY_SUBDIVISIONS; t <= sky_maxs_subd[1]+HALF_SKY_SUBDIVISIONS; t++ )
{
for ( s = sky_mins_subd[0]+HALF_SKY_SUBDIVISIONS; s <= sky_maxs_subd[0]+HALF_SKY_SUBDIVISIONS; s++ )
{
MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
i,
s_skyPoints[t][s] );
}
}
DrawSkySide( shader->sky.outerbox[sky_texorder[i]], sky_mins_subd, sky_maxs_subd );
}
}
static void FillCloudBox( void )
{
int i;
for ( i =0; i < 6; i++ )
{
int sky_mins_subd[2], sky_maxs_subd[2];
int s, t;
float MIN_T;
if ( 1 ) // FIXME? shader->sky.fullClouds )
{
MIN_T = -HALF_SKY_SUBDIVISIONS;
// still don't want to draw the bottom, even if fullClouds
if ( i == 5 )
continue;
}
else
{
switch( i )
{
case 0:
case 1:
case 2:
case 3:
MIN_T = -1;
break;
case 5:
// don't draw clouds beneath you
continue;
case 4: // top
default:
MIN_T = -HALF_SKY_SUBDIVISIONS;
break;
}
}
sky_mins[0][i] = floor( sky_mins[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_mins[1][i] = floor( sky_mins[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_maxs[0][i] = ceil( sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_maxs[1][i] = ceil( sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
if ( ( sky_mins[0][i] >= sky_maxs[0][i] ) ||
( sky_mins[1][i] >= sky_maxs[1][i] ) )
{
continue;
}
sky_mins_subd[0] = myftol( sky_mins[0][i] * HALF_SKY_SUBDIVISIONS );
sky_mins_subd[1] = myftol( sky_mins[1][i] * HALF_SKY_SUBDIVISIONS );
sky_maxs_subd[0] = myftol( sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS );
sky_maxs_subd[1] = myftol( sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS );
if ( sky_mins_subd[0] < -HALF_SKY_SUBDIVISIONS )
sky_mins_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_mins_subd[0] > HALF_SKY_SUBDIVISIONS )
sky_mins_subd[0] = HALF_SKY_SUBDIVISIONS;
if ( sky_mins_subd[1] < MIN_T )
sky_mins_subd[1] = MIN_T;
else if ( sky_mins_subd[1] > HALF_SKY_SUBDIVISIONS )
sky_mins_subd[1] = HALF_SKY_SUBDIVISIONS;
if ( sky_maxs_subd[0] < -HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_maxs_subd[0] > HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[0] = HALF_SKY_SUBDIVISIONS;
if ( sky_maxs_subd[1] < MIN_T )
sky_maxs_subd[1] = MIN_T;
else if ( sky_maxs_subd[1] > HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[1] = HALF_SKY_SUBDIVISIONS;
//
// iterate through the subdivisions
//
for ( t = sky_mins_subd[1]+HALF_SKY_SUBDIVISIONS; t <= sky_maxs_subd[1]+HALF_SKY_SUBDIVISIONS; t++ )
{
for ( s = sky_mins_subd[0]+HALF_SKY_SUBDIVISIONS; s <= sky_maxs_subd[0]+HALF_SKY_SUBDIVISIONS; s++ )
{
MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
i,
s_skyPoints[t][s] );
}
}
FillSkySide( sky_mins_subd, sky_maxs_subd, s_cloudTexCoords[i] );
}
}
/*
** R_BuildCloudData
*/
static void R_BuildCloudData( const shaderCommands_t *input )
{
const shader_t *shader;
shader = input->shader;
sky_min = 1.0 / 256.0f; // FIXME: not correct?
sky_max = 255.0 / 256.0f;
// set up for drawing
tess.numIndexes = 0;
tess.numVertexes = 0;
if ( shader->sky.cloudHeight )
{
if ( tess.xstages[0] )
{
FillCloudBox();
}
}
}
static void BuildSkyTexCoords( void )
{
float s, t;
int i, j;
for ( i = 0; i <= SKY_SUBDIVISIONS; i++ ) {
for ( j = 0; j <= SKY_SUBDIVISIONS; j++ ) {
s = ( j - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS;
t = ( i - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS;
// avoid bilerp seam
s = (s+1)*0.5;
t = (t+1)*0.5;
if ( s < 0.0f )
{
s = 0.0f;
}
else if ( s > 1.0f )
{
s = 1.0f;
}
if ( t < 0.0f )
{
t = 0.0f;
}
else if ( t > 1.0f )
{
t = 1.0f;
}
t = 1.0f - t;
s_skyTexCoords[i][j][0] = s;
s_skyTexCoords[i][j][1] = t;
}
}
}
/*
** R_InitSkyTexCoords
** Called when a sky shader is parsed
*/
void R_InitSkyTexCoords( float heightCloud )
{
int i, s, t;
float radiusWorld = 4096;
float p;
float sRad, tRad;
vec3_t skyVec;
vec3_t v;
if ( !Q_stricmp( glConfig.renderer_string, "GDI Generic" ) && !Q_stricmp( glConfig.version_string, "1.1.0" ) ) {
// fix skybox rendering on MS software GL implementation
sky_min_depth = 0.999f;
} else {
sky_min_depth = 1.0;
}
// init zfar so MakeSkyVec works even though
// a world hasn't been bounded
backEnd.viewParms.zFar = 1024;
for ( i = 0; i < 6; i++ )
{
for ( t = 0; t <= SKY_SUBDIVISIONS; t++ )
{
for ( s = 0; s <= SKY_SUBDIVISIONS; s++ )
{
// compute vector from view origin to sky side integral point
MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
i,
skyVec );
// compute parametric value 'p' that intersects with cloud layer
p = ( 1.0f / ( 2 * DotProduct( skyVec, skyVec ) ) ) *
( -2 * skyVec[2] * radiusWorld +
2 * sqrt( Square( skyVec[2] ) * Square( radiusWorld ) +
2 * Square( skyVec[0] ) * radiusWorld * heightCloud +
Square( skyVec[0] ) * Square( heightCloud ) +
2 * Square( skyVec[1] ) * radiusWorld * heightCloud +
Square( skyVec[1] ) * Square( heightCloud ) +
2 * Square( skyVec[2] ) * radiusWorld * heightCloud +
Square( skyVec[2] ) * Square( heightCloud ) ) );
// compute intersection point based on p
VectorScale( skyVec, p, v );
v[2] += radiusWorld;
// compute vector from world origin to intersection point 'v'
VectorNormalize( v );
sRad = Q_acos( v[0] );
tRad = Q_acos( v[1] );
s_cloudTexCoords[i][t][s][0] = sRad;
s_cloudTexCoords[i][t][s][1] = tRad;
}
}
}
BuildSkyTexCoords();
}
//======================================================================================
/*
** RB_DrawSun
*/
void RB_DrawSun( float scale, shader_t *shader ) {
float size;
float dist;
vec3_t origin, vec1, vec2;
color4ub_t sunColor;
if ( !backEnd.skyRenderedThisView )
return;
sunColor.u32 = 0xFFFFFFFF;
#ifdef USE_VULKAN
vk_update_mvp( NULL );
#else
qglLoadMatrixf( backEnd.viewParms.world.modelMatrix );
#endif
dist = backEnd.viewParms.zFar / 1.75; // div sqrt(3)
size = dist * scale;
VectorMA( backEnd.viewParms.or.origin, dist, tr.sunDirection, origin );
PerpendicularVector( vec1, tr.sunDirection );
CrossProduct( tr.sunDirection, vec1, vec2 );
VectorScale( vec1, size, vec1 );
VectorScale( vec2, size, vec2 );
// farthest depth range
#ifdef USE_VULKAN
tess.depthRange = DEPTH_RANGE_ONE;
#else
qglDepthRange( sky_min_depth, 1.0 );
#endif
RB_BeginSurface( shader, 0 );
RB_AddQuadStamp( origin, vec1, vec2, sunColor );
RB_EndSurface();
// back to normal depth range
#ifdef USE_VULKAN
tess.depthRange = DEPTH_RANGE_NORMAL;
#else
qglDepthRange( 0.0, 1.0 );
#endif
}
/*
================
RB_StageIteratorSky
All of the visible sky triangles are in tess
Other things could be stuck in here, like birds in the sky, etc
================
*/
void RB_StageIteratorSky( void ) {
#ifdef USE_VULKAN
if ( r_fastsky->integer && vk.fastSky ) {
#else
if ( r_fastsky->integer ) {
#endif
return;
}
#ifdef USE_VBO
VBO_UnBind();
#endif
// go through all the polygons and project them onto
// the sky box to see which blocks on each side need
// to be drawn
RB_ClipSkyPolygons( &tess );
// r_showsky will let all the sky blocks be drawn in
// front of everything to allow developers to see how
// much sky is getting sucked in
#ifdef USE_VULKAN
if ( r_showsky->integer ) {
tess.depthRange = DEPTH_RANGE_ZERO;
} else {
tess.depthRange = DEPTH_RANGE_ONE;
}
#else
if ( r_showsky->integer ) {
qglDepthRange( 0.0, 0.0 );
} else {
qglDepthRange( sky_min_depth, 1.0 );
}
#endif
// draw the outer skybox
if ( tess.shader->sky.outerbox[0] && tess.shader->sky.outerbox[0] != tr.defaultImage ) {
#ifdef USE_VULKAN
DrawSkyBox( tess.shader );
#else
GL_ClientState( 1, CLS_NONE );
GL_ClientState( 0, CLS_TEXCOORD_ARRAY );
qglColor4f( tr.identityLight, tr.identityLight, tr.identityLight, 1.0 );
GL_State( 0 );
GL_Cull( CT_FRONT_SIDED );
DrawSkyBox( tess.shader );
#endif
}
// generate the vertexes for all the clouds, which will be drawn
// by the generic shader routine
R_BuildCloudData( &tess );
// draw the inner skybox
if ( tess.numVertexes ) {
RB_StageIteratorGeneric();
}
// back to normal depth range
#ifdef USE_VULKAN
tess.depthRange = DEPTH_RANGE_NORMAL;
#else
qglDepthRange( 0.0, 1.0 );
#endif
// note that sky was drawn so we will draw a sun later
backEnd.skyRenderedThisView = qtrue;
}