rallyunlimited-engine/code/renderervk/tr_shadows.c

428 lines
10 KiB
C
Raw Normal View History

2024-02-02 16:46:17 +00:00
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "tr_local.h"
/*
for a projection shadow:
point[x] += light vector * ( z - shadow plane )
point[y] +=
point[z] = shadow plane
1 0 light[x] / light[z]
*/
typedef struct {
int i2;
int facing;
} edgeDef_t;
#define MAX_EDGE_DEFS 32
static edgeDef_t edgeDefs[SHADER_MAX_VERTEXES][MAX_EDGE_DEFS];
static int numEdgeDefs[SHADER_MAX_VERTEXES];
static int facing[SHADER_MAX_INDEXES/3];
static void R_AddEdgeDef( int i1, int i2, int f ) {
int c;
c = numEdgeDefs[ i1 ];
if ( c == MAX_EDGE_DEFS ) {
return; // overflow
}
edgeDefs[ i1 ][ c ].i2 = i2;
edgeDefs[ i1 ][ c ].facing = f;
numEdgeDefs[ i1 ]++;
}
static void R_CalcShadowEdges( void ) {
qboolean sil_edge;
int i;
int c, c2;
int j, k;
int i2;
color4ub_t *colors;
tess.numIndexes = 0;
// an edge is NOT a silhouette edge if its face doesn't face the light,
// or if it has a reverse paired edge that also faces the light.
// A well behaved polyhedron would have exactly two faces for each edge,
// but lots of models have dangling edges or overfanned edges
for ( i = 0; i < tess.numVertexes; i++ ) {
c = numEdgeDefs[ i ];
for ( j = 0 ; j < c ; j++ ) {
if ( !edgeDefs[ i ][ j ].facing ) {
continue;
}
sil_edge = qtrue;
i2 = edgeDefs[ i ][ j ].i2;
c2 = numEdgeDefs[ i2 ];
for ( k = 0 ; k < c2 ; k++ ) {
if ( edgeDefs[ i2 ][ k ].i2 == i && edgeDefs[ i2 ][ k ].facing ) {
sil_edge = qfalse;
break;
}
}
// if it doesn't share the edge with another front facing
// triangle, it is a sil edge
if ( sil_edge ) {
if ( tess.numIndexes > ARRAY_LEN( tess.indexes ) - 6 ) {
i = tess.numVertexes;
break;
}
#ifdef USE_VULKAN
tess.indexes[ tess.numIndexes + 0 ] = i;
tess.indexes[ tess.numIndexes + 1 ] = i2;
tess.indexes[ tess.numIndexes + 2 ] = i + tess.numVertexes;
tess.indexes[ tess.numIndexes + 3 ] = i2;
tess.indexes[ tess.numIndexes + 4 ] = i2 + tess.numVertexes;
tess.indexes[ tess.numIndexes + 5 ] = i + tess.numVertexes;
#else
tess.indexes[ tess.numIndexes + 0 ] = i;
tess.indexes[ tess.numIndexes + 1 ] = i + tess.numVertexes;
tess.indexes[ tess.numIndexes + 2 ] = i2;
tess.indexes[ tess.numIndexes + 3 ] = i2;
tess.indexes[ tess.numIndexes + 4 ] = i + tess.numVertexes;
tess.indexes[ tess.numIndexes + 5 ] = i2 + tess.numVertexes;
#endif
tess.numIndexes += 6;
}
}
}
#ifdef USE_VULKAN
tess.numVertexes *= 2;
colors = &tess.svars.colors[0][0]; // we need at least 2x SHADER_MAX_VERTEXES there
for ( i = 0; i < tess.numVertexes; i++ ) {
Vector4Set( colors[i].rgba, 50, 50, 50, 255 );
}
#endif
}
/*
=================
RB_ShadowTessEnd
triangleFromEdge[ v1 ][ v2 ]
set triangle from edge( v1, v2, tri )
if ( facing[ triangleFromEdge[ v1 ][ v2 ] ] && !facing[ triangleFromEdge[ v2 ][ v1 ] ) {
}
=================
*/
void RB_ShadowTessEnd( void ) {
int i;
int numTris;
vec3_t lightDir;
#ifdef USE_VULKAN
uint32_t pipeline[2];
#else
GLboolean rgba[4];
#endif
if ( glConfig.stencilBits < 4 ) {
return;
}
#ifdef USE_PMLIGHT
if ( r_dlightMode->integer == 2 && r_shadows->integer == 2 )
VectorCopy( backEnd.currentEntity->shadowLightDir, lightDir );
else
#endif
VectorCopy( backEnd.currentEntity->lightDir, lightDir );
// clamp projection by height
if ( lightDir[2] > 0.1 ) {
float s = 0.1 / lightDir[2];
VectorScale( lightDir, s, lightDir );
}
// project vertexes away from light direction
for ( i = 0; i < tess.numVertexes; i++ ) {
VectorMA( tess.xyz[i], -512, lightDir, tess.xyz[i+tess.numVertexes] );
}
// decide which triangles face the light
Com_Memset( numEdgeDefs, 0, tess.numVertexes * sizeof( numEdgeDefs[0] ) );
numTris = tess.numIndexes / 3;
for ( i = 0 ; i < numTris ; i++ ) {
int i1, i2, i3;
vec3_t d1, d2, normal;
float *v1, *v2, *v3;
float d;
i1 = tess.indexes[ i*3 + 0 ];
i2 = tess.indexes[ i*3 + 1 ];
i3 = tess.indexes[ i*3 + 2 ];
v1 = tess.xyz[ i1 ];
v2 = tess.xyz[ i2 ];
v3 = tess.xyz[ i3 ];
VectorSubtract( v2, v1, d1 );
VectorSubtract( v3, v1, d2 );
CrossProduct( d1, d2, normal );
d = DotProduct( normal, lightDir );
if ( d > 0 ) {
facing[ i ] = 1;
} else {
facing[ i ] = 0;
}
// create the edges
R_AddEdgeDef( i1, i2, facing[ i ] );
R_AddEdgeDef( i2, i3, facing[ i ] );
R_AddEdgeDef( i3, i1, facing[ i ] );
}
R_CalcShadowEdges();
// draw the silhouette edges
#ifdef USE_VULKAN
GL_Bind( tr.whiteImage );
// mirrors have the culling order reversed
if ( backEnd.viewParms.portalView == PV_MIRROR ) {
pipeline[0] = vk.shadow_volume_pipelines[0][1];
pipeline[1] = vk.shadow_volume_pipelines[1][1];
} else {
pipeline[0] = vk.shadow_volume_pipelines[0][0];
pipeline[1] = vk.shadow_volume_pipelines[1][0];
}
vk_bind_pipeline( pipeline[0] ); // back-sided
vk_bind_index();
vk_bind_geometry( TESS_XYZ | TESS_RGBA0 );
vk_draw_geometry( DEPTH_RANGE_NORMAL, qtrue );
vk_bind_pipeline( pipeline[1] ); // front-sided
vk_draw_geometry( DEPTH_RANGE_NORMAL, qtrue );
tess.numVertexes /= 2;
#else
GL_ClientState( 1, CLS_NONE );
GL_ClientState( 0, CLS_NONE );
qglVertexPointer( 3, GL_FLOAT, sizeof( tess.xyz[0] ), tess.xyz );
if ( qglLockArraysEXT )
qglLockArraysEXT( 0, tess.numVertexes*2 );
// draw the silhouette edges
qglDisable( GL_TEXTURE_2D );
//GL_Bind( tr.whiteImage );
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO );
qglColor4f( 0.2f, 0.2f, 0.2f, 1.0f );
// don't write to the color buffer
qglGetBooleanv( GL_COLOR_WRITEMASK, rgba );
qglColorMask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE );
qglEnable( GL_STENCIL_TEST );
qglStencilFunc( GL_ALWAYS, 1, 255 );
GL_Cull( CT_BACK_SIDED );
qglStencilOp( GL_KEEP, GL_KEEP, GL_INCR );
R_DrawElements( tess.numIndexes, tess.indexes );
GL_Cull( CT_FRONT_SIDED );
qglStencilOp( GL_KEEP, GL_KEEP, GL_DECR );
R_DrawElements( tess.numIndexes, tess.indexes );
if ( qglUnlockArraysEXT )
qglUnlockArraysEXT();
// re-enable writing to the color buffer
qglColorMask(rgba[0], rgba[1], rgba[2], rgba[3]);
qglEnable( GL_TEXTURE_2D );
#endif
backEnd.doneShadows = qtrue;
tess.numIndexes = 0;
}
/*
=================
RB_ShadowFinish
Darken everything that is is a shadow volume.
We have to delay this until everything has been shadowed,
because otherwise shadows from different body parts would
overlap and double darken.
=================
*/
void RB_ShadowFinish( void ) {
#ifdef USE_VULKAN
float tmp[16];
int i;
#endif
static const vec3_t verts[4] = {
{ -100, 100, -10 },
{ 100, 100, -10 },
{ -100,-100, -10 },
{ 100,-100, -10 }
};
if ( !backEnd.doneShadows ) {
return;
}
backEnd.doneShadows = qfalse;
if ( r_shadows->integer != 2 ) {
return;
}
if ( glConfig.stencilBits < 4 ) {
return;
}
#ifdef USE_VULKAN
GL_Bind( tr.whiteImage );
for ( i = 0; i < 4; i++ )
{
VectorCopy( verts[i], tess.xyz[i] );
Vector4Set( tess.svars.colors[0][i].rgba, 153, 153, 153, 255 );
}
tess.numVertexes = 4;
Com_Memcpy( tmp, vk_world.modelview_transform, 64 );
Com_Memset( vk_world.modelview_transform, 0, 64 );
vk_world.modelview_transform[0] = 1.0f;
vk_world.modelview_transform[5] = 1.0f;
vk_world.modelview_transform[10] = 1.0f;
vk_world.modelview_transform[15] = 1.0f;
vk_bind_pipeline( vk.shadow_finish_pipeline );
vk_update_mvp( NULL );
vk_bind_geometry( TESS_XYZ | TESS_RGBA0 /*| TESS_ST0 */ );
vk_draw_geometry( DEPTH_RANGE_NORMAL, qfalse );
Com_Memcpy( vk_world.modelview_transform, tmp, 64 );
tess.numIndexes = 0;
tess.numVertexes = 0;
#else
qglEnable( GL_STENCIL_TEST );
qglStencilFunc( GL_NOTEQUAL, 0, 255 );
qglDisable( GL_CLIP_PLANE0 );
GL_Cull( CT_TWO_SIDED );
qglDisable( GL_TEXTURE_2D );
qglLoadIdentity();
qglColor4f( 0.6f, 0.6f, 0.6f, 1 );
GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO );
//qglColor4f( 1, 0, 0, 1 );
//GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO );
GL_ClientState( 0, CLS_NONE );
qglVertexPointer( 3, GL_FLOAT, 0, verts );
qglDrawArrays( GL_TRIANGLE_STRIP, 0, 4 );
qglColor4f( 1, 1, 1, 1 );
qglDisable( GL_STENCIL_TEST );
qglEnable( GL_TEXTURE_2D );
#endif
}
/*
=================
RB_ProjectionShadowDeform
=================
*/
void RB_ProjectionShadowDeform( void ) {
float *xyz;
int i;
float h;
vec3_t ground;
vec3_t light;
float groundDist;
float d;
vec3_t lightDir;
xyz = ( float * ) tess.xyz;
ground[0] = backEnd.or.axis[0][2];
ground[1] = backEnd.or.axis[1][2];
ground[2] = backEnd.or.axis[2][2];
groundDist = backEnd.or.origin[2] - backEnd.currentEntity->e.shadowPlane;
#ifdef USE_PMLIGHT
if ( r_dlightMode->integer == 2 && r_shadows->integer == 2 )
VectorCopy( backEnd.currentEntity->shadowLightDir, lightDir );
else
#endif
VectorCopy( backEnd.currentEntity->lightDir, lightDir );
d = DotProduct( lightDir, ground );
// don't let the shadows get too long or go negative
if ( d < 0.5 ) {
VectorMA( lightDir, (0.5 - d), ground, lightDir );
d = DotProduct( lightDir, ground );
}
d = 1.0 / d;
light[0] = lightDir[0] * d;
light[1] = lightDir[1] * d;
light[2] = lightDir[2] * d;
for ( i = 0; i < tess.numVertexes; i++, xyz += 4 ) {
h = DotProduct( xyz, ground ) + groundDist;
xyz[0] -= light[0] * h;
xyz[1] -= light[1] * h;
xyz[2] -= light[2] * h;
}
}