rallyunlimited-engine/code/renderervk/tr_main.c

1738 lines
44 KiB
C
Raw Normal View History

2024-02-02 16:46:17 +00:00
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_main.c -- main control flow for each frame
#include "tr_local.h"
#include <string.h> // memcpy
trGlobals_t tr;
static const float s_flipMatrix[16] = {
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
0, 0, -1, 0,
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 1
};
refimport_t ri;
// entities that will have procedurally generated surfaces will just
// point at this for their sorting surface
static surfaceType_t entitySurface = SF_ENTITY;
/*
=================
R_CullLocalBox
Returns CULL_IN, CULL_CLIP, or CULL_OUT
=================
*/
int R_CullLocalBox( const vec3_t bounds[2] ) {
int i, j;
vec3_t transformed[8];
float dists[8];
vec3_t v;
cplane_t *frust;
int anyBack;
int front, back;
if ( r_nocull->integer ) {
return CULL_CLIP;
}
// transform into world space
for (i = 0 ; i < 8 ; i++) {
v[0] = bounds[i&1][0];
v[1] = bounds[(i>>1)&1][1];
v[2] = bounds[(i>>2)&1][2];
VectorCopy( tr.or.origin, transformed[i] );
VectorMA( transformed[i], v[0], tr.or.axis[0], transformed[i] );
VectorMA( transformed[i], v[1], tr.or.axis[1], transformed[i] );
VectorMA( transformed[i], v[2], tr.or.axis[2], transformed[i] );
}
// check against frustum planes
anyBack = 0;
for (i = 0 ; i < 4 ; i++) {
frust = &tr.viewParms.frustum[i];
front = back = 0;
for (j = 0 ; j < 8 ; j++) {
dists[j] = DotProduct(transformed[j], frust->normal);
if ( dists[j] > frust->dist ) {
front = 1;
if ( back ) {
break; // a point is in front
}
} else {
back = 1;
}
}
if ( !front ) {
// all points were behind one of the planes
return CULL_OUT;
}
anyBack |= back;
}
if ( !anyBack ) {
return CULL_IN; // completely inside frustum
}
return CULL_CLIP; // partially clipped
}
/*
** R_CullLocalPointAndRadius
*/
int R_CullLocalPointAndRadius( const vec3_t pt, float radius )
{
vec3_t transformed;
R_LocalPointToWorld( pt, transformed );
return R_CullPointAndRadius( transformed, radius );
}
/*
** R_CullPointAndRadius
*/
int R_CullPointAndRadius( const vec3_t pt, float radius )
{
int i;
float dist;
const cplane_t *frust;
qboolean mightBeClipped = qfalse;
if ( r_nocull->integer ) {
return CULL_CLIP;
}
// check against frustum planes
for (i = 0 ; i < 4 ; i++)
{
frust = &tr.viewParms.frustum[i];
dist = DotProduct( pt, frust->normal) - frust->dist;
if ( dist < -radius )
{
return CULL_OUT;
}
else if ( dist <= radius )
{
mightBeClipped = qtrue;
}
}
if ( mightBeClipped )
{
return CULL_CLIP;
}
return CULL_IN; // completely inside frustum
}
/*
** R_CullDlight
*/
int R_CullDlight( const dlight_t* dl )
{
int i;
float dist, dist2;
cplane_t *frust;
qboolean mightBeClipped = qfalse;
if ( r_nocull->integer )
return CULL_CLIP;
if ( dl->linear ) {
for ( i = 0 ; i < 4 ; i++ ) {
frust = &tr.viewParms.frustum[i];
dist = DotProduct( dl->transformed, frust->normal) - frust->dist;
dist2 = DotProduct( dl->transformed2, frust->normal) - frust->dist;
if ( dist < -dl->radius && dist2 < -dl->radius )
return CULL_OUT;
else if ( dist <= dl->radius || dist2 <= dl->radius )
mightBeClipped = qtrue;
}
}
else
// check against frustum planes
for ( i = 0 ; i < 4 ; i++ ) {
frust = &tr.viewParms.frustum[i];
dist = DotProduct( dl->transformed, frust->normal) - frust->dist;
if ( dist < -dl->radius )
return CULL_OUT;
else if ( dist <= dl->radius )
mightBeClipped = qtrue;
}
if ( mightBeClipped )
return CULL_CLIP;
return CULL_IN; // completely inside frustum
}
/*
=================
R_LocalNormalToWorld
=================
*/
static void R_LocalNormalToWorld( const vec3_t local, vec3_t world ) {
world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0];
world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1];
world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2];
}
/*
=================
R_LocalPointToWorld
=================
*/
void R_LocalPointToWorld( const vec3_t local, vec3_t world ) {
world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0] + tr.or.origin[0];
world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1] + tr.or.origin[1];
world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2] + tr.or.origin[2];
}
/*
=================
R_WorldToLocal
=================
*/
void R_WorldToLocal( const vec3_t world, vec3_t local ) {
local[0] = DotProduct( world, tr.or.axis[0] );
local[1] = DotProduct( world, tr.or.axis[1] );
local[2] = DotProduct( world, tr.or.axis[2] );
}
/*
==========================
R_TransformModelToClip
==========================
*/
void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix,
vec4_t eye, vec4_t dst ) {
int i;
for ( i = 0 ; i < 4 ; i++ ) {
eye[i] =
src[0] * modelMatrix[ i + 0 * 4 ] +
src[1] * modelMatrix[ i + 1 * 4 ] +
src[2] * modelMatrix[ i + 2 * 4 ] +
1 * modelMatrix[ i + 3 * 4 ];
}
for ( i = 0 ; i < 4 ; i++ ) {
dst[i] =
eye[0] * projectionMatrix[ i + 0 * 4 ] +
eye[1] * projectionMatrix[ i + 1 * 4 ] +
eye[2] * projectionMatrix[ i + 2 * 4 ] +
eye[3] * projectionMatrix[ i + 3 * 4 ];
}
}
/*
==========================
R_TransformModelToClipMVP
==========================
*/
static void R_TransformModelToClipMVP( const vec3_t src, const float *mvp, vec4_t clip ) {
int i;
for ( i = 0 ; i < 4 ; i++ ) {
clip[i] =
src[0] * mvp[ i + 0 * 4 ] +
src[1] * mvp[ i + 1 * 4 ] +
src[2] * mvp[ i + 2 * 4 ] +
1 * mvp[ i + 3 * 4 ];
}
}
/*
==========================
R_TransformClipToWindow
==========================
*/
void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) {
normalized[0] = clip[0] / clip[3];
normalized[1] = clip[1] / clip[3];
normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] );
window[0] = 0.5f * ( 1.0f + normalized[0] ) * view->viewportWidth;
window[1] = 0.5f * ( 1.0f + normalized[1] ) * view->viewportHeight;
window[2] = normalized[2];
window[0] = (int) ( window[0] + 0.5 );
window[1] = (int) ( window[1] + 0.5 );
}
/*
==========================
myGlMultMatrix
==========================
*/
void myGlMultMatrix( const float *a, const float *b, float *out ) {
int i, j;
for ( i = 0 ; i < 4 ; i++ ) {
for ( j = 0 ; j < 4 ; j++ ) {
out[ i * 4 + j ] =
a [ i * 4 + 0 ] * b [ 0 * 4 + j ]
+ a [ i * 4 + 1 ] * b [ 1 * 4 + j ]
+ a [ i * 4 + 2 ] * b [ 2 * 4 + j ]
+ a [ i * 4 + 3 ] * b [ 3 * 4 + j ];
}
}
}
/*
=================
R_RotateForEntity
Generates an orientation for an entity and viewParms
Does NOT produce any GL calls
Called by both the front end and the back end
=================
*/
void R_RotateForEntity( const trRefEntity_t *ent, const viewParms_t *viewParms,
orientationr_t *or ) {
float glMatrix[16];
vec3_t delta;
float axisLength;
if ( ent->e.reType != RT_MODEL ) {
*or = viewParms->world;
return;
}
VectorCopy( ent->e.origin, or->origin );
VectorCopy( ent->e.axis[0], or->axis[0] );
VectorCopy( ent->e.axis[1], or->axis[1] );
VectorCopy( ent->e.axis[2], or->axis[2] );
glMatrix[0] = or->axis[0][0];
glMatrix[4] = or->axis[1][0];
glMatrix[8] = or->axis[2][0];
glMatrix[12] = or->origin[0];
glMatrix[1] = or->axis[0][1];
glMatrix[5] = or->axis[1][1];
glMatrix[9] = or->axis[2][1];
glMatrix[13] = or->origin[1];
glMatrix[2] = or->axis[0][2];
glMatrix[6] = or->axis[1][2];
glMatrix[10] = or->axis[2][2];
glMatrix[14] = or->origin[2];
glMatrix[3] = 0;
glMatrix[7] = 0;
glMatrix[11] = 0;
glMatrix[15] = 1;
myGlMultMatrix( glMatrix, viewParms->world.modelMatrix, or->modelMatrix );
// calculate the viewer origin in the model's space
// needed for fog, specular, and environment mapping
VectorSubtract( viewParms->or.origin, or->origin, delta );
// compensate for scale in the axes if necessary
if ( ent->e.nonNormalizedAxes ) {
axisLength = VectorLength( ent->e.axis[0] );
if ( !axisLength ) {
axisLength = 0;
} else {
axisLength = 1.0f / axisLength;
}
} else {
axisLength = 1.0f;
}
or->viewOrigin[0] = DotProduct( delta, or->axis[0] ) * axisLength;
or->viewOrigin[1] = DotProduct( delta, or->axis[1] ) * axisLength;
or->viewOrigin[2] = DotProduct( delta, or->axis[2] ) * axisLength;
}
/*
=================
R_RotateForViewer
Sets up the modelview matrix for a given viewParm
=================
*/
static void R_RotateForViewer( void )
{
float viewerMatrix[16];
vec3_t origin;
Com_Memset (&tr.or, 0, sizeof(tr.or));
tr.or.axis[0][0] = 1;
tr.or.axis[1][1] = 1;
tr.or.axis[2][2] = 1;
VectorCopy (tr.viewParms.or.origin, tr.or.viewOrigin);
// transform by the camera placement
VectorCopy( tr.viewParms.or.origin, origin );
viewerMatrix[0] = tr.viewParms.or.axis[0][0];
viewerMatrix[4] = tr.viewParms.or.axis[0][1];
viewerMatrix[8] = tr.viewParms.or.axis[0][2];
viewerMatrix[12] = -origin[0] * viewerMatrix[0] + -origin[1] * viewerMatrix[4] + -origin[2] * viewerMatrix[8];
viewerMatrix[1] = tr.viewParms.or.axis[1][0];
viewerMatrix[5] = tr.viewParms.or.axis[1][1];
viewerMatrix[9] = tr.viewParms.or.axis[1][2];
viewerMatrix[13] = -origin[0] * viewerMatrix[1] + -origin[1] * viewerMatrix[5] + -origin[2] * viewerMatrix[9];
viewerMatrix[2] = tr.viewParms.or.axis[2][0];
viewerMatrix[6] = tr.viewParms.or.axis[2][1];
viewerMatrix[10] = tr.viewParms.or.axis[2][2];
viewerMatrix[14] = -origin[0] * viewerMatrix[2] + -origin[1] * viewerMatrix[6] + -origin[2] * viewerMatrix[10];
viewerMatrix[3] = 0;
viewerMatrix[7] = 0;
viewerMatrix[11] = 0;
viewerMatrix[15] = 1;
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
myGlMultMatrix( viewerMatrix, s_flipMatrix, tr.or.modelMatrix );
tr.viewParms.world = tr.or;
}
/*
** SetFarClip
*/
static void R_SetFarClip( void )
{
float farthestCornerDistance;
int i;
// if not rendering the world (icons, menus, etc)
// set a 2k far clip plane
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
tr.viewParms.zFar = 2048;
return;
}
//
// set far clipping planes dynamically
//
farthestCornerDistance = 0;
for ( i = 0; i < 8; i++ )
{
vec3_t v;
vec3_t vecTo;
float distance;
v[0] = tr.viewParms.visBounds[(i>>0)&1][0];
v[1] = tr.viewParms.visBounds[(i>>1)&1][1];
v[2] = tr.viewParms.visBounds[(i>>2)&1][2];
VectorSubtract( v, tr.viewParms.or.origin, vecTo );
distance = DotProduct( vecTo, vecTo );
if ( distance > farthestCornerDistance )
{
farthestCornerDistance = distance;
}
}
tr.viewParms.zFar = sqrt( farthestCornerDistance );
}
/*
=================
R_SetupFrustum
Set up the culling frustum planes for the current view using the results we got from computing the first two rows of
the projection matrix.
=================
*/
static void R_SetupFrustum( viewParms_t *dest, float xmin, float xmax, float ymax, float zProj, float stereoSep )
{
vec3_t ofsorigin;
float oppleg, adjleg, length;
int i;
if(stereoSep == 0 && xmin == -xmax)
{
// symmetric case can be simplified
VectorCopy(dest->or.origin, ofsorigin);
length = sqrt(xmax * xmax + zProj * zProj);
oppleg = xmax / length;
adjleg = zProj / length;
VectorScale(dest->or.axis[0], oppleg, dest->frustum[0].normal);
VectorMA(dest->frustum[0].normal, adjleg, dest->or.axis[1], dest->frustum[0].normal);
VectorScale(dest->or.axis[0], oppleg, dest->frustum[1].normal);
VectorMA(dest->frustum[1].normal, -adjleg, dest->or.axis[1], dest->frustum[1].normal);
}
else
{
// In stereo rendering, due to the modification of the projection matrix, dest->or.origin is not the
// actual origin that we're rendering so offset the tip of the view pyramid.
VectorMA(dest->or.origin, stereoSep, dest->or.axis[1], ofsorigin);
oppleg = xmax + stereoSep;
length = sqrt(oppleg * oppleg + zProj * zProj);
VectorScale(dest->or.axis[0], oppleg / length, dest->frustum[0].normal);
VectorMA(dest->frustum[0].normal, zProj / length, dest->or.axis[1], dest->frustum[0].normal);
oppleg = xmin + stereoSep;
length = sqrt(oppleg * oppleg + zProj * zProj);
VectorScale(dest->or.axis[0], -oppleg / length, dest->frustum[1].normal);
VectorMA(dest->frustum[1].normal, -zProj / length, dest->or.axis[1], dest->frustum[1].normal);
}
length = sqrt(ymax * ymax + zProj * zProj);
oppleg = ymax / length;
adjleg = zProj / length;
VectorScale(dest->or.axis[0], oppleg, dest->frustum[2].normal);
VectorMA(dest->frustum[2].normal, adjleg, dest->or.axis[2], dest->frustum[2].normal);
VectorScale(dest->or.axis[0], oppleg, dest->frustum[3].normal);
VectorMA(dest->frustum[3].normal, -adjleg, dest->or.axis[2], dest->frustum[3].normal);
for (i=0 ; i<4 ; i++) {
dest->frustum[i].type = PLANE_NON_AXIAL;
dest->frustum[i].dist = DotProduct (ofsorigin, dest->frustum[i].normal);
SetPlaneSignbits( &dest->frustum[i] );
}
// near clipping plane
VectorCopy( dest->or.axis[0], dest->frustum[4].normal );
dest->frustum[4].type = PLANE_NON_AXIAL;
dest->frustum[4].dist = DotProduct( ofsorigin, dest->frustum[4].normal ) + r_znear->value;
SetPlaneSignbits( &dest->frustum[4] );
}
/*
===============
R_SetupProjection
===============
*/
void R_SetupProjection( viewParms_t *dest, float zProj, qboolean computeFrustum )
{
float xmin, xmax, ymin, ymax;
float width, height, stereoSep = r_stereoSeparation->value;
/*
* offset the view origin of the viewer for stereo rendering
* by setting the projection matrix appropriately.
*/
if ( stereoSep != 0 )
{
if ( dest->stereoFrame == STEREO_LEFT )
stereoSep = zProj / stereoSep;
else if ( dest->stereoFrame == STEREO_RIGHT )
stereoSep = zProj / -stereoSep;
else
stereoSep = 0;
}
ymax = zProj * tan(dest->fovY * M_PI / 360.0f);
ymin = -ymax;
xmax = zProj * tan(dest->fovX * M_PI / 360.0f);
xmin = -xmax;
width = xmax - xmin;
height = ymax - ymin;
dest->projectionMatrix[0] = 2 * zProj / width;
dest->projectionMatrix[4] = 0;
dest->projectionMatrix[8] = (xmax + xmin + 2 * stereoSep) / width;
dest->projectionMatrix[12] = 2 * zProj * stereoSep / width;
dest->projectionMatrix[1] = 0;
dest->projectionMatrix[5] = 2 * zProj / height;
dest->projectionMatrix[9] = ( ymax + ymin ) / height; // normally 0
dest->projectionMatrix[13] = 0;
dest->projectionMatrix[3] = 0;
dest->projectionMatrix[7] = 0;
dest->projectionMatrix[11] = -1;
dest->projectionMatrix[15] = 0;
// Now that we have all the data for the projection matrix we can also setup the view frustum.
if ( computeFrustum )
R_SetupFrustum( dest, xmin, xmax, ymax, zProj, stereoSep );
}
/*
===============
R_SetupProjectionZ
Sets the z-component transformation part in the projection matrix
===============
*/
static void R_SetupProjectionZ( viewParms_t *dest )
{
const float zNear = r_znear->value;
const float zFar = dest->zFar;
const float depth = zFar - zNear;
dest->projectionMatrix[2] = 0;
dest->projectionMatrix[6] = 0;
#ifdef USE_VULKAN
#ifdef USE_REVERSED_DEPTH
dest->projectionMatrix[10] = zNear / depth;
dest->projectionMatrix[14] = zFar * zNear / depth;
#else
dest->projectionMatrix[10] = - zFar / depth;
dest->projectionMatrix[14] = - zFar * zNear / depth;
#endif
#else
dest->projectionMatrix[10] = -( zFar + zNear ) / depth;
dest->projectionMatrix[14] = -2 * zFar * zNear / depth;
#endif
if ( dest->portalView != PV_NONE )
{
float plane[4];
float plane2[4];
vec4_t q, c;
#ifdef USE_VULKAN
#ifdef USE_REVERSED_DEPTH
dest->projectionMatrix[10] = - zFar / depth;
dest->projectionMatrix[14] = - zFar * zNear / depth;
#endif
#endif
// transform portal plane into camera space
plane[0] = dest->portalPlane.normal[0];
plane[1] = dest->portalPlane.normal[1];
plane[2] = dest->portalPlane.normal[2];
plane[3] = dest->portalPlane.dist;
plane2[0] = -DotProduct( dest->or.axis[1], plane );
plane2[1] = DotProduct( dest->or.axis[2], plane );
plane2[2] = -DotProduct( dest->or.axis[0], plane );
plane2[3] = DotProduct( plane, dest->or.origin) - plane[3];
// Lengyel, Eric. "Modifying the Projection Matrix to Perform Oblique Near-plane Clipping".
// Terathon Software 3D Graphics Library, 2004. http://www.terathon.com/code/oblique.html
q[0] = (SGN(plane2[0]) + dest->projectionMatrix[8]) / dest->projectionMatrix[0];
q[1] = (SGN(plane2[1]) + dest->projectionMatrix[9]) / dest->projectionMatrix[5];
q[2] = -1.0f;
#ifdef USE_VULKAN
q[3] = - dest->projectionMatrix[10] / dest->projectionMatrix[14];
#else
q[3] = (1.0f + dest->projectionMatrix[10]) / dest->projectionMatrix[14];
#endif
VectorScale4( plane2, 2.0f / DotProduct4(plane2, q), c );
dest->projectionMatrix[2] = c[0];
dest->projectionMatrix[6] = c[1];
#ifdef USE_VULKAN
dest->projectionMatrix[10] = c[2];
#else
dest->projectionMatrix[10] = c[2] + 1.0f;
#endif
dest->projectionMatrix[14] = c[3];
#ifdef USE_REVERSED_DEPTH
dest->projectionMatrix[2] = -dest->projectionMatrix[2];
dest->projectionMatrix[6] = -dest->projectionMatrix[6];
dest->projectionMatrix[10] = -(dest->projectionMatrix[10] + 1.0);
dest->projectionMatrix[14] = -dest->projectionMatrix[14];
#endif
}
}
/*
=================
R_MirrorPoint
=================
*/
static void R_MirrorPoint( const vec3_t in, const orientation_t *surface, const orientation_t *camera, vec3_t out ) {
int i;
vec3_t local;
vec3_t transformed;
float d;
VectorSubtract( in, surface->origin, local );
VectorClear( transformed );
for ( i = 0 ; i < 3 ; i++ ) {
d = DotProduct( local, surface->axis[i] );
VectorMA( transformed, d, camera->axis[i], transformed );
}
VectorAdd( transformed, camera->origin, out );
}
static void R_MirrorVector( const vec3_t in, const orientation_t *surface, const orientation_t *camera, vec3_t out ) {
int i;
float d;
VectorClear( out );
for ( i = 0 ; i < 3 ; i++ ) {
d = DotProduct(in, surface->axis[i]);
VectorMA( out, d, camera->axis[i], out );
}
}
/*
=============
R_PlaneForSurface
=============
*/
static void R_PlaneForSurface( const surfaceType_t *surfType, cplane_t *plane ) {
srfTriangles_t *tri;
srfPoly_t *poly;
drawVert_t *v1, *v2, *v3;
vec4_t plane4;
if (!surfType) {
Com_Memset (plane, 0, sizeof(*plane));
plane->normal[0] = 1;
return;
}
switch (*surfType) {
case SF_FACE:
*plane = ((srfSurfaceFace_t *)surfType)->plane;
return;
case SF_TRIANGLES:
tri = (srfTriangles_t *)surfType;
v1 = tri->verts + tri->indexes[0];
v2 = tri->verts + tri->indexes[1];
v3 = tri->verts + tri->indexes[2];
PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz );
VectorCopy( plane4, plane->normal );
plane->dist = plane4[3];
return;
case SF_POLY:
poly = (srfPoly_t *)surfType;
PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz );
VectorCopy( plane4, plane->normal );
plane->dist = plane4[3];
return;
default:
Com_Memset (plane, 0, sizeof(*plane));
plane->normal[0] = 1;
return;
}
}
/*
=================
R_GetPortalOrientation
entityNum is the entity that the portal surface is a part of, which may
be moving and rotating.
Returns qtrue if it should be mirrored
=================
*/
static qboolean R_GetPortalOrientations( const drawSurf_t *drawSurf, int entityNum,
orientation_t *surface, orientation_t *camera,
vec3_t pvsOrigin, portalView_t *portalView ) {
int i;
cplane_t originalPlane, plane;
trRefEntity_t *e;
float d;
vec3_t transformed;
// create plane axis for the portal we are seeing
R_PlaneForSurface( drawSurf->surface, &originalPlane );
// rotate the plane if necessary
if ( entityNum != REFENTITYNUM_WORLD ) {
tr.currentEntityNum = entityNum;
tr.currentEntity = &tr.refdef.entities[entityNum];
// get the orientation of the entity
R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or );
// rotate the plane, but keep the non-rotated version for matching
// against the portalSurface entities
R_LocalNormalToWorld( originalPlane.normal, plane.normal );
plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin );
// translate the original plane
originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin );
} else {
plane = originalPlane;
}
VectorCopy( plane.normal, surface->axis[0] );
PerpendicularVector( surface->axis[1], surface->axis[0] );
CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] );
// locate the portal entity closest to this plane.
// origin will be the origin of the portal, origin2 will be
// the origin of the camera
for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) {
e = &tr.refdef.entities[i];
if ( e->e.reType != RT_PORTALSURFACE ) {
continue;
}
d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
if ( d > 64 || d < -64) {
continue;
}
// get the pvsOrigin from the entity
VectorCopy( e->e.oldorigin, pvsOrigin );
// if the entity is just a mirror, don't use as a camera point
if ( e->e.oldorigin[0] == e->e.origin[0] &&
e->e.oldorigin[1] == e->e.origin[1] &&
e->e.oldorigin[2] == e->e.origin[2] ) {
VectorScale( plane.normal, plane.dist, surface->origin );
VectorCopy( surface->origin, camera->origin );
VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] );
VectorCopy( surface->axis[1], camera->axis[1] );
VectorCopy( surface->axis[2], camera->axis[2] );
*portalView = PV_MIRROR;
return qtrue;
}
// project the origin onto the surface plane to get
// an origin point we can rotate around
d = DotProduct( e->e.origin, plane.normal ) - plane.dist;
VectorMA( e->e.origin, -d, surface->axis[0], surface->origin );
// now get the camera origin and orientation
VectorCopy( e->e.oldorigin, camera->origin );
AxisCopy( e->e.axis, camera->axis );
VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] );
VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] );
// optionally rotate
if ( e->e.oldframe ) {
// if a speed is specified
if ( e->e.frame ) {
// continuous rotate
d = (tr.refdef.time/1000.0f) * e->e.frame;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
} else {
// bobbing rotate, with skinNum being the rotation offset
d = sin( tr.refdef.time * 0.003f );
d = e->e.skinNum + d * 4;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
}
}
else if ( e->e.skinNum ) {
d = e->e.skinNum;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
}
*portalView = PV_PORTAL;
return qtrue;
}
// if we didn't locate a portal entity, don't render anything.
// We don't want to just treat it as a mirror, because without a
// portal entity the server won't have communicated a proper entity set
// in the snapshot
// unfortunately, with local movement prediction it is easily possible
// to see a surface before the server has communicated the matching
// portal surface entity, so we don't want to print anything here...
//ri.Printf( PRINT_ALL, "Portal surface without a portal entity\n" );
return qfalse;
}
static qboolean IsMirror( const drawSurf_t *drawSurf, int entityNum )
{
int i;
cplane_t originalPlane, plane;
trRefEntity_t *e;
float d;
// create plane axis for the portal we are seeing
R_PlaneForSurface( drawSurf->surface, &originalPlane );
// rotate the plane if necessary
if ( entityNum != REFENTITYNUM_WORLD )
{
tr.currentEntityNum = entityNum;
tr.currentEntity = &tr.refdef.entities[entityNum];
// get the orientation of the entity
R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or );
// rotate the plane, but keep the non-rotated version for matching
// against the portalSurface entities
R_LocalNormalToWorld( originalPlane.normal, plane.normal );
plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin );
// translate the original plane
originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin );
}
else
{
plane = originalPlane;
}
// locate the portal entity closest to this plane.
// origin will be the origin of the portal, origin2 will be
// the origin of the camera
for ( i = 0 ; i < tr.refdef.num_entities ; i++ )
{
e = &tr.refdef.entities[i];
if ( e->e.reType != RT_PORTALSURFACE ) {
continue;
}
d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
if ( d > 64 || d < -64) {
continue;
}
// if the entity is just a mirror, don't use as a camera point
if ( e->e.oldorigin[0] == e->e.origin[0] &&
e->e.oldorigin[1] == e->e.origin[1] &&
e->e.oldorigin[2] == e->e.origin[2] )
{
return qtrue;
}
return qfalse;
}
return qfalse;
}
/*
** SurfIsOffscreen
**
** Determines if a surface is completely offscreen.
*/
static qboolean SurfIsOffscreen( const drawSurf_t *drawSurf, qboolean *isMirror ) {
float shortest = 100000000;
int entityNum;
int numTriangles;
shader_t *shader;
int fogNum;
int dlighted;
vec4_t clip, eye;
int i;
unsigned int pointAnd = (unsigned int)~0;
*isMirror = qfalse;
R_RotateForViewer();
R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted );
RB_BeginSurface( shader, fogNum );
#ifdef USE_VBO
tess.allowVBO = qfalse;
#endif
#ifdef USE_TESS_NEEDS_NORMAL
tess.needsNormal = qtrue;
#endif
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
for ( i = 0; i < tess.numVertexes; i++ )
{
int j;
unsigned int pointFlags = 0;
R_TransformModelToClip( tess.xyz[i], tr.or.modelMatrix, tr.viewParms.projectionMatrix, eye, clip );
for ( j = 0; j < 3; j++ )
{
if ( clip[j] >= clip[3] )
{
pointFlags |= (1 << (j*2));
}
else if ( clip[j] <= -clip[3] )
{
pointFlags |= ( 1 << (j*2+1));
}
}
pointAnd &= pointFlags;
}
// trivially reject
if ( pointAnd )
{
tess.numIndexes = 0;
return qtrue;
}
// determine if this surface is backfaced and also determine the distance
// to the nearest vertex so we can cull based on portal range. Culling
// based on vertex distance isn't 100% correct (we should be checking for
// range to the surface), but it's good enough for the types of portals
// we have in the game right now.
numTriangles = tess.numIndexes / 3;
for ( i = 0; i < tess.numIndexes; i += 3 )
{
vec3_t normal;
float len;
VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.or.origin, normal );
len = VectorLengthSquared( normal ); // lose the sqrt
if ( len < shortest )
{
shortest = len;
}
if ( DotProduct( normal, tess.normal[tess.indexes[i]] ) >= 0 )
{
numTriangles--;
}
}
tess.numIndexes = 0;
if ( !numTriangles )
{
return qtrue;
}
// mirrors can early out at this point, since we don't do a fade over distance
// with them (although we could)
if ( IsMirror( drawSurf, entityNum ) )
{
*isMirror = qtrue;
return qfalse;
}
if ( shortest > (tess.shader->portalRange*tess.shader->portalRange) )
{
return qtrue;
}
return qfalse;
}
/*
================
R_GetModelViewBounds
================
*/
static void R_GetModelViewBounds( int *mins, int *maxs )
{
float minn[2];
float maxn[2];
float norm[2];
float mvp[16];
float dist[4];
vec4_t clip;
int i,j;
minn[0] = minn[1] = 1.0;
maxn[0] = maxn[1] = -1.0;
// premultiply
myGlMultMatrix( tr.or.modelMatrix, tr.viewParms.projectionMatrix, mvp );
for ( i = 0; i < tess.numVertexes; i++ ) {
R_TransformModelToClipMVP( tess.xyz[i], mvp, clip );
if ( clip[3] <= 0.0 ) {
dist[0] = DotProduct( tess.xyz[i], tr.viewParms.frustum[0].normal ) - tr.viewParms.frustum[0].dist; // right
dist[1] = DotProduct( tess.xyz[i], tr.viewParms.frustum[1].normal ) - tr.viewParms.frustum[1].dist; // left
dist[2] = DotProduct( tess.xyz[i], tr.viewParms.frustum[2].normal ) - tr.viewParms.frustum[2].dist; // bottom
dist[3] = DotProduct( tess.xyz[i], tr.viewParms.frustum[3].normal ) - tr.viewParms.frustum[3].dist; // top
if ( dist[0] <= 0 && dist[1] <= 0 ) {
if ( dist[0] < dist[1] ) {
maxn[0] = 1.0f;
} else {
minn[0] = -1.0f;
}
} else {
if ( dist[0] <= 0 ) maxn[0] = 1.0f;
if ( dist[1] <= 0 ) minn[0] = -1.0f;
}
if ( dist[2] <= 0 && dist[3] <= 0 ) {
if ( dist[2] < dist[3] )
minn[1] = -1.0f;
else
maxn[1] = 1.0f;
} else {
if ( dist[2] <= 0 ) minn[1] = -1.0f;
if ( dist[3] <= 0 ) maxn[1] = 1.0f;
}
} else {
for ( j = 0; j < 2; j++ ) {
if ( clip[j] > clip[3] ) clip[j] = clip[3]; else
if ( clip[j] < -clip[3] ) clip[j] = -clip[3];
}
norm[0] = clip[0] / clip[3];
norm[1] = clip[1] / clip[3];
for ( j = 0; j < 2; j++ ) {
if ( norm[j] < minn[j] ) minn[j] = norm[j];
if ( norm[j] > maxn[j] ) maxn[j] = norm[j];
}
}
}
mins[0] = (int)(-0.5 + 0.5 * ( 1.0 + minn[0] ) * tr.viewParms.viewportWidth);
mins[1] = (int)(-0.5 + 0.5 * ( 1.0 + minn[1] ) * tr.viewParms.viewportHeight);
maxs[0] = (int)(0.5 + 0.5 * ( 1.0 + maxn[0] ) * tr.viewParms.viewportWidth);
maxs[1] = (int)(0.5 + 0.5 * ( 1.0 + maxn[1] ) * tr.viewParms.viewportHeight);
}
/*
========================
R_MirrorViewBySurface
Returns qtrue if another view has been rendered
========================
*/
extern int r_numdlights;
static qboolean R_MirrorViewBySurface( const drawSurf_t *drawSurf, int entityNum ) {
viewParms_t newParms;
viewParms_t oldParms;
orientation_t surface, camera;
qboolean isMirror;
// don't recursively mirror
/*if ( tr.viewParms.portalView != PV_NONE ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" );
return qfalse;
}*/
if ( r_noportals->integer > 1 /*|| r_fastsky->integer == 1 */ ) {
return qfalse;
}
// trivially reject portal/mirror
if ( SurfIsOffscreen( drawSurf, &isMirror ) ) {
return qfalse;
}
if ( !isMirror && r_noportals->integer ) {
return qfalse;
}
// save old viewParms so we can return to it after the mirror view
oldParms = tr.viewParms;
newParms = tr.viewParms;
newParms.portalView = PV_NONE;
if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera,
newParms.pvsOrigin, &newParms.portalView ) ) {
return qfalse; // bad portal, no portalentity
}
#ifdef USE_PMLIGHT
// create dedicated set for each view
if ( r_numdlights + oldParms.num_dlights <= ARRAY_LEN( backEndData->dlights ) ) {
int i;
newParms.dlights = oldParms.dlights + oldParms.num_dlights;
newParms.num_dlights = oldParms.num_dlights;
r_numdlights += oldParms.num_dlights;
for ( i = 0; i < oldParms.num_dlights; i++ )
newParms.dlights[i] = oldParms.dlights[i];
}
#endif
#ifdef USE_VULKAN
if ( tess.numVertexes > 2 && r_fastsky->integer && vk.fastSky ) {
#else
if ( tess.numVertexes > 2 && r_fastsky->integer ) {
#endif
int mins[2], maxs[2];
R_GetModelViewBounds( mins, maxs );
newParms.scissorX = newParms.viewportX + mins[0];
newParms.scissorY = newParms.viewportY + mins[1];
newParms.scissorWidth = maxs[0] - mins[0];
newParms.scissorHeight = maxs[1] - mins[1];
}
R_MirrorPoint( oldParms.or.origin, &surface, &camera, newParms.or.origin );
VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal );
newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal );
R_MirrorVector (oldParms.or.axis[0], &surface, &camera, newParms.or.axis[0]);
R_MirrorVector (oldParms.or.axis[1], &surface, &camera, newParms.or.axis[1]);
R_MirrorVector (oldParms.or.axis[2], &surface, &camera, newParms.or.axis[2]);
// OPTIMIZE: restrict the viewport on the mirrored view
// render the mirror view
R_RenderView( &newParms );
tr.viewParms = oldParms;
return qtrue;
}
/*
=================
R_SpriteFogNum
See if a sprite is inside a fog volume
=================
*/
static int R_SpriteFogNum( const trRefEntity_t *ent ) {
int i, j;
const fog_t *fog;
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
return 0;
}
if ( ent->e.renderfx & RF_CROSSHAIR ) {
return 0;
}
for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
fog = &tr.world->fogs[i];
for ( j = 0 ; j < 3 ; j++ ) {
if ( ent->e.origin[j] - ent->e.radius >= fog->bounds[1][j] ) {
break;
}
if ( ent->e.origin[j] + ent->e.radius <= fog->bounds[0][j] ) {
break;
}
}
if ( j == 3 ) {
return i;
}
}
return 0;
}
/*
==========================================================================================
DRAWSURF SORTING
==========================================================================================
*/
/*
===============
R_Radix
===============
*/
static ID_INLINE void R_Radix( int byte, int size, const drawSurf_t *source, drawSurf_t *dest )
{
int count[ 256 ] = { 0 };
int index[ 256 ];
int i;
unsigned char *sortKey;
unsigned char *end;
sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte;
end = sortKey + ( size * sizeof( drawSurf_t ) );
for( ; sortKey < end; sortKey += sizeof( drawSurf_t ) )
++count[ *sortKey ];
index[ 0 ] = 0;
for( i = 1; i < 256; ++i )
index[ i ] = index[ i - 1 ] + count[ i - 1 ];
sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte;
for( i = 0; i < size; ++i, sortKey += sizeof( drawSurf_t ) )
dest[ index[ *sortKey ]++ ] = source[ i ];
}
/*
===============
R_RadixSort
Radix sort with 4 byte size buckets
===============
*/
static void R_RadixSort( drawSurf_t *source, int size )
{
static drawSurf_t scratch[ MAX_DRAWSURFS ];
#ifdef Q3_LITTLE_ENDIAN
R_Radix( 0, size, source, scratch );
R_Radix( 1, size, scratch, source );
R_Radix( 2, size, source, scratch );
R_Radix( 3, size, scratch, source );
#else
R_Radix( 3, size, source, scratch );
R_Radix( 2, size, scratch, source );
R_Radix( 1, size, source, scratch );
R_Radix( 0, size, scratch, source );
#endif //Q3_LITTLE_ENDIAN
}
#ifdef USE_PMLIGHT
typedef struct litSurf_tape_s {
struct litSurf_s *first;
struct litSurf_s *last;
unsigned count;
} litSurf_tape_t;
// Philip Erdelsky gets all the credit for this one...
static void R_SortLitsurfs( dlight_t* dl )
{
litSurf_tape_t tape[ 4 ];
int base;
litSurf_t *p;
litSurf_t *next;
unsigned block_size;
litSurf_tape_t *tape0;
litSurf_tape_t *tape1;
int dest;
litSurf_tape_t *output_tape;
litSurf_tape_t *chosen_tape;
unsigned n0, n1;
// distribute the records alternately to tape[0] and tape[1]
tape[0].count = tape[1].count = 0;
tape[0].first = tape[1].first = NULL;
base = 0;
p = dl->head;
while ( p ) {
next = p->next;
p->next = tape[base].first;
tape[base].first = p;
tape[base].count++;
p = next;
base ^= 1;
}
// merge from the two active tapes into the two idle ones
// doubling the number of records and pingponging the tape sets as we go
block_size = 1;
for ( base = 0; tape[base+1].count; base ^= 2, block_size <<= 1 )
{
tape0 = tape + base;
tape1 = tape + base + 1;
dest = base ^ 2;
tape[dest].count = tape[dest+1].count = 0;
for (; tape0->count; dest ^= 1)
{
output_tape = tape + dest;
n0 = n1 = block_size;
while (1)
{
if (n0 == 0 || tape0->count == 0)
{
if (n1 == 0 || tape1->count == 0)
break;
chosen_tape = tape1;
n1--;
}
else if (n1 == 0 || tape1->count == 0)
{
chosen_tape = tape0;
n0--;
}
else if (tape0->first->sort > tape1->first->sort)
{
chosen_tape = tape1;
n1--;
}
else
{
chosen_tape = tape0;
n0--;
}
chosen_tape->count--;
p = chosen_tape->first;
chosen_tape->first = p->next;
if (output_tape->count == 0)
output_tape->first = p;
else
output_tape->last->next = p;
output_tape->last = p;
output_tape->count++;
}
}
}
if (tape[base].count > 1)
tape[base].last->next = NULL;
dl->head = tape[base].first;
}
/*
=================
R_AddLitSurf
=================
*/
void R_AddLitSurf( surfaceType_t *surface, shader_t *shader, int fogIndex )
{
struct litSurf_s *litsurf;
if ( tr.refdef.numLitSurfs >= ARRAY_LEN( backEndData->litSurfs ) )
return;
tr.pc.c_lit_surfs++;
litsurf = &tr.refdef.litSurfs[ tr.refdef.numLitSurfs++ ];
litsurf->sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT)
| tr.shiftedEntityNum | ( fogIndex << QSORT_FOGNUM_SHIFT );
litsurf->surface = surface;
if ( !tr.light->head )
tr.light->head = litsurf;
if ( tr.light->tail )
tr.light->tail->next = litsurf;
tr.light->tail = litsurf;
tr.light->tail->next = NULL;
}
/*
=================
R_DecomposeLitSort
=================
*/
void R_DecomposeLitSort( unsigned sort, int *entityNum, shader_t **shader, int *fogNum ) {
*fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & FOGNUM_MASK;
*shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & SHADERNUM_MASK ];
*entityNum = ( sort >> QSORT_REFENTITYNUM_SHIFT ) & REFENTITYNUM_MASK;
}
#endif // USE_PMLIGHT
//==========================================================================================
/*
=================
R_AddDrawSurf
=================
*/
void R_AddDrawSurf( surfaceType_t *surface, shader_t *shader,
int fogIndex, int dlightMap ) {
int index;
// instead of checking for overflow, we just mask the index
// so it wraps around
index = tr.refdef.numDrawSurfs & DRAWSURF_MASK;
// the sort data is packed into a single 32 bit value so it can be
// compared quickly during the qsorting process
tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT)
| tr.shiftedEntityNum | ( fogIndex << QSORT_FOGNUM_SHIFT ) | (int)dlightMap;
tr.refdef.drawSurfs[index].surface = surface;
tr.refdef.numDrawSurfs++;
}
/*
=================
R_DecomposeSort
=================
*/
void R_DecomposeSort( unsigned sort, int *entityNum, shader_t **shader,
int *fogNum, int *dlightMap ) {
*fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & FOGNUM_MASK;
*shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & SHADERNUM_MASK ];
*entityNum = ( sort >> QSORT_REFENTITYNUM_SHIFT ) & REFENTITYNUM_MASK;
*dlightMap = sort & DLIGHT_MASK;
}
/*
=================
R_SortDrawSurfs
=================
*/
static void R_SortDrawSurfs( drawSurf_t *drawSurfs, int numDrawSurfs ) {
shader_t *shader;
int fogNum;
int entityNum;
int dlighted;
int i;
// it is possible for some views to not have any surfaces
if ( numDrawSurfs < 1 ) {
// we still need to add it for hyperspace cases
R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
return;
}
// sort the drawsurfs by sort type, then orientation, then shader
R_RadixSort( drawSurfs, numDrawSurfs );
// check for any pass through drawing, which
// may cause another view to be rendered first
for ( i = 0 ; i < numDrawSurfs ; i++ ) {
R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum, &dlighted );
if ( shader->sort > SS_PORTAL ) {
break;
}
// no shader should ever have this sort type
if ( shader->sort == SS_BAD ) {
ri.Error (ERR_DROP, "Shader '%s'with sort == SS_BAD", shader->name );
}
// if the mirror was completely clipped away, we may need to check another surface
if ( R_MirrorViewBySurface( (drawSurfs+i), entityNum) ) {
// this is a debug option to see exactly what is being mirrored
if ( r_portalOnly->integer ) {
return;
}
#ifdef USE_VULKAN
if ( r_fastsky->integer == 0 || !vk.fastSky ) {
#else
if ( r_fastsky->integer == 0 ) {
#endif
break; // only one mirror view at a time
}
}
}
#ifdef USE_PMLIGHT
#ifdef USE_LEGACY_DLIGHTS
if ( r_dlightMode->integer )
#endif
{
dlight_t *dl;
// all the lit surfaces are in a single queue
// but each light's surfaces are sorted within its subsection
for ( i = 0; i < tr.refdef.num_dlights; ++i ) {
dl = &tr.refdef.dlights[ i ];
if ( dl->head ) {
R_SortLitsurfs( dl );
}
}
}
#endif // USE_PMLIGHT
R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
}
/*
=============
R_AddEntitySurfaces
=============
*/
static void R_AddEntitySurfaces( void ) {
trRefEntity_t *ent;
shader_t *shader;
if ( !r_drawentities->integer ) {
return;
}
for ( tr.currentEntityNum = 0;
tr.currentEntityNum < tr.refdef.num_entities;
tr.currentEntityNum++ ) {
ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum];
#ifdef USE_LEGACY_DLIGHTS
ent->needDlights = 0;
#endif
// preshift the value we are going to OR into the drawsurf sort
tr.shiftedEntityNum = tr.currentEntityNum << QSORT_REFENTITYNUM_SHIFT;
//
// the weapon model must be handled special --
// we don't want the hacked first person weapon position showing in
// mirrors, because the true body position will already be drawn
//
if ( (ent->e.renderfx & RF_FIRST_PERSON) && (tr.viewParms.portalView != PV_NONE) ) {
continue;
}
// simple generated models, like sprites and beams, are not culled
switch ( ent->e.reType ) {
case RT_PORTALSURFACE:
break; // don't draw anything
case RT_SPRITE:
case RT_BEAM:
case RT_LIGHTNING:
case RT_RAIL_CORE:
case RT_RAIL_RINGS:
// self blood sprites, talk balloons, etc should not be drawn in the primary
// view. We can't just do this check for all entities, because md3
// entities may still want to cast shadows from them
if ( (ent->e.renderfx & RF_THIRD_PERSON) && (tr.viewParms.portalView == PV_NONE) ) {
continue;
}
shader = R_GetShaderByHandle( ent->e.customShader );
R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ), 0 );
break;
case RT_MODEL:
// we must set up parts of tr.or for model culling
R_RotateForEntity( ent, &tr.viewParms, &tr.or );
tr.currentModel = R_GetModelByHandle( ent->e.hModel );
if (!tr.currentModel) {
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0 );
} else {
switch ( tr.currentModel->type ) {
case MOD_MESH:
R_AddMD3Surfaces( ent );
break;
case MOD_MDR:
R_MDRAddAnimSurfaces( ent );
break;
case MOD_IQM:
R_AddIQMSurfaces( ent );
break;
case MOD_BRUSH:
R_AddBrushModelSurfaces( ent );
break;
case MOD_BAD: // null model axis
if ( (ent->e.renderfx & RF_THIRD_PERSON) && (tr.viewParms.portalView == PV_NONE) ) {
break;
}
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0 );
break;
default:
ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" );
break;
}
}
break;
default:
ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" );
}
}
}
/*
====================
R_GenerateDrawSurfs
====================
*/
static void R_GenerateDrawSurfs( void ) {
R_AddWorldSurfaces ();
R_AddPolygonSurfaces();
// set the projection matrix with the minimum zfar
// now that we have the world bounded
// this needs to be done before entities are
// added, because they use the projection
// matrix for lod calculation
// dynamically compute far clip plane distance
R_SetFarClip();
// we know the size of the clipping volume. Now set the rest of the projection matrix.
R_SetupProjectionZ( &tr.viewParms );
R_AddEntitySurfaces();
}
/*
================
R_RenderView
A view may be either the actual camera view,
or a mirror / remote location
================
*/
void R_RenderView( const viewParms_t *parms ) {
int firstDrawSurf;
int numDrawSurfs;
if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 ) {
return;
}
tr.viewCount++;
tr.viewParms = *parms;
tr.viewParms.frameSceneNum = tr.frameSceneNum;
tr.viewParms.frameCount = tr.frameCount;
firstDrawSurf = tr.refdef.numDrawSurfs;
// set viewParms.world
R_RotateForViewer();
R_SetupProjection( &tr.viewParms, r_zproj->value, qtrue );
R_GenerateDrawSurfs();
// if we overflowed MAX_DRAWSURFS, the drawsurfs
// wrapped around in the buffer and we will be missing
// the first surfaces, not the last ones
numDrawSurfs = tr.refdef.numDrawSurfs;
if ( numDrawSurfs > MAX_DRAWSURFS ) {
numDrawSurfs = MAX_DRAWSURFS;
}
R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, numDrawSurfs - firstDrawSurf );
}