mirror of
https://github.com/Q3Rally-Team/rallyunlimited-engine.git
synced 2024-11-22 12:21:09 +00:00
417 lines
11 KiB
C
417 lines
11 KiB
C
|
/*
|
||
|
* This code implements the MD5 message-digest algorithm.
|
||
|
* The algorithm is due to Ron Rivest. This code was
|
||
|
* written by Colin Plumb in 1993, no copyright is claimed.
|
||
|
* This code is in the public domain; do with it what you wish.
|
||
|
*
|
||
|
* Equivalent code is available from RSA Data Security, Inc.
|
||
|
* This code has been tested against that, and is equivalent,
|
||
|
* except that you don't need to include two pages of legalese
|
||
|
* with every copy.
|
||
|
*
|
||
|
* To compute the message digest of a chunk of bytes, declare an
|
||
|
* MD5Context structure, pass it to MD5Init, call MD5Update as
|
||
|
* needed on buffers full of bytes, and then call MD5Final, which
|
||
|
* will fill a supplied 16-byte array with the digest.
|
||
|
*/
|
||
|
#include "q_shared.h"
|
||
|
#include "qcommon.h"
|
||
|
|
||
|
#define MD5_BLOCK_SIZE 64
|
||
|
#define MD5_DIGEST_SIZE 16
|
||
|
|
||
|
typedef struct MD5Context {
|
||
|
uint32_t buf[4];
|
||
|
uint32_t bits[2];
|
||
|
union {
|
||
|
unsigned char b[ MD5_BLOCK_SIZE ];
|
||
|
uint32_t u32[ MD5_BLOCK_SIZE / 4 ];
|
||
|
} in;
|
||
|
} MD5_CTX;
|
||
|
|
||
|
#ifndef Q3_BIG_ENDIAN
|
||
|
#define byteReverse(buf, len) /* Nothing */
|
||
|
#else
|
||
|
static void byteReverse(unsigned char *buf, unsigned longs);
|
||
|
|
||
|
/*
|
||
|
* Note: this code is harmless on little-endian machines.
|
||
|
*/
|
||
|
static void byteReverse(unsigned char *buf, unsigned longs)
|
||
|
{
|
||
|
uint32_t t;
|
||
|
do {
|
||
|
t = (uint32_t)
|
||
|
((unsigned) buf[3] << 8 | buf[2]) << 16 |
|
||
|
((unsigned) buf[1] << 8 | buf[0]);
|
||
|
*(uint32_t *) buf = t;
|
||
|
buf += 4;
|
||
|
} while (--longs);
|
||
|
}
|
||
|
#endif // Q3_BIG_ENDIAN
|
||
|
|
||
|
/*
|
||
|
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
|
||
|
* initialization constants.
|
||
|
*/
|
||
|
static void MD5Init(struct MD5Context *ctx)
|
||
|
{
|
||
|
ctx->buf[0] = 0x67452301;
|
||
|
ctx->buf[1] = 0xefcdab89;
|
||
|
ctx->buf[2] = 0x98badcfe;
|
||
|
ctx->buf[3] = 0x10325476;
|
||
|
|
||
|
ctx->bits[0] = 0;
|
||
|
ctx->bits[1] = 0;
|
||
|
}
|
||
|
|
||
|
static void MD5Copy( struct MD5Context *to, const struct MD5Context *from )
|
||
|
{
|
||
|
memcpy( to, from, sizeof( *to ) );
|
||
|
}
|
||
|
|
||
|
/* The four core functions - F1 is optimized somewhat */
|
||
|
|
||
|
/* #define F1(x, y, z) (x & y | ~x & z) */
|
||
|
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
||
|
#define F2(x, y, z) F1(z, x, y)
|
||
|
#define F3(x, y, z) (x ^ y ^ z)
|
||
|
#define F4(x, y, z) (y ^ (x | ~z))
|
||
|
|
||
|
/* This is the central step in the MD5 algorithm. */
|
||
|
#define MD5STEP(f, w, x, y, z, data, s) \
|
||
|
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
|
||
|
|
||
|
/*
|
||
|
* The core of the MD5 algorithm, this alters an existing MD5 hash to
|
||
|
* reflect the addition of 16 longwords of new data. MD5Update blocks
|
||
|
* the data and converts bytes into longwords for this routine.
|
||
|
*/
|
||
|
static void MD5Transform( uint32_t buf[4], uint32_t const in[16] )
|
||
|
{
|
||
|
uint32_t a, b, c, d;
|
||
|
|
||
|
a = buf[0];
|
||
|
b = buf[1];
|
||
|
c = buf[2];
|
||
|
d = buf[3];
|
||
|
|
||
|
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
|
||
|
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
|
||
|
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
|
||
|
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
|
||
|
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
|
||
|
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
|
||
|
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
|
||
|
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
|
||
|
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
|
||
|
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
|
||
|
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
|
||
|
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
|
||
|
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
|
||
|
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
|
||
|
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
|
||
|
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
|
||
|
|
||
|
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
|
||
|
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
|
||
|
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
|
||
|
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
|
||
|
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
|
||
|
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
|
||
|
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
|
||
|
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
|
||
|
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
|
||
|
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
|
||
|
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
|
||
|
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
|
||
|
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
|
||
|
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
|
||
|
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
|
||
|
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
|
||
|
|
||
|
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
|
||
|
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
|
||
|
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
|
||
|
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
|
||
|
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
|
||
|
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
|
||
|
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
|
||
|
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
|
||
|
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
|
||
|
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
|
||
|
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
|
||
|
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
|
||
|
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
|
||
|
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
|
||
|
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
|
||
|
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
|
||
|
|
||
|
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
|
||
|
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
|
||
|
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
|
||
|
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
|
||
|
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
|
||
|
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
|
||
|
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
|
||
|
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
|
||
|
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
|
||
|
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
|
||
|
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
|
||
|
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
|
||
|
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
|
||
|
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
|
||
|
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
|
||
|
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
|
||
|
|
||
|
buf[0] += a;
|
||
|
buf[1] += b;
|
||
|
buf[2] += c;
|
||
|
buf[3] += d;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Update context to reflect the concatenation of another buffer full
|
||
|
* of bytes.
|
||
|
*/
|
||
|
static void MD5Update(struct MD5Context *ctx, unsigned char const *buf,
|
||
|
unsigned len)
|
||
|
{
|
||
|
uint32_t t;
|
||
|
|
||
|
/* Update bitcount */
|
||
|
|
||
|
t = ctx->bits[0];
|
||
|
if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
|
||
|
ctx->bits[1]++; /* Carry from low to high */
|
||
|
ctx->bits[1] += len >> 29;
|
||
|
|
||
|
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
|
||
|
|
||
|
/* Handle any leading odd-sized chunks */
|
||
|
|
||
|
if (t) {
|
||
|
unsigned char *p = ctx->in.b + t;
|
||
|
|
||
|
t = 64 - t;
|
||
|
if (len < t) {
|
||
|
memcpy(p, buf, len);
|
||
|
return;
|
||
|
}
|
||
|
memcpy(p, buf, t);
|
||
|
byteReverse(ctx->in, 16);
|
||
|
MD5Transform(ctx->buf, ctx->in.u32);
|
||
|
buf += t;
|
||
|
len -= t;
|
||
|
}
|
||
|
/* Process data in 64-byte chunks */
|
||
|
|
||
|
while (len >= MD5_BLOCK_SIZE) {
|
||
|
memcpy(ctx->in.b, buf, MD5_BLOCK_SIZE);
|
||
|
byteReverse(ctx->u.in, 16);
|
||
|
MD5Transform(ctx->buf, ctx->in.u32);
|
||
|
buf += MD5_BLOCK_SIZE;
|
||
|
len -= MD5_BLOCK_SIZE;
|
||
|
}
|
||
|
|
||
|
/* Handle any remaining bytes of data. */
|
||
|
|
||
|
memcpy(ctx->in.b, buf, len);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Final wrapup - pad to 64-byte boundary with the bit pattern
|
||
|
* 1 0* (64-bit count of bits processed, MSB-first)
|
||
|
*/
|
||
|
static void MD5Final(struct MD5Context *ctx, unsigned char *digest)
|
||
|
{
|
||
|
unsigned count;
|
||
|
unsigned char *p;
|
||
|
|
||
|
/* Compute number of bytes mod 64 */
|
||
|
count = (ctx->bits[0] >> 3) & 0x3F;
|
||
|
|
||
|
/* Set the first char of padding to 0x80. This is safe since there is
|
||
|
always at least one byte free */
|
||
|
p = ctx->in.b + count;
|
||
|
*p++ = 0x80;
|
||
|
|
||
|
/* Bytes of padding needed to make 64 bytes */
|
||
|
count = 64 - 1 - count;
|
||
|
|
||
|
/* Pad out to 56 mod 64 */
|
||
|
if (count < 8) {
|
||
|
/* Two lots of padding: Pad the first block to 64 bytes */
|
||
|
memset(p, 0, count);
|
||
|
byteReverse(ctx->in, 16);
|
||
|
MD5Transform(ctx->buf, ctx->in.u32);
|
||
|
|
||
|
/* Now fill the next block with 56 bytes */
|
||
|
memset(ctx->in.b, 0, 56);
|
||
|
} else {
|
||
|
/* Pad block to 56 bytes */
|
||
|
memset(p, 0, count - 8);
|
||
|
}
|
||
|
byteReverse(ctx->in, 14);
|
||
|
|
||
|
/* Append length in bits and transform */
|
||
|
ctx->in.u32[14] = ctx->bits[0];
|
||
|
ctx->in.u32[15] = ctx->bits[1];
|
||
|
|
||
|
MD5Transform(ctx->buf, ctx->in.u32);
|
||
|
byteReverse((unsigned char *) ctx->buf, 4);
|
||
|
|
||
|
if (digest!=NULL)
|
||
|
memcpy( digest, ctx->buf, MD5_DIGEST_SIZE );
|
||
|
|
||
|
memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
|
||
|
}
|
||
|
|
||
|
|
||
|
char *Com_MD5File( const char *fn, int length, const char *prefix, int prefix_len )
|
||
|
{
|
||
|
static char final[MD5_DIGEST_SIZE*2+1];
|
||
|
unsigned char digest[MD5_DIGEST_SIZE];
|
||
|
fileHandle_t f;
|
||
|
MD5_CTX md5;
|
||
|
byte buffer[2048];
|
||
|
int i;
|
||
|
int filelen = 0;
|
||
|
int r;
|
||
|
int total = 0;
|
||
|
|
||
|
final[0] = '\0';
|
||
|
|
||
|
filelen = FS_SV_FOpenFileRead( fn, &f );
|
||
|
|
||
|
if ( f == FS_INVALID_HANDLE ) {
|
||
|
return final;
|
||
|
}
|
||
|
|
||
|
if ( filelen < 1 ) {
|
||
|
FS_FCloseFile( f );
|
||
|
return final;
|
||
|
}
|
||
|
|
||
|
if ( filelen < length || !length ) {
|
||
|
length = filelen;
|
||
|
}
|
||
|
|
||
|
MD5Init( &md5 );
|
||
|
|
||
|
if ( prefix_len && *prefix )
|
||
|
MD5Update( &md5, (unsigned char *)prefix, prefix_len );
|
||
|
|
||
|
for ( ;; ) {
|
||
|
r = FS_Read( buffer, sizeof( buffer ), f );
|
||
|
if ( r < 1 )
|
||
|
break;
|
||
|
if ( r + total > length )
|
||
|
r = length - total;
|
||
|
total += r;
|
||
|
MD5Update( &md5 , buffer, r );
|
||
|
if ( r < sizeof( buffer ) || total >= length )
|
||
|
break;
|
||
|
}
|
||
|
FS_FCloseFile( f );
|
||
|
MD5Final( &md5, digest );
|
||
|
|
||
|
final[0] = '\0';
|
||
|
for ( i = 0; i < sizeof( digest ); i++ ) {
|
||
|
Q_strcat( final, sizeof( final ), va( "%02X", digest[i] & 0xFF ) );
|
||
|
}
|
||
|
|
||
|
return final;
|
||
|
}
|
||
|
|
||
|
|
||
|
char *Com_MD5Buf( const char *data, int length, const char *data2, int length2 )
|
||
|
{
|
||
|
static char final_buf[MD5_DIGEST_SIZE*2+1];
|
||
|
unsigned char digest[MD5_DIGEST_SIZE];
|
||
|
unsigned i;
|
||
|
MD5_CTX md5;
|
||
|
|
||
|
MD5Init( &md5 );
|
||
|
|
||
|
if ( data && length > 0 )
|
||
|
MD5Update( &md5 , (unsigned char *)data, length );
|
||
|
|
||
|
if (data2 && length2 > 0)
|
||
|
MD5Update( &md5 , (unsigned char *)data2, length2 );
|
||
|
|
||
|
MD5Final( &md5, digest );
|
||
|
|
||
|
final_buf[0] = '\0';
|
||
|
for ( i = 0; i < sizeof( digest ); i++ ) {
|
||
|
Q_strcat( final_buf, sizeof( final_buf ), va( "%02X", digest[i] & 0xFF ) );
|
||
|
}
|
||
|
|
||
|
return final_buf;
|
||
|
}
|
||
|
|
||
|
|
||
|
// stateless challenges
|
||
|
|
||
|
static struct MD5Context hmac_ctx_in;
|
||
|
static struct MD5Context hmac_ctx_out;
|
||
|
|
||
|
void Com_MD5Init( void )
|
||
|
{
|
||
|
struct {
|
||
|
byte key1[MD5_BLOCK_SIZE];
|
||
|
byte key2[MD5_BLOCK_SIZE];
|
||
|
} secret;
|
||
|
|
||
|
Sys_RandomBytes( (byte*)&secret, sizeof( secret ) );
|
||
|
|
||
|
// initialize inner context
|
||
|
MD5Init( &hmac_ctx_in );
|
||
|
MD5Update( &hmac_ctx_in, secret.key1, sizeof( secret.key1 ) );
|
||
|
|
||
|
// initialize outer context
|
||
|
MD5Init( &hmac_ctx_out );
|
||
|
MD5Update( &hmac_ctx_out, secret.key2, sizeof( secret.key2 ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
int Com_MD5Addr( const netadr_t *addr, int timestamp )
|
||
|
{
|
||
|
struct MD5Context ctx_in;
|
||
|
struct MD5Context ctx_out;
|
||
|
union {
|
||
|
byte b[MD5_DIGEST_SIZE];
|
||
|
int i[MD5_DIGEST_SIZE/sizeof(int)];
|
||
|
} digest;
|
||
|
|
||
|
MD5Copy( &ctx_in, &hmac_ctx_in );
|
||
|
MD5Copy( &ctx_out, &hmac_ctx_out );
|
||
|
|
||
|
// inner_hash = MD5( key1 | address | port | timestamp )
|
||
|
switch ( addr->type ) {
|
||
|
case NA_BROADCAST:
|
||
|
case NA_IP:
|
||
|
MD5Update( &ctx_in, addr->ipv._4, 4 );
|
||
|
break;
|
||
|
#ifdef USE_IPV6
|
||
|
case NA_IP6:
|
||
|
case NA_MULTICAST6:
|
||
|
MD5Update( &ctx_in, addr->ipv._6, 16 );
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
MD5Update( &ctx_in, (byte*)&addr->port, sizeof( addr->port ) );
|
||
|
MD5Update( &ctx_in, (byte*)×tamp, sizeof( timestamp ) );
|
||
|
MD5Final( &ctx_in, digest.b );
|
||
|
|
||
|
// MD5( key2 | inner_hash )
|
||
|
MD5Update( &ctx_out, digest.b, sizeof( digest.b ) );
|
||
|
MD5Final( &ctx_out, digest.b );
|
||
|
|
||
|
return digest.i[0];
|
||
|
}
|