mirror of
https://github.com/Q3Rally-Team/q3rally.git
synced 2025-01-09 03:10:52 +00:00
2103 lines
50 KiB
C
2103 lines
50 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
Copyright (C) 2002-2021 Q3Rally Team (Per Thormann - q3rally@gmail.com)
|
|
|
|
This file is part of q3rally source code.
|
|
|
|
q3rally source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
q3rally source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with q3rally; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
//
|
|
// q_math.c -- stateless support routines that are included in each code module
|
|
|
|
// Some of the vector functions are static inline in q_shared.h. q3asm
|
|
// doesn't understand static functions though, so we only want them in
|
|
// one file. That's what this is about.
|
|
#ifdef Q3_VM
|
|
#define __Q3_VM_MATH
|
|
#endif
|
|
|
|
#include "q_shared.h"
|
|
|
|
vec3_t vec3_origin = {0,0,0};
|
|
vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
|
|
|
|
|
|
vec4_t colorBlack = {0, 0, 0, 1};
|
|
vec4_t colorRed = {1, 0, 0, 1};
|
|
vec4_t colorGreen = {0, 1, 0, 1};
|
|
vec4_t colorBlue = {0, 0, 1, 1};
|
|
vec4_t colorYellow = {1, 1, 0, 1};
|
|
vec4_t colorMagenta= {1, 0, 1, 1};
|
|
vec4_t colorCyan = {0, 1, 1, 1};
|
|
vec4_t colorWhite = {1, 1, 1, 1};
|
|
vec4_t colorLtGrey = {0.75, 0.75, 0.75, 1};
|
|
vec4_t colorMdGrey = {0.5, 0.5, 0.5, 1};
|
|
vec4_t colorDkGrey = {0.25, 0.25, 0.25, 1};
|
|
|
|
vec4_t g_color_table[8] =
|
|
{
|
|
{0.0, 0.0, 0.0, 1.0},
|
|
{1.0, 0.0, 0.0, 1.0},
|
|
{0.0, 1.0, 0.0, 1.0},
|
|
{1.0, 1.0, 0.0, 1.0},
|
|
{0.0, 0.0, 1.0, 1.0},
|
|
{0.0, 1.0, 1.0, 1.0},
|
|
{1.0, 0.0, 1.0, 1.0},
|
|
{1.0, 1.0, 1.0, 1.0},
|
|
};
|
|
|
|
|
|
vec3_t bytedirs[NUMVERTEXNORMALS] =
|
|
{
|
|
{-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f},
|
|
{-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f},
|
|
{-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f},
|
|
{0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f},
|
|
{0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f},
|
|
{0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f},
|
|
{0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f},
|
|
{0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f},
|
|
{-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f},
|
|
{-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f},
|
|
{-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f},
|
|
{-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f},
|
|
{-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f},
|
|
{-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f},
|
|
{0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f},
|
|
{0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f},
|
|
{0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f},
|
|
{-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f},
|
|
{0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f},
|
|
{0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f},
|
|
{0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f},
|
|
{0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f},
|
|
{0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f},
|
|
{0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f},
|
|
{0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f},
|
|
{0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f},
|
|
{1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f},
|
|
{0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f},
|
|
{0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f},
|
|
{0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f},
|
|
{0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f},
|
|
{0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f},
|
|
{0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f},
|
|
{0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f},
|
|
{0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f},
|
|
{0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f},
|
|
{0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f},
|
|
{0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f},
|
|
{0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f},
|
|
{-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f},
|
|
{-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f},
|
|
{-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f},
|
|
{0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f},
|
|
{0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f},
|
|
{-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f},
|
|
{0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f},
|
|
{0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f},
|
|
{0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f},
|
|
{0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f},
|
|
{0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f},
|
|
{0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f},
|
|
{0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f},
|
|
{0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f},
|
|
{0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f},
|
|
{0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f},
|
|
{0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f},
|
|
{0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f},
|
|
{-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f},
|
|
{-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f},
|
|
{-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f},
|
|
{-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f},
|
|
{-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f},
|
|
{-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f},
|
|
{-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f},
|
|
{-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f},
|
|
{-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f},
|
|
{-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f},
|
|
{0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f},
|
|
{0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f},
|
|
{0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f},
|
|
{0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f},
|
|
{-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f},
|
|
{-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f},
|
|
{-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f},
|
|
{-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f},
|
|
{-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f},
|
|
{-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f},
|
|
{-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f},
|
|
{-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f},
|
|
{-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f},
|
|
{-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f}
|
|
};
|
|
|
|
//==============================================================
|
|
|
|
int Q_rand( int *seed ) {
|
|
*seed = (69069U * *seed + 1U);
|
|
return *seed;
|
|
}
|
|
|
|
float Q_random( int *seed ) {
|
|
return ( Q_rand( seed ) & 0xffff ) / (float)0x10000;
|
|
}
|
|
|
|
float Q_crandom( int *seed ) {
|
|
return 2.0 * ( Q_random( seed ) - 0.5 );
|
|
}
|
|
|
|
//=======================================================
|
|
|
|
signed char ClampChar( int i ) {
|
|
if ( i < -128 ) {
|
|
return -128;
|
|
}
|
|
if ( i > 127 ) {
|
|
return 127;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
signed short ClampShort( int i ) {
|
|
if ( i < -32768 ) {
|
|
return -32768;
|
|
}
|
|
if ( i > 0x7fff ) {
|
|
return 0x7fff;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
// this isn't a real cheap function to call!
|
|
int DirToByte( vec3_t dir ) {
|
|
int i, best;
|
|
float d, bestd;
|
|
|
|
if ( !dir ) {
|
|
return 0;
|
|
}
|
|
|
|
bestd = 0;
|
|
best = 0;
|
|
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
|
|
{
|
|
d = DotProduct (dir, bytedirs[i]);
|
|
if (d > bestd)
|
|
{
|
|
bestd = d;
|
|
best = i;
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
void ByteToDir( int b, vec3_t dir ) {
|
|
if ( b < 0 || b >= NUMVERTEXNORMALS ) {
|
|
VectorCopy( vec3_origin, dir );
|
|
return;
|
|
}
|
|
VectorCopy (bytedirs[b], dir);
|
|
}
|
|
|
|
|
|
unsigned ColorBytes3 (float r, float g, float b) {
|
|
unsigned i;
|
|
|
|
( (byte *)&i )[0] = r * 255;
|
|
( (byte *)&i )[1] = g * 255;
|
|
( (byte *)&i )[2] = b * 255;
|
|
|
|
return i;
|
|
}
|
|
|
|
unsigned ColorBytes4 (float r, float g, float b, float a) {
|
|
unsigned i;
|
|
|
|
( (byte *)&i )[0] = r * 255;
|
|
( (byte *)&i )[1] = g * 255;
|
|
( (byte *)&i )[2] = b * 255;
|
|
( (byte *)&i )[3] = a * 255;
|
|
|
|
return i;
|
|
}
|
|
|
|
float NormalizeColor( const vec3_t in, vec3_t out ) {
|
|
float max;
|
|
|
|
max = in[0];
|
|
if ( in[1] > max ) {
|
|
max = in[1];
|
|
}
|
|
if ( in[2] > max ) {
|
|
max = in[2];
|
|
}
|
|
|
|
if ( !max ) {
|
|
VectorClear( out );
|
|
} else {
|
|
out[0] = in[0] / max;
|
|
out[1] = in[1] / max;
|
|
out[2] = in[2] / max;
|
|
}
|
|
return max;
|
|
}
|
|
|
|
|
|
/*
|
|
=====================
|
|
PlaneFromPoints
|
|
|
|
Returns false if the triangle is degenrate.
|
|
The normal will point out of the clock for clockwise ordered points
|
|
=====================
|
|
*/
|
|
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
|
|
vec3_t d1, d2;
|
|
|
|
VectorSubtract( b, a, d1 );
|
|
VectorSubtract( c, a, d2 );
|
|
CrossProduct( d2, d1, plane );
|
|
if ( VectorNormalize( plane ) == 0 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
plane[3] = DotProduct( a, plane );
|
|
return qtrue;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RotatePointAroundVector
|
|
|
|
This is not implemented very well...
|
|
===============
|
|
*/
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
|
|
float degrees ) {
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
float rad;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
rad = DEG2RAD( degrees );
|
|
zrot[0][0] = cos( rad );
|
|
zrot[0][1] = sin( rad );
|
|
zrot[1][0] = -sin( rad );
|
|
zrot[1][1] = cos( rad );
|
|
|
|
MatrixMultiply( m, zrot, tmpmat );
|
|
MatrixMultiply( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ ) {
|
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RotateAroundDirection
|
|
===============
|
|
*/
|
|
void RotateAroundDirection( vec3_t axis[3], float yaw ) {
|
|
|
|
// create an arbitrary axis[1]
|
|
PerpendicularVector( axis[1], axis[0] );
|
|
|
|
// rotate it around axis[0] by yaw
|
|
if ( yaw ) {
|
|
vec3_t temp;
|
|
|
|
VectorCopy( axis[1], temp );
|
|
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
|
|
}
|
|
|
|
// cross to get axis[2]
|
|
CrossProduct( axis[0], axis[1], axis[2] );
|
|
}
|
|
|
|
|
|
|
|
void vectoangles( const vec3_t value1, vec3_t angles ) {
|
|
float forward;
|
|
float yaw, pitch;
|
|
|
|
if ( value1[1] == 0 && value1[0] == 0 ) {
|
|
yaw = 0;
|
|
if ( value1[2] > 0 ) {
|
|
pitch = 90;
|
|
}
|
|
else {
|
|
pitch = 270;
|
|
}
|
|
}
|
|
else {
|
|
if ( value1[0] ) {
|
|
// STONELANCE
|
|
// yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI );
|
|
yaw = ( atan2 ( value1[1], value1[0] ) * M_180_PI );
|
|
// END
|
|
}
|
|
else if ( value1[1] > 0 ) {
|
|
yaw = 90;
|
|
}
|
|
else {
|
|
yaw = 270;
|
|
}
|
|
if ( yaw < 0 ) {
|
|
yaw += 360;
|
|
}
|
|
|
|
forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] );
|
|
// STONELANCE
|
|
// pitch = ( atan2(value1[2], forward) * 180 / M_PI );
|
|
pitch = ( atan2(value1[2], forward) * M_180_PI );
|
|
// END
|
|
if ( pitch < 0 ) {
|
|
pitch += 360;
|
|
}
|
|
}
|
|
|
|
angles[PITCH] = -pitch;
|
|
angles[YAW] = yaw;
|
|
angles[ROLL] = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AnglesToAxis
|
|
=================
|
|
*/
|
|
void AnglesToAxis( const vec3_t angles, vec3_t axis[3] ) {
|
|
vec3_t right;
|
|
|
|
// angle vectors returns "right" instead of "y axis"
|
|
AngleVectors( angles, axis[0], right, axis[2] );
|
|
VectorSubtract( vec3_origin, right, axis[1] );
|
|
}
|
|
|
|
void AxisClear( vec3_t axis[3] ) {
|
|
axis[0][0] = 1;
|
|
axis[0][1] = 0;
|
|
axis[0][2] = 0;
|
|
axis[1][0] = 0;
|
|
axis[1][1] = 1;
|
|
axis[1][2] = 0;
|
|
axis[2][0] = 0;
|
|
axis[2][1] = 0;
|
|
axis[2][2] = 1;
|
|
}
|
|
|
|
void AxisCopy( vec3_t in[3], vec3_t out[3] ) {
|
|
VectorCopy( in[0], out[0] );
|
|
VectorCopy( in[1], out[1] );
|
|
VectorCopy( in[2], out[2] );
|
|
}
|
|
|
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = DotProduct( normal, normal );
|
|
#ifndef Q3_VM
|
|
assert( Q_fabs(inv_denom) != 0.0f ); // zero vectors get here
|
|
#endif
|
|
inv_denom = 1.0f / inv_denom;
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - d * n[0];
|
|
dst[1] = p[1] - d * n[1];
|
|
dst[2] = p[2] - d * n[2];
|
|
}
|
|
|
|
/*
|
|
================
|
|
MakeNormalVectors
|
|
|
|
Given a normalized forward vector, create two
|
|
other perpendicular vectors
|
|
================
|
|
*/
|
|
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
|
|
float d;
|
|
|
|
// this rotate and negate guarantees a vector
|
|
// not colinear with the original
|
|
right[1] = -forward[0];
|
|
right[2] = forward[1];
|
|
right[0] = forward[2];
|
|
|
|
d = DotProduct (right, forward);
|
|
VectorMA (right, -d, forward, right);
|
|
VectorNormalize (right);
|
|
CrossProduct (right, forward, up);
|
|
}
|
|
|
|
|
|
void VectorRotate( vec3_t in, vec3_t matrix[3], vec3_t out )
|
|
{
|
|
out[0] = DotProduct( in, matrix[0] );
|
|
out[1] = DotProduct( in, matrix[1] );
|
|
out[2] = DotProduct( in, matrix[2] );
|
|
}
|
|
|
|
//============================================================================
|
|
|
|
#if !idppc
|
|
/*
|
|
** float q_rsqrt( float number )
|
|
*/
|
|
float Q_rsqrt( float number )
|
|
{
|
|
floatint_t t;
|
|
float x2, y;
|
|
const float threehalfs = 1.5F;
|
|
|
|
x2 = number * 0.5F;
|
|
t.f = number;
|
|
t.i = 0x5f3759df - ( t.i >> 1 ); // what the fuck?
|
|
y = t.f;
|
|
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
|
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
|
|
|
return y;
|
|
}
|
|
|
|
float Q_fabs( float f ) {
|
|
floatint_t fi;
|
|
fi.f = f;
|
|
fi.i &= 0x7FFFFFFF;
|
|
return fi.f;
|
|
}
|
|
#endif
|
|
|
|
//============================================================
|
|
|
|
/*
|
|
===============
|
|
LerpAngle
|
|
|
|
===============
|
|
*/
|
|
float LerpAngle (float from, float to, float frac) {
|
|
float a;
|
|
|
|
if ( to - from > 180 ) {
|
|
to -= 360;
|
|
}
|
|
if ( to - from < -180 ) {
|
|
to += 360;
|
|
}
|
|
a = from + frac * (to - from);
|
|
|
|
return a;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleSubtract
|
|
|
|
Always returns a value from -180 to 180
|
|
=================
|
|
*/
|
|
float AngleSubtract( float a1, float a2 ) {
|
|
float a;
|
|
|
|
a = a1 - a2;
|
|
while ( a > 180 ) {
|
|
a -= 360;
|
|
}
|
|
while ( a < -180 ) {
|
|
a += 360;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) {
|
|
v3[0] = AngleSubtract( v1[0], v2[0] );
|
|
v3[1] = AngleSubtract( v1[1], v2[1] );
|
|
v3[2] = AngleSubtract( v1[2], v2[2] );
|
|
}
|
|
|
|
|
|
float AngleMod(float a) {
|
|
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
|
|
return a;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleNormalize360
|
|
|
|
returns angle normalized to the range [0 <= angle < 360]
|
|
=================
|
|
*/
|
|
float AngleNormalize360 ( float angle ) {
|
|
return (360.0 / 65536) * ((int)(angle * (65536 / 360.0)) & 65535);
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleNormalize180
|
|
|
|
returns angle normalized to the range [-180 < angle <= 180]
|
|
=================
|
|
*/
|
|
float AngleNormalize180 ( float angle ) {
|
|
angle = AngleNormalize360( angle );
|
|
if ( angle > 180.0 ) {
|
|
angle -= 360.0;
|
|
}
|
|
return angle;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleDelta
|
|
|
|
returns the normalized delta from angle1 to angle2
|
|
=================
|
|
*/
|
|
float AngleDelta ( float angle1, float angle2 ) {
|
|
return AngleNormalize180( angle1 - angle2 );
|
|
}
|
|
|
|
|
|
//============================================================
|
|
|
|
|
|
/*
|
|
=================
|
|
SetPlaneSignbits
|
|
=================
|
|
*/
|
|
void SetPlaneSignbits (cplane_t *out) {
|
|
int bits, j;
|
|
|
|
// for fast box on planeside test
|
|
bits = 0;
|
|
for (j=0 ; j<3 ; j++) {
|
|
if (out->normal[j] < 0) {
|
|
bits |= 1<<j;
|
|
}
|
|
}
|
|
out->signbits = bits;
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
BoxOnPlaneSide
|
|
|
|
Returns 1, 2, or 1 + 2
|
|
==================
|
|
*/
|
|
int BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
float dist[2];
|
|
int sides, b, i;
|
|
|
|
// fast axial cases
|
|
if (p->type < 3)
|
|
{
|
|
if (p->dist <= emins[p->type])
|
|
return 1;
|
|
if (p->dist >= emaxs[p->type])
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
// general case
|
|
dist[0] = dist[1] = 0;
|
|
if (p->signbits < 8) // >= 8: default case is original code (dist[0]=dist[1]=0)
|
|
{
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
b = (p->signbits >> i) & 1;
|
|
dist[ b] += p->normal[i]*emaxs[i];
|
|
dist[!b] += p->normal[i]*emins[i];
|
|
}
|
|
}
|
|
|
|
sides = 0;
|
|
if (dist[0] >= p->dist)
|
|
sides = 1;
|
|
if (dist[1] < p->dist)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
RadiusFromBounds
|
|
=================
|
|
*/
|
|
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
|
|
int i;
|
|
vec3_t corner;
|
|
float a, b;
|
|
|
|
for (i=0 ; i<3 ; i++) {
|
|
a = fabs( mins[i] );
|
|
b = fabs( maxs[i] );
|
|
corner[i] = a > b ? a : b;
|
|
}
|
|
|
|
return VectorLength (corner);
|
|
}
|
|
|
|
|
|
void ClearBounds( vec3_t mins, vec3_t maxs ) {
|
|
mins[0] = mins[1] = mins[2] = 99999;
|
|
maxs[0] = maxs[1] = maxs[2] = -99999;
|
|
}
|
|
|
|
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
|
|
if ( v[0] < mins[0] ) {
|
|
mins[0] = v[0];
|
|
}
|
|
if ( v[0] > maxs[0]) {
|
|
maxs[0] = v[0];
|
|
}
|
|
|
|
if ( v[1] < mins[1] ) {
|
|
mins[1] = v[1];
|
|
}
|
|
if ( v[1] > maxs[1]) {
|
|
maxs[1] = v[1];
|
|
}
|
|
|
|
if ( v[2] < mins[2] ) {
|
|
mins[2] = v[2];
|
|
}
|
|
if ( v[2] > maxs[2]) {
|
|
maxs[2] = v[2];
|
|
}
|
|
}
|
|
|
|
qboolean BoundsIntersect(const vec3_t mins, const vec3_t maxs,
|
|
const vec3_t mins2, const vec3_t maxs2)
|
|
{
|
|
if ( maxs[0] < mins2[0] ||
|
|
maxs[1] < mins2[1] ||
|
|
maxs[2] < mins2[2] ||
|
|
mins[0] > maxs2[0] ||
|
|
mins[1] > maxs2[1] ||
|
|
mins[2] > maxs2[2])
|
|
{
|
|
return qfalse;
|
|
}
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
qboolean BoundsIntersectSphere(const vec3_t mins, const vec3_t maxs,
|
|
const vec3_t origin, vec_t radius)
|
|
{
|
|
if ( origin[0] - radius > maxs[0] ||
|
|
origin[0] + radius < mins[0] ||
|
|
origin[1] - radius > maxs[1] ||
|
|
origin[1] + radius < mins[1] ||
|
|
origin[2] - radius > maxs[2] ||
|
|
origin[2] + radius < mins[2])
|
|
{
|
|
return qfalse;
|
|
}
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
qboolean BoundsIntersectPoint(const vec3_t mins, const vec3_t maxs,
|
|
const vec3_t origin)
|
|
{
|
|
if ( origin[0] > maxs[0] ||
|
|
origin[0] < mins[0] ||
|
|
origin[1] > maxs[1] ||
|
|
origin[1] < mins[1] ||
|
|
origin[2] > maxs[2] ||
|
|
origin[2] < mins[2])
|
|
{
|
|
return qfalse;
|
|
}
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
vec_t VectorNormalize( vec3_t v ) {
|
|
// NOTE: TTimo - Apple G4 altivec source uses double?
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
|
|
if ( length ) {
|
|
/* writing it this way allows gcc to recognize that rsqrt can be used */
|
|
ilength = 1/(float)sqrt (length);
|
|
/* sqrt(length) = length * (1 / sqrt(length)) */
|
|
length *= ilength;
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
vec_t VectorNormalize2( const vec3_t v, vec3_t out) {
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
|
|
if (length)
|
|
{
|
|
/* writing it this way allows gcc to recognize that rsqrt can be used */
|
|
ilength = 1/(float)sqrt (length);
|
|
/* sqrt(length) = length * (1 / sqrt(length)) */
|
|
length *= ilength;
|
|
out[0] = v[0]*ilength;
|
|
out[1] = v[1]*ilength;
|
|
out[2] = v[2]*ilength;
|
|
} else {
|
|
VectorClear( out );
|
|
}
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) {
|
|
vecc[0] = veca[0] + scale*vecb[0];
|
|
vecc[1] = veca[1] + scale*vecb[1];
|
|
vecc[2] = veca[2] + scale*vecb[2];
|
|
}
|
|
|
|
|
|
vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ) {
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
out[0] = veca[0]-vecb[0];
|
|
out[1] = veca[1]-vecb[1];
|
|
out[2] = veca[2]-vecb[2];
|
|
}
|
|
|
|
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
out[0] = veca[0]+vecb[0];
|
|
out[1] = veca[1]+vecb[1];
|
|
out[2] = veca[2]+vecb[2];
|
|
}
|
|
|
|
void _VectorCopy( const vec3_t in, vec3_t out ) {
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
void _VectorScale( const vec3_t in, vec_t scale, vec3_t out ) {
|
|
out[0] = in[0]*scale;
|
|
out[1] = in[1]*scale;
|
|
out[2] = in[2]*scale;
|
|
}
|
|
|
|
void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out ) {
|
|
out[0] = in[0]*scale;
|
|
out[1] = in[1]*scale;
|
|
out[2] = in[2]*scale;
|
|
out[3] = in[3]*scale;
|
|
}
|
|
|
|
|
|
int Q_log2( int val ) {
|
|
int answer;
|
|
|
|
answer = 0;
|
|
while ( ( val>>=1 ) != 0 ) {
|
|
answer++;
|
|
}
|
|
return answer;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
=================
|
|
PlaneTypeForNormal
|
|
=================
|
|
*/
|
|
/*
|
|
int PlaneTypeForNormal (vec3_t normal) {
|
|
if ( normal[0] == 1.0 )
|
|
return PLANE_X;
|
|
if ( normal[1] == 1.0 )
|
|
return PLANE_Y;
|
|
if ( normal[2] == 1.0 )
|
|
return PLANE_Z;
|
|
|
|
return PLANE_NON_AXIAL;
|
|
}
|
|
*/
|
|
|
|
|
|
// STONELANCE
|
|
/*
|
|
================================================================================
|
|
VectorNAN
|
|
================================================================================
|
|
*/
|
|
qboolean VectorNAN( const vec3_t vec ){
|
|
if (IS_NAN(vec[0]) || IS_NAN(vec[1]) || IS_NAN(vec[2])){
|
|
return qtrue;
|
|
}
|
|
|
|
return qfalse;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
MatrixMultiply
|
|
================
|
|
*/
|
|
void MatrixMultiply( float in1[3][3], float in2[3][3], float out[3][3]) {
|
|
if( in1 == out || in2 == out )
|
|
{
|
|
float temp[3][3];
|
|
|
|
temp[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
temp[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
temp[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
temp[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
temp[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
temp[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
temp[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
temp[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
temp[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
|
|
out[0][0] = temp[0][0];
|
|
out[0][1] = temp[0][1];
|
|
out[0][2] = temp[0][2];
|
|
out[1][0] = temp[1][0];
|
|
out[1][1] = temp[1][1];
|
|
out[1][2] = temp[1][2];
|
|
out[2][0] = temp[2][0];
|
|
out[2][1] = temp[2][1];
|
|
out[2][2] = temp[2][2];
|
|
}
|
|
else
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
MatrixTranspose
|
|
|
|
Cant do MatrixTranspose(m, m);
|
|
================
|
|
*/
|
|
void MatrixTranspose( float in[3][3], float out[3][3] ) {
|
|
out[0][0] = in[0][0];
|
|
out[0][1] = in[1][0];
|
|
out[0][2] = in[2][0];
|
|
out[1][0] = in[0][1];
|
|
out[1][1] = in[1][1];
|
|
out[1][2] = in[2][1];
|
|
out[2][0] = in[0][2];
|
|
out[2][1] = in[1][2];
|
|
out[2][2] = in[2][2];
|
|
}
|
|
|
|
/*
|
|
================
|
|
MatrixAdd
|
|
================
|
|
*/
|
|
void MatrixAdd( float in1[3][3], float in2[3][3], float out[3][3] ) {
|
|
out[0][0] = in1[0][0] + in2[0][0];
|
|
out[0][1] = in1[0][1] + in2[0][1];
|
|
out[0][2] = in1[0][2] + in2[0][2];
|
|
out[1][0] = in1[1][0] + in2[1][0];
|
|
out[1][1] = in1[1][1] + in2[1][1];
|
|
out[1][2] = in1[1][2] + in2[1][2];
|
|
out[2][0] = in1[2][0] + in2[2][0];
|
|
out[2][1] = in1[2][1] + in2[2][1];
|
|
out[2][2] = in1[2][2] + in2[2][2];
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
MatrixScale
|
|
================
|
|
*/
|
|
void MatrixScale( float in[3][3], float s, float out[3][3] ) {
|
|
out[0][0] = in[0][0] * s;
|
|
out[0][1] = in[0][1] * s;
|
|
out[0][2] = in[0][2] * s;
|
|
out[1][0] = in[1][0] * s;
|
|
out[1][1] = in[1][1] * s;
|
|
out[1][2] = in[1][2] * s;
|
|
out[2][0] = in[2][0] * s;
|
|
out[2][1] = in[2][1] * s;
|
|
out[2][2] = in[2][2] * s;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
AnglesToOrientation
|
|
|
|
Converts car angles to an orientation matrix
|
|
================
|
|
*/
|
|
void AnglesToOrientation( const vec3_t angles, float t[3][3] ) {
|
|
float angle;
|
|
static float sr, sp, sy, cr, cp, cy;
|
|
// static to help MS compiler fp bugs
|
|
|
|
angle = angles[YAW] * M_PI_180;
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
angle = angles[PITCH] * M_PI_180;
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
angle = angles[ROLL] * M_PI_180;
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
|
|
t[0][0] = (-1*sr*sp*cy+-1*cr*-sy); t[1][0] = (-1*sr*sp*sy+-1*cr*cy); t[2][0] = -1*sr*cp;
|
|
t[0][1] = cp*cy; t[1][1] = cp*sy; t[2][1] = -sp;
|
|
t[0][2] = (cr*sp*cy+-sr*-sy); t[1][2] = (cr*sp*sy+-sr*cy); t[2][2] = cr*cp;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
OrientationToVectors
|
|
|
|
Converts orientation matrix to angle vectors
|
|
================
|
|
*/
|
|
void OrientationToVectors( float t[3][3], vec3_t forward, vec3_t right, vec3_t up ) {
|
|
right[0] = t[0][0]; right[1] = t[1][0]; right[2] = t[2][0];
|
|
forward[0] = t[0][1]; forward[1] = t[1][1]; forward[2] = t[2][1];
|
|
up[0] = t[0][2]; up[1] = t[1][2]; up[2] = t[2][2];
|
|
|
|
// VectorNormalize(right);
|
|
// VectorNormalize(forward);
|
|
// VectorNormalize(up);
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
AnglesToDeltaAngles
|
|
|
|
Converts orientation matrix to car angles
|
|
================
|
|
*/
|
|
void AnglesToDeltaAngles( vec3_t angles, const vec3_t w, vec3_t deltaAngles ) {
|
|
/*
|
|
float cr, cy;
|
|
float sr, sy;
|
|
float aaa;
|
|
|
|
sy = sin( angles[YAW] * M_180_PI );
|
|
cy = cos( angles[YAW] * M_180_PI );
|
|
|
|
sr = sin( angles[ROLL] * M_180_PI );
|
|
cr = cos( angles[ROLL] * M_180_PI );
|
|
|
|
|
|
// [ dpsi dtheta dphi ]T = M-1(theta,phi) * Omega
|
|
//
|
|
// M-1(theta,phi) = [ cos(phi)/cos(theta) sin(phi)/cos(theta) 0 ]
|
|
// [ -sin(phi) cos(phi) 0 ]
|
|
// [ cos(phi)*sin(theta)/cos(theta) sin(phi)*sin(theta)/cos(theta) 1 ]
|
|
|
|
aaa = ( cr + sr ) / cy;
|
|
delta_angles[0] = ( aaa ) * w[0];
|
|
delta_angles[1] = ( cr - sr ) * w[1];
|
|
delta_angles[2] = ( aaa * sy + 1 ) * w[2];
|
|
*/
|
|
|
|
float c1, c2, c3, s1, s2, s3;
|
|
float p, sp;
|
|
|
|
c1 = cos( angles[0] * M_PI_180 );
|
|
c2 = cos( angles[1] * M_PI_180 );
|
|
c3 = cos( angles[2] * M_PI_180 );
|
|
s1 = sin( angles[0] * M_PI_180 );
|
|
s2 = sin( angles[1] * M_PI_180 );
|
|
s3 = sin( angles[2] * M_PI_180 );
|
|
|
|
p = 2.0f * Q_acos( c1*c2*c3 - s1*s2*s3 );
|
|
sp = p / sin( p / 2.0f ) ;
|
|
|
|
deltaAngles[0] = (c1*s2*c3 + s1*c2*c3) * sp * M_180_PI;
|
|
deltaAngles[1] = (s1*s2*c3 + c1*s2*s3) * sp * M_180_PI;
|
|
deltaAngles[2] = (c1*c2*s3 + s1*s2*c3) * sp * M_180_PI;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
OrientationToDeltaAngles
|
|
|
|
Converts orientation matrix to car angles
|
|
================
|
|
*/
|
|
void OrientationToDeltaAngles( float t[3][3], const vec3_t w, vec3_t delta_angles ) {
|
|
// vec3_t forward, right, up;
|
|
// float cp, as;
|
|
|
|
|
|
// OrientationToVectors(t, forward, right, up);
|
|
/*
|
|
forward[0] = -w[2] * t[1][1] + w[1] * t[1][2];
|
|
forward[1] = w[2] * t[1][0] + w[0] * t[1][2];
|
|
forward[2] = -w[1] * t[1][0] + w[0] * t[1][1];
|
|
up[2] = -w[1] * t[2][0] + w[0] * t[2][1];
|
|
right[2] = -w[1] * t[0][0] + w[0] * t[0][1];
|
|
|
|
delta_angles[PITCH] = Q_asin( -forward[2] ) * M_180_PI;
|
|
if (up[2] < 0.0f)
|
|
delta_angles[PITCH] = 180 - delta_angles[PITCH];
|
|
|
|
cp = cos( delta_angles[PITCH] * M_PI_180 );
|
|
if (cp){
|
|
// fix small floating point errors that would cause it to
|
|
// have asin() of a number > 1.00
|
|
as = forward[1] / cp > 1.00f ? 1.00f : forward[1] / cp;
|
|
as = as < -1.00f ? -1.00f : as;
|
|
|
|
delta_angles[YAW] = Q_asin(as) * M_180_PI;
|
|
if (forward[0] < 0.0f)
|
|
delta_angles[YAW] = 180 - delta_angles[YAW];
|
|
if (up[2] < 0.0f)
|
|
delta_angles[YAW] = 180 - delta_angles[YAW];
|
|
|
|
as = -right[2] / cp > 1.00f ? 1.00f : -right[2] / cp;
|
|
as = as < -1.00f ? -1.00f : as;
|
|
delta_angles[ROLL] = Q_asin(as) * M_180_PI;
|
|
}
|
|
else {
|
|
delta_angles[YAW]=0;
|
|
delta_angles[ROLL]=0;
|
|
}
|
|
|
|
// we still want yaw to be facing the front of the car so spin yaw
|
|
// 180 and adjust pitch and roll to keep car in the same position
|
|
if (fabs(delta_angles[PITCH]) > 90){
|
|
delta_angles[YAW] += 180;
|
|
delta_angles[PITCH] = 180 - delta_angles[PITCH];
|
|
delta_angles[ROLL] += 180;
|
|
}
|
|
*/
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
OrientationToAngles
|
|
|
|
Converts orientation matrix to car angles
|
|
================
|
|
*/
|
|
void OrientationToAngles( float t[3][3], vec3_t angles ) {
|
|
vec3_t forward, right, up;
|
|
float cp, as;
|
|
|
|
OrientationToVectors(t, forward, right, up);
|
|
|
|
angles[PITCH] = Q_asin(-forward[2]) * M_180_PI;
|
|
if (up[2] < 0.0f)
|
|
angles[PITCH] = 180 - angles[PITCH];
|
|
|
|
cp = cos(angles[PITCH] * M_PI_180 );
|
|
if (cp){
|
|
// fix small floating point errors that would cause it to
|
|
// have asin() of a number > 1.00
|
|
as = forward[1] / cp > 1.00f ? 1.00f : forward[1] / cp;
|
|
as = as < -1.00f ? -1.00f : as;
|
|
|
|
angles[YAW] = Q_asin(as) * M_180_PI;
|
|
if (forward[0] < 0.0f)
|
|
angles[YAW] = 180 - angles[YAW];
|
|
if (up[2] < 0.0f)
|
|
angles[YAW] = 180 - angles[YAW];
|
|
|
|
as = -right[2] / cp > 1.00f ? 1.00f : -right[2] / cp;
|
|
as = as < -1.00f ? -1.00f : as;
|
|
angles[ROLL] = Q_asin(as) * M_180_PI;
|
|
}
|
|
else {
|
|
angles[YAW]=0;
|
|
angles[ROLL]=0;
|
|
}
|
|
|
|
// we still want yaw to be facing the front of the car so spin yaw
|
|
// 180 and adjust pitch and roll to keep car in the same position
|
|
if (fabs(angles[PITCH]) > 90){
|
|
angles[YAW] += 180;
|
|
angles[PITCH] = 180 - angles[PITCH];
|
|
angles[ROLL] += 180;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
OrthonormalizeOrientation
|
|
|
|
Normalizes orientation matrix
|
|
================
|
|
*/
|
|
void OrthonormalizeOrientation( float t[3][3] ){
|
|
vec3_t x, y, z;
|
|
|
|
VectorSet(x, t[0][0], t[1][0], t[2][0]);
|
|
VectorSet(y, t[0][1], t[1][1], t[2][1]);
|
|
|
|
// FIXME: check for 0 length?
|
|
VectorNormalize(x);
|
|
|
|
CrossProduct(x, y, z);
|
|
VectorNormalize(z);
|
|
|
|
CrossProduct(z, x, y);
|
|
VectorNormalize(y);
|
|
|
|
t[0][0] = x[0]; t[0][1] = y[0]; t[0][2] = z[0];
|
|
t[1][0] = x[1]; t[1][1] = y[1]; t[1][2] = z[1];
|
|
t[2][0] = x[2]; t[2][1] = y[2]; t[2][2] = z[2];
|
|
}
|
|
|
|
/*
|
|
================
|
|
QuaternionLengthSquared
|
|
|
|
Returns the DotProduct(q, q)
|
|
|
|
================
|
|
*/
|
|
float QuaternionLengthSquared( const vec4_t q ){
|
|
return q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
QuaternionLength
|
|
|
|
Returns the sqrt( DotProduct(q, q) )
|
|
|
|
================
|
|
*/
|
|
float QuaternionLength( const vec4_t q ){
|
|
return sqrt( q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3] );
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
QuaternionFastNormalize
|
|
|
|
Normalizes quat avoiding a sqrt
|
|
returns squared length of quaternion;
|
|
|
|
Quaternion function code from racer
|
|
================
|
|
*/
|
|
float QuaternionFastNormalize( vec4_t quat )
|
|
{
|
|
// Check if quaternion needs normalizing
|
|
float len = QuaternionLengthSquared( quat );
|
|
if ( len == 0.0f )
|
|
{
|
|
// TODO: Make w 0 instead of this?
|
|
quat[3] = 1.0f;
|
|
quat[0] = quat[1] = quat[2] = 0.0f;
|
|
}
|
|
else if( len < 0.9999f || len > 1.0001f )
|
|
{
|
|
// Push quat back to 1.0 (avoid a sqrt())
|
|
float n = ( len + 1.0f ) / ( 2.0f * len );
|
|
quat[0] *= n;
|
|
quat[1] *= n;
|
|
quat[2] *= n;
|
|
quat[3] *= n;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
QuaternionNormalize
|
|
|
|
Normalizes a quat using the normal sqrt method
|
|
returns length of quaternion;
|
|
|
|
Quaternion function code from racer
|
|
================
|
|
*/
|
|
float QuaternionNormalize( vec4_t quat )
|
|
{
|
|
float tmp, len;
|
|
|
|
len = QuaternionLength( quat );
|
|
if ( len == 0.0f )
|
|
{
|
|
// TODO: Make w 0 instead of this?
|
|
quat[3] = 1.0f;
|
|
quat[0] = quat[1] = quat[2] = 0.0f;
|
|
return len;
|
|
}
|
|
|
|
tmp = 1.0f / len;
|
|
quat[3] *= tmp;
|
|
quat[0] *= tmp;
|
|
quat[1] *= tmp;
|
|
quat[2] *= tmp;
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
================
|
|
QuaternionMultiply
|
|
|
|
Multiplies two quaternions together
|
|
|
|
Quaternion function code from skwid
|
|
================
|
|
*/
|
|
void QuaternionMultiply(const vec4_t in1, const vec4_t in2, vec4_t out){
|
|
/*
|
|
// from racer
|
|
w = in1[3] * in2[3] - in1[0] * in2[0] - in1[1] * in2[1] - in1[2] * in2[2];
|
|
x = in1[3] * in2[0] + in1[0] * in2[3] + in1[1] * in2[2] - in1[2] * in2[1];
|
|
y = in1[3] * in2[1] - in1[0] * in2[2] + in1[1] * in2[3] + in1[2] * in2[0];
|
|
z = in1[3] * in2[2] + in1[0] * in2[1] - in1[1] * in2[0] + in1[2] * in2[3];
|
|
*/
|
|
/* this crap doesnt work
|
|
float A, B, C, D, E, F, G, H;
|
|
|
|
A = (q1[3] + q1[0]) * (q2[3] + q2[0]);
|
|
B = (q1[2] - q1[1]) * (q2[1] - q2[2]);
|
|
C = (q1[3] - q1[0]) * (q2[1] + q2[2]);
|
|
D = (q1[1] + q1[2]) * (q2[3] - q2[0]);
|
|
E = (q1[0] + q1[2]) * (q2[0] + q2[1]);
|
|
F = (q1[0] - q1[2]) * (q2[0] - q2[1]);
|
|
G = (q1[3] + q1[1]) * (q2[3] - q2[2]);
|
|
H = (q1[3] - q1[1]) * (q2[3] + q2[2]);
|
|
|
|
res[0] = A - (E + F + G + H)/2;
|
|
res[1] = C + (E - F + G - H)/2;
|
|
res[2] = D + (E - F - G + H)/2;
|
|
res[3] = B + (-E - F + G + H) /2;
|
|
*/
|
|
|
|
vec3_t temp; // in case of mulp(a, b, a)
|
|
temp[0] = (in1[1] * in2[2] - in1[2] * in2[1]) + in2[3] * in1[0] + in1[3] * in2[0];
|
|
temp[1] = (in1[2] * in2[0] - in1[0] * in2[2]) + in2[3] * in1[1] + in1[3] * in2[1];
|
|
temp[2] = (in1[0] * in2[1] - in1[1] * in2[0]) + in2[3] * in1[2] + in1[3] * in2[2];
|
|
|
|
out[3] = in1[3] * in2[3] - (in1[0] * in2[0] + in1[1] * in2[1] + in1[2] * in2[2]);
|
|
out[0] = temp[0];
|
|
out[1] = temp[1];
|
|
out[2] = temp[2];
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
QuaternionRotate
|
|
|
|
Rotates quat by the amount specified in w*time
|
|
|
|
w in body coords
|
|
|
|
Note: out cannot be the same as quat
|
|
|
|
================
|
|
*/
|
|
void QuaternionRotate( const vec4_t quat, const vec3_t w, const float time, vec4_t out){
|
|
vec3_t tempVec;
|
|
|
|
// divide by 2.0f is part of quaternion derivative calculation
|
|
VectorScale( w, time / 2.0f, tempVec );
|
|
|
|
out[0] = quat[0] + ( quat[3]*tempVec[0] - quat[2]*tempVec[1] + quat[1]*tempVec[2] );
|
|
out[1] = quat[1] + ( quat[2]*tempVec[0] + quat[3]*tempVec[1] - quat[0]*tempVec[2] );
|
|
out[2] = quat[2] + (-quat[1]*tempVec[0] + quat[0]*tempVec[1] + quat[3]*tempVec[2] );
|
|
out[3] = quat[3] + (-quat[0]*tempVec[0] - quat[1]*tempVec[1] - quat[2]*tempVec[2] );
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
QuaternionSLERP
|
|
|
|
4D Spherically lerps from one quarternion to another.
|
|
'from' and 'to' need to be normalized
|
|
|
|
t = fraction of move from start quarternion to end quarternion [0 .. 1]
|
|
================
|
|
*/
|
|
void QuaternionSLERP(const vec4_t from, const vec4_t to, float t, vec4_t res){
|
|
/*
|
|
// from racer
|
|
float theta, costheta, w1, w2, sintheta;
|
|
|
|
costheta = from[0] * to[0] + from[1] * to[1] + from[2] * to[2] + from[3] * to[3];
|
|
|
|
// OPTIMIZE: If costheta was squared then i could use the sin(t)^2 = 1-cos(t)^s
|
|
// Is sintheta ever negative? If not then sin(t)^2 > 0 == sin(t) > 0
|
|
theta = Q_acos( costheta );
|
|
sintheta = sin( theta );
|
|
if( sintheta > 0.0f )
|
|
{
|
|
w1 = sin( (1.0f - t) * theta ) / sintheta;
|
|
w2 = sin( t * theta ) / sintheta;
|
|
}
|
|
else
|
|
{
|
|
// They're the same quaternion, so who cares?
|
|
w1 = 1.0f;
|
|
w2 = 0.0f;
|
|
}
|
|
|
|
res[0] = w1 * from[0] + w2 * to[0];
|
|
res[1] = w1 * from[1] + w2 * to[1];
|
|
res[2] = w1 * from[2] + w2 * to[2];
|
|
res[3] = w1 * from[3] + w2 * to[3];
|
|
*/
|
|
|
|
/*
|
|
// Quaternion function from 'Rotating Objects Using Quaternions' by Nick Bobick
|
|
vec4_t to1;
|
|
double omega, cosom, sinom, scale0, scale1;
|
|
|
|
// calc cosine
|
|
cosom = from[0] * to[0] + from[1] * to[1] + from[2] * to[2] + from[3] * to[3];
|
|
|
|
// adjust signs (if necessary)
|
|
if ( cosom < 0.0 ){
|
|
cosom = -cosom;
|
|
to1[0] = -to[0];
|
|
to1[1] = -to[1];
|
|
to1[2] = -to[2];
|
|
to1[3] = -to[3];
|
|
} else {
|
|
to1[0] = to[0];
|
|
to1[1] = to[1];
|
|
to1[2] = to[2];
|
|
to1[3] = to[3];
|
|
}
|
|
|
|
// calculate coefficients
|
|
if ( (1.0 - cosom) > 0.1f ) {
|
|
// standard case (slerp)
|
|
omega = Q_acos(cosom);
|
|
sinom = sin(omega);
|
|
scale0 = sin((1.0 - t) * omega) / sinom;
|
|
scale1 = sin(t * omega) / sinom;
|
|
} else {
|
|
// "from" and "to" quaternions are very close
|
|
// ... so we can do a linear interpolation
|
|
scale0 = 1.0 - t;
|
|
scale1 = t;
|
|
}
|
|
|
|
// calculate final values
|
|
res[0] = scale0 * from[0] + scale1 * to1[0];
|
|
res[1] = scale0 * from[1] + scale1 * to1[1];
|
|
res[2] = scale0 * from[2] + scale1 * to1[2];
|
|
res[3] = scale0 * from[3] + scale1 * to1[3];
|
|
*/
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
================
|
|
AnglesToQuaternion
|
|
|
|
Converts euler angles to a quaternion
|
|
================
|
|
*/
|
|
void AnglesToQuaternion( const vec3_t angles, vec4_t quat){
|
|
float t[3][3];
|
|
|
|
// OPTIMIZE: See if this can be simplified
|
|
AnglesToOrientation( angles, t );
|
|
OrientationToQuaternion( t, quat );
|
|
|
|
// based on Quaternion function from 'Rotating Objects Using Quaternions' by Nick Bobick
|
|
/*
|
|
float cr, cp, cy, sr, sp, sy, spcy, spsy;
|
|
float tr, s;
|
|
int i, j, k;
|
|
vec3_t t[3];
|
|
|
|
// calculate trig identities
|
|
cr = cos(angles[ROLL] * M_PI / 180.0f);
|
|
cp = cos(angles[PITCH] * M_PI / 180.0f);
|
|
cy = cos(angles[YAW] * M_PI / 180.0f);
|
|
|
|
sr = sin(angles[ROLL] * M_PI / 180.0f);
|
|
sp = sin(angles[PITCH] * M_PI / 180.0f);
|
|
sy = sin(angles[YAW] * M_PI / 180.0f);
|
|
|
|
spcy = sp * cy;
|
|
spsy = sp * sy;
|
|
|
|
t[0][0] = (-sr*spcy + cr*sy); t[1][0] = (-sr*spsy - cr*cy); t[2][0] = -sr*cp;
|
|
t[0][1] = cp*cy; t[1][1] = cp*sy; t[2][1] = -sp;
|
|
t[0][2] = (cr*spcy + sr*sy); t[1][2] = (cr*spsy - sr*cy); t[2][2] = cr*cp;
|
|
*/
|
|
/*
|
|
tr = t[0][0] + t[1][1] + t[2][2];
|
|
|
|
// check the diagonal
|
|
if (tr > 0.0) {
|
|
s = sqrt (tr + 1.0);
|
|
quat[3] = s / 2.0;
|
|
s = 0.5 / s;
|
|
quat[0] = (t[1][2] - t[2][1]) * s;
|
|
quat[1] = (t[2][0] - t[0][2]) * s;
|
|
quat[2] = (t[0][1] - t[1][0]) * s;
|
|
} else {
|
|
// diagonal is negative
|
|
i = 0;
|
|
if (t[1][1] > t[0][0]) i = 1;
|
|
if (t[2][2] > t[i][i]) i = 2;
|
|
|
|
j = (i+1) % 3;
|
|
k = (j+1) % 3;
|
|
|
|
s = sqrt ((t[i][i] - (t[j][j] + t[k][k])) + 1.0);
|
|
|
|
quat[i] = s * 0.5;
|
|
|
|
if (s != 0.0) s = 0.5 / s;
|
|
|
|
quat[3] = (t[j][k] - t[k][j]) * s;
|
|
quat[j] = (t[i][j] + t[j][i]) * s;
|
|
quat[k] = (t[i][k] + t[k][i]) * s;
|
|
}
|
|
*/
|
|
/*
|
|
// Quaternion function code from skwid
|
|
vec4_t qy = { 0, sin(angles[YAW] * M_PI / 180.0f), 0, cos(angles[YAW] * M_PI / 180.0f) };
|
|
vec4_t qp = { sin(angles[PITCH] * M_PI / 180.0f), 0, 0, cos(angles[PITCH] * M_PI / 180.0f) };
|
|
vec4_t qr = { 0, 0, sin(angles[ROLL] * M_PI / 180.0f), cos(angles[ROLL] * M_PI / 180.0f) };
|
|
|
|
Com_Printf("qy %f %f %f %f\n", qy[0], qy[1], qy[2], qy[3]);
|
|
Com_Printf("qp %f %f %f %f\n", qp[0], qp[1], qp[2], qp[3]);
|
|
Com_Printf("qr %f %f %f %f\n", qr[0], qr[1], qr[2], qr[3]);
|
|
|
|
QuaternionMultiply( qy, qp, quat );
|
|
|
|
Com_Printf("quat %f %f %f %f\n", quat[0], quat[1], quat[2], quat[3]);
|
|
|
|
QuaternionMultiply( quat, qr, quat );
|
|
*/
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
QuaternionToAngles
|
|
|
|
Converts a quaternion to angles
|
|
|
|
================
|
|
*/
|
|
void QuaternionToAngles( const vec4_t quat, vec3_t angles ){
|
|
float t[3][3];
|
|
|
|
// OPTIMIZE: See if this can be simplified, some parts of t dont need to be calculated
|
|
QuaternionToOrientation( quat, t );
|
|
OrientationToAngles( t, angles );
|
|
|
|
/*
|
|
float wx, wy, wz, xx, yy, yz, xy, xz, zz;
|
|
float x2, y2, z2;
|
|
vec3_t f, r, u;
|
|
float cp, as;
|
|
|
|
// calculate coefficients
|
|
x2 = quat[0] + quat[0];
|
|
y2 = quat[1] + quat[1];
|
|
z2 = quat[2] + quat[2];
|
|
xx = quat[0] * x2; xy = quat[0] * y2; xz = quat[0] * z2;
|
|
yy = quat[1] * y2; yz = quat[1] * z2; zz = quat[2] * z2;
|
|
wx = quat[3] * x2; wy = quat[3] * y2; wz = quat[3] * z2;
|
|
|
|
right[0] = 1.0 - (yy + zz); right[1] = xy - wz; right[2] = xz + wy;
|
|
forward[0] = xy + wz; forward[1] = 1.0 - (xx + zz); forward[2] = yz - wx;
|
|
up[0] = xz - wy; up[1] = yz + wx; up[2] = 1.0 - (xx + yy);
|
|
*/
|
|
/*
|
|
// Quaternion function code based on skwids
|
|
float wx, wy, wz, xx, yy, yz, xy, xz, zz;
|
|
float x2, y2, z2;
|
|
vec3_t f, r, u;
|
|
float cp, as;
|
|
|
|
float s = 2 / QuaternionNormal( quat );
|
|
|
|
xx = quat[0] * quat[0]; xy = quat[0] * quat[1]; xz = quat[0] * quat[2];
|
|
yy = quat[1] * quat[1]; yz = quat[1] * quat[2]; zz = quat[2] * quat[2];
|
|
wx = quat[3] * quat[0]; wy = quat[3] * quat[1]; wz = quat[3] * quat[2];
|
|
|
|
// r[0] = 1 - s * (yy + zz); r[1] = s * (xy - wz);
|
|
r[2] = s * (xz + wy);
|
|
f[0] = s * (xy + wz); f[1] = 1 - s * (xx + zz); f[2] = s * (yz - wx);
|
|
// u[0] = s * (xz - wy); u[1] = s * (yz + wx);
|
|
u[2] = 1 - s * (xx + yy);
|
|
|
|
angles[PITCH] = Q_asin(-f[2]) * 180.0f / M_PI;
|
|
if (u[2] < 0.0f)
|
|
angles[PITCH] = 180 - angles[PITCH];
|
|
|
|
cp = cos(angles[PITCH] / 180.0f * M_PI);
|
|
if (cp){
|
|
// fix small floating point errors that would cause it to
|
|
// have asin() of a number > 1.00
|
|
as = f[1] / cp > 1.00f ? 1.00f : f[1] / cp;
|
|
as = as < -1.00f ? -1.00f : as;
|
|
|
|
angles[YAW] = Q_asin(as) * 180.0f / M_PI;
|
|
if (f[0] < 0.0f)
|
|
angles[YAW] = 180 - angles[YAW];
|
|
if (u[2] < 0.0f)
|
|
angles[YAW] = 180 - angles[YAW];
|
|
|
|
as = -r[2] / cp > 1.00f ? 1.00f : -r[2] / cp;
|
|
as = as < -1.00f ? -1.00f : as;
|
|
angles[ROLL] = Q_asin(as) * 180 / M_PI;
|
|
}
|
|
else {
|
|
angles[YAW]=0;
|
|
angles[ROLL]=0;
|
|
}
|
|
|
|
// we still want yaw to be facing the front of the car so spin yaw
|
|
// 180 and adjust pitch and roll to keep car in the same position
|
|
if (fabs(angles[PITCH]) > 90){
|
|
angles[YAW] += 180;
|
|
angles[PITCH] = 180 - angles[PITCH];
|
|
angles[ROLL] += 180;
|
|
}
|
|
*/
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
OrientationToQuaternion
|
|
|
|
Converts orientation matrix to a quaternion
|
|
================
|
|
*/
|
|
void OrientationToQuaternion( float t[3][3], vec4_t quat ){
|
|
|
|
// from racer
|
|
int i;
|
|
float qw2, qx2, qy2, qz2, tmp;
|
|
|
|
// Quaternion components squared
|
|
qw2 = 0.25 * (t[0][0] + t[1][1] + t[2][2] + 1.0);
|
|
qx2 = qw2 - 0.5 * (t[1][1] + t[2][2]);
|
|
qy2 = qw2 - 0.5 * (t[2][2] + t[0][0]);
|
|
qz2 = qw2 - 0.5 * (t[0][0] + t[1][1]);
|
|
|
|
// Decide maximum magnitude component
|
|
i = ( qw2 > qx2 ) ?
|
|
( ( qw2 > qy2 ) ? (( qw2 > qz2 ) ? 0 : 3) : (( qy2 > qz2 ) ? 2 : 3)) :
|
|
( ( qx2 > qy2 ) ? (( qx2 > qz2 ) ? 1 : 3) : (( qy2 > qz2 ) ? 2 : 3));
|
|
|
|
// Compute signed quat components using numerically stable method
|
|
switch( i )
|
|
{
|
|
case 0:
|
|
quat[3] = sqrt(qw2); tmp = 0.25f / quat[3];
|
|
quat[0] = (t[1][2] - t[2][1]) * tmp;
|
|
quat[1] = (t[2][0] - t[0][2]) * tmp;
|
|
quat[2] = (t[0][1] - t[1][0]) * tmp;
|
|
break;
|
|
|
|
case 1:
|
|
quat[0] = sqrt(qx2); tmp = 0.25f / quat[0];
|
|
quat[3] = (t[1][2] - t[2][1]) * tmp;
|
|
quat[1] = (t[1][0] + t[0][1]) * tmp;
|
|
quat[2] = (t[0][2] + t[2][0]) * tmp;
|
|
break;
|
|
|
|
case 2:
|
|
quat[1] = sqrt(qy2); tmp = 0.25f / quat[1];
|
|
quat[3] = (t[2][0] - t[0][2]) * tmp;
|
|
quat[0] = (t[1][0] + t[0][1]) * tmp;
|
|
quat[2] = (t[2][1] + t[1][2]) * tmp;
|
|
break;
|
|
|
|
case 3:
|
|
quat[2] = sqrt(qz2); tmp = 0.25f / quat[2];
|
|
quat[3] = (t[0][1] - t[1][0]) * tmp;
|
|
quat[0] = (t[2][0] + t[0][2]) * tmp;
|
|
quat[1] = (t[2][1] + t[1][2]) * tmp;
|
|
break;
|
|
}
|
|
|
|
// Always keep all components positive
|
|
// (note that scalar*quat is equivalent to quat, so q==-q)
|
|
if ( i && quat[3] < 0.0f )
|
|
{
|
|
quat[3] = -quat[3];
|
|
quat[0] = -quat[0];
|
|
quat[1] = -quat[1];
|
|
quat[2] = -quat[2];
|
|
}
|
|
|
|
// Normalize it to be safe
|
|
QuaternionFastNormalize( quat );
|
|
// tmp = 1.0f / sqrt( quat[3]*quat[3] + quat[0]*quat[0] + quat[1]*quat[1] + quat[2]*quat[2] );
|
|
// quat[3] *= tmp;
|
|
// quat[0] *= tmp;
|
|
// quat[1] *= tmp;
|
|
// quat[2] *= tmp;
|
|
|
|
|
|
// Quaternion function from 'Rotating Objects Using Quaternions' by Nick Bobick
|
|
/*
|
|
float tr, s;
|
|
int i, j, k;
|
|
|
|
int nxt[3] = {1, 2, 0};
|
|
|
|
tr = t[0][0] + t[1][1] + t[2][2];
|
|
|
|
// check the diagonal
|
|
if (tr > 0.0) {
|
|
s = sqrt (tr + 1.0);
|
|
quat[3] = s / 2.0;
|
|
s = 0.5 / s;
|
|
quat[0] = (t[1][2] - t[2][1]) * s;
|
|
quat[1] = (t[2][0] - t[0][2]) * s;
|
|
quat[2] = (t[0][1] - t[1][0]) * s;
|
|
} else {
|
|
// diagonal is negative
|
|
i = 0;
|
|
if (t[1][1] > t[0][0]) i = 1;
|
|
if (t[2][2] > t[i][i]) i = 2;
|
|
|
|
j = nxt[i];
|
|
k = nxt[j];
|
|
|
|
s = sqrt ((t[i][i] - (t[j][j] + t[k][k])) + 1.0);
|
|
|
|
quat[i] = s * 0.5;
|
|
|
|
if (s != 0.0) s = 0.5 / s;
|
|
|
|
quat[3] = (t[j][k] - t[k][j]) * s;
|
|
quat[j] = (t[i][j] + t[j][i]) * s;
|
|
quat[k] = (t[i][k] + t[k][i]) * s;
|
|
}
|
|
*/
|
|
|
|
/*
|
|
// thanks to skwid for the equations
|
|
quat[3] = 0.5f * sqrt( t[0][0] + t[1][1] + t[2][2] + 1.0f );
|
|
quat[0] = (t[1][2] - t[2][1]) / (4 * quat[3]);
|
|
quat[1] = (t[2][0] - t[0][2]) / (4 * quat[3]);
|
|
quat[2] = (t[0][1] - t[1][0]) / (4 * quat[3]);
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
QuaternionToOrientation
|
|
|
|
Converts normalized quaternion to a orientation matrix
|
|
================
|
|
*/
|
|
void QuaternionToOrientation( const vec4_t quat, float t[3][3] ){
|
|
float xy, wz, xz, wy, yz, wx, x2, y2, z2;
|
|
|
|
// based on code from racer
|
|
x2 = quat[0] * quat[0];
|
|
y2 = quat[1] * quat[1];
|
|
z2 = quat[2] * quat[2];
|
|
|
|
xy = quat[0] * quat[1];
|
|
wz = quat[3] * quat[2];
|
|
xz = quat[0] * quat[2];
|
|
wy = quat[3] * quat[1];
|
|
yz = quat[1] * quat[2];
|
|
wx = quat[3] * quat[0];
|
|
t[0][0] = 1.0f - 2.0f * (y2 + z2);
|
|
t[1][0] = 2.0f * (xy - wz);
|
|
t[2][0] = 2.0f * (xz + wy);
|
|
|
|
t[0][1] = 2.0f * (xy + wz);
|
|
t[1][1] = 1.0f - 2.0f * (z2 + x2);
|
|
t[2][1] = 2.0f * (yz - wx);
|
|
|
|
t[0][2] = 2.0f * (xz - wy);
|
|
t[1][2] = 2.0f * (yz + wx);
|
|
t[2][2] = 1.0f - 2.0f * (x2 + y2);
|
|
|
|
/*
|
|
Quaternion function from 'Rotating Objects Using Quaternions' by Nick Bobick
|
|
|
|
float x2, y2, z2;
|
|
|
|
// calculate coefficients
|
|
x2 = quat[0] + quat[0];
|
|
y2 = quat[1] + quat[1];
|
|
z2 = quat[2] + quat[2];
|
|
xx = quat[0] * x2; xy = quat[0] * y2; xz = quat[0] * z2;
|
|
yy = quat[1] * y2; yz = quat[1] * z2; zz = quat[2] * z2;
|
|
wx = quat[3] * x2; wy = quat[3] * y2; wz = quat[3] * z2;
|
|
|
|
t[0][0] = 1.0 - (yy + zz); t[1][0] = xy - wz; t[2][0] = xz + wy;
|
|
t[0][1] = xy + wz; t[1][1] = 1.0 - (xx + zz); t[2][1] = yz - wx;
|
|
t[0][2] = xz - wy; t[1][2] = yz + wx; t[2][2] = 1.0 - (xx + yy);
|
|
*/
|
|
/*
|
|
// Quaternion function code based on skwids
|
|
float s = 2 / QuaternionNormal( quat );
|
|
|
|
xx = quat[0] * quat[0]; xy = quat[0] * quat[1]; xz = quat[0] * quat[2];
|
|
yy = quat[1] * quat[1]; yz = quat[1] * quat[2]; zz = quat[2] * quat[2];
|
|
wx = quat[3] * quat[0]; wy = quat[3] * quat[1]; wz = quat[3] * quat[2];
|
|
|
|
t[0][0] = 1 - s * (yy + zz); t[1][0] = s * (xy - wz); t[2][0] = s * (xz + wy);
|
|
t[0][1] = s * (xy + wz); t[1][1] = 1 - s * (xx + zz); t[2][1] = s * (yz - wx);
|
|
t[0][2] = s * (xz - wy); t[1][2] = s * (yz + wx); t[2][2] = 1 - s * (xx + yy);
|
|
*/
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
QuaternionL2ToOrientation
|
|
|
|
Converts non-normalize quaternion to a orientation matrix
|
|
'l2' is the squared length of the quaternion, used to get 't' orthogonal
|
|
================
|
|
*/
|
|
void QuaternionL2ToOrientation( const vec4_t quat, const float l2, float t[3][3] ){
|
|
float xy, wz, xz, wy, yz, wx, x2, y2, z2, s;
|
|
|
|
// based on code from racer
|
|
x2 = quat[0] * quat[0];
|
|
y2 = quat[1] * quat[1];
|
|
z2 = quat[2] * quat[2];
|
|
|
|
xy = quat[0] * quat[1];
|
|
wz = quat[3] * quat[2];
|
|
xz = quat[0] * quat[2];
|
|
wy = quat[3] * quat[1];
|
|
yz = quat[1] * quat[2];
|
|
wx = quat[3] * quat[0];
|
|
|
|
s = 2.0f / l2;
|
|
t[0][0] = 1.0f - s * (y2 + z2);
|
|
t[1][0] = s * (xy - wz);
|
|
t[2][0] = s * (xz + wy);
|
|
|
|
t[0][1] = s * (xy + wz);
|
|
t[1][1] = 1.0f - s * (z2 + x2);
|
|
t[2][1] = s * (yz - wx);
|
|
|
|
t[0][2] = s * (xz - wy);
|
|
t[1][2] = s * (yz + wx);
|
|
t[2][2] = 1.0f - s * (x2 + y2);
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
QuaternionToVectors
|
|
|
|
Converts a quaternion to angle vectors
|
|
================
|
|
*/
|
|
void QuaternionToVectors( const vec4_t quat, vec3_t forward, vec3_t right, vec3_t up ) {
|
|
float t[3][3];
|
|
|
|
QuaternionToOrientation( quat, t );
|
|
OrientationToVectors( t, forward, right, up );
|
|
/*
|
|
float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
|
|
|
|
// calculate coefficients
|
|
x2 = quat[0] + quat[0];
|
|
y2 = quat[1] + quat[1];
|
|
z2 = quat[2] + quat[2];
|
|
xx = quat[0] * x2; xy = quat[0] * y2; xz = quat[0] * z2;
|
|
yy = quat[1] * y2; yz = quat[1] * z2; zz = quat[2] * z2;
|
|
wx = quat[3] * x2; wy = quat[3] * y2; wz = quat[3] * z2;
|
|
|
|
right[0] = 1.0 - (yy + zz); right[1] = xy - wz; right[2] = xz + wy;
|
|
forward[0] = xy + wz; forward[1] = 1.0 - (xx + zz); forward[2] = yz - wx;
|
|
up[0] = xz - wy; up[1] = yz + wx; up[2] = 1.0 - (xx + yy);
|
|
|
|
VectorNormalize(right);
|
|
VectorNormalize(forward);
|
|
VectorNormalize(up);
|
|
*/
|
|
}
|
|
// END
|
|
|
|
|
|
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
|
|
float angle;
|
|
static float sr, sp, sy, cr, cp, cy;
|
|
// static to help MS compiler fp bugs
|
|
|
|
// STONELANCE
|
|
// angle = angles[YAW] * (M_PI*2 / 360);
|
|
angle = angles[YAW] * M_PI_180;
|
|
// END
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
// STONELANCE
|
|
// angle = angles[PITCH] * (M_PI*2 / 360);
|
|
angle = angles[PITCH] * M_PI_180;
|
|
// END
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
// STONELANCE
|
|
// angle = angles[ROLL] * (M_PI*2 / 360);
|
|
angle = angles[ROLL] * M_PI_180;
|
|
// END
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
|
|
if (forward)
|
|
{
|
|
forward[0] = cp*cy;
|
|
forward[1] = cp*sy;
|
|
forward[2] = -sp;
|
|
}
|
|
if (right)
|
|
{
|
|
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
|
|
right[1] = (-1*sr*sp*sy+-1*cr*cy);
|
|
right[2] = -1*sr*cp;
|
|
}
|
|
if (up)
|
|
{
|
|
up[0] = (cr*sp*cy+-sr*-sy);
|
|
up[1] = (cr*sp*sy+-sr*cy);
|
|
up[2] = cr*cp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
void PerpendicularVector( vec3_t dst, const vec3_t src )
|
|
{
|
|
int pos;
|
|
int i;
|
|
float minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
*/
|
|
for ( pos = 0, i = 0; i < 3; i++ )
|
|
{
|
|
if ( fabs( src[i] ) < minelem )
|
|
{
|
|
pos = i;
|
|
minelem = fabs( src[i] );
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src
|
|
*/
|
|
ProjectPointOnPlane( dst, tempvec, src );
|
|
|
|
/*
|
|
** normalize the result
|
|
*/
|
|
VectorNormalize( dst );
|
|
}
|
|
|
|
/*
|
|
================
|
|
Q_isnan
|
|
|
|
Don't pass doubles to this
|
|
================
|
|
*/
|
|
int Q_isnan( float x )
|
|
{
|
|
floatint_t fi;
|
|
|
|
fi.f = x;
|
|
fi.ui &= 0x7FFFFFFF;
|
|
fi.ui = 0x7F800000 - fi.ui;
|
|
|
|
return (int)( (unsigned int)fi.ui >> 31 );
|
|
}
|
|
//------------------------------------------------------------------------
|
|
|
|
#ifndef Q3_VM
|
|
/*
|
|
=====================
|
|
Q_acos
|
|
|
|
the msvc acos doesn't always return a value between 0 and PI:
|
|
|
|
int i;
|
|
i = 1065353246;
|
|
acos(*(float*) &i) == -1.#IND0
|
|
|
|
=====================
|
|
*/
|
|
float Q_acos(float c) {
|
|
float angle;
|
|
|
|
angle = acos(c);
|
|
|
|
if (angle > M_PI) {
|
|
return M_PI;
|
|
}
|
|
if (angle < 0.0f) {
|
|
return 0.0f;
|
|
}
|
|
return angle;
|
|
}
|
|
|
|
/*
|
|
=====================
|
|
Q_asin
|
|
|
|
the msvc asin probably has same type of behavior as acos
|
|
|
|
=====================
|
|
*/
|
|
float Q_asin(float c) {
|
|
float angle;
|
|
|
|
angle = asin(c);
|
|
|
|
if (angle > M_PI_2) {
|
|
return M_PI_2;
|
|
}
|
|
if (angle < -M_PI_2) {
|
|
return -M_PI_2;
|
|
}
|
|
return angle;
|
|
}
|
|
#endif
|