mirror of
https://github.com/Q3Rally-Team/q3rally.git
synced 2024-11-26 22:01:50 +00:00
1568196e27
Updated to latest recommended build settings, increased deployment target to 10.7 Further tweaks to Xcode project Now works as well as possible in Xcode 11 Figured out method of referencing GLSL generated C files outside of code directory Update README.md Add C syntax highlighting to readme Simplify glsl -> C stringification Make LCC path resolution more robust GitHub Actions setup Remove old CI system configurations Add status badge to README Fix shader stringify Run apt-get update before installing deps Avoid platform sed differences Run actions on pull request too Use `r_texturemode GL_LINEAR_MIPMAP_LINEAR` by default [sdl] Turn tentative definition into actual definition. Add TOOLS_CFLAGS to build preamble Fix use of TOOLS_CC being reported as CC Use the correct compiler for tools when cross building under cygwin Allow using pulseaudio for SDL audio capture Restore bots crushing unseen player on q3tourney6 in non-CTF Fix the number of weights in the IQM model calculation Fixes a crash when compiling the project on windows in 64 bit mode.
1758 lines
55 KiB
C
1758 lines
55 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu>
|
|
Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com>
|
|
Copyright (C) 2011-2019 Zack Middleton <zturtleman@gmail.com>
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Quake III Arena source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
|
|
#include "tr_local.h"
|
|
|
|
#define LL(x) x=LittleLong(x)
|
|
|
|
// 3x4 identity matrix
|
|
static float identityMatrix[12] = {
|
|
1, 0, 0, 0,
|
|
0, 1, 0, 0,
|
|
0, 0, 1, 0
|
|
};
|
|
|
|
static qboolean IQM_CheckRange( iqmHeader_t *header, int offset,
|
|
int count, int size ) {
|
|
// return true if the range specified by offset, count and size
|
|
// doesn't fit into the file
|
|
return ( count <= 0 ||
|
|
offset <= 0 ||
|
|
offset > header->filesize ||
|
|
offset + count * size < 0 ||
|
|
offset + count * size > header->filesize );
|
|
}
|
|
// "multiply" 3x4 matrices, these are assumed to be the top 3 rows
|
|
// of a 4x4 matrix with the last row = (0 0 0 1)
|
|
static void Matrix34Multiply( const float *a, const float *b, float *out ) {
|
|
out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8];
|
|
out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9];
|
|
out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10];
|
|
out[ 3] = a[0] * b[3] + a[1] * b[7] + a[ 2] * b[11] + a[ 3];
|
|
out[ 4] = a[4] * b[0] + a[5] * b[4] + a[ 6] * b[ 8];
|
|
out[ 5] = a[4] * b[1] + a[5] * b[5] + a[ 6] * b[ 9];
|
|
out[ 6] = a[4] * b[2] + a[5] * b[6] + a[ 6] * b[10];
|
|
out[ 7] = a[4] * b[3] + a[5] * b[7] + a[ 6] * b[11] + a[ 7];
|
|
out[ 8] = a[8] * b[0] + a[9] * b[4] + a[10] * b[ 8];
|
|
out[ 9] = a[8] * b[1] + a[9] * b[5] + a[10] * b[ 9];
|
|
out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10];
|
|
out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11];
|
|
}
|
|
static void JointToMatrix( const quat_t rot, const vec3_t scale, const vec3_t trans,
|
|
float *mat ) {
|
|
float xx = 2.0f * rot[0] * rot[0];
|
|
float yy = 2.0f * rot[1] * rot[1];
|
|
float zz = 2.0f * rot[2] * rot[2];
|
|
float xy = 2.0f * rot[0] * rot[1];
|
|
float xz = 2.0f * rot[0] * rot[2];
|
|
float yz = 2.0f * rot[1] * rot[2];
|
|
float wx = 2.0f * rot[3] * rot[0];
|
|
float wy = 2.0f * rot[3] * rot[1];
|
|
float wz = 2.0f * rot[3] * rot[2];
|
|
|
|
mat[ 0] = scale[0] * (1.0f - (yy + zz));
|
|
mat[ 1] = scale[0] * (xy - wz);
|
|
mat[ 2] = scale[0] * (xz + wy);
|
|
mat[ 3] = trans[0];
|
|
mat[ 4] = scale[1] * (xy + wz);
|
|
mat[ 5] = scale[1] * (1.0f - (xx + zz));
|
|
mat[ 6] = scale[1] * (yz - wx);
|
|
mat[ 7] = trans[1];
|
|
mat[ 8] = scale[2] * (xz - wy);
|
|
mat[ 9] = scale[2] * (yz + wx);
|
|
mat[10] = scale[2] * (1.0f - (xx + yy));
|
|
mat[11] = trans[2];
|
|
}
|
|
static void Matrix34Invert( const float *inMat, float *outMat ) {
|
|
vec3_t trans;
|
|
float invSqrLen, *v;
|
|
|
|
outMat[ 0] = inMat[ 0]; outMat[ 1] = inMat[ 4]; outMat[ 2] = inMat[ 8];
|
|
outMat[ 4] = inMat[ 1]; outMat[ 5] = inMat[ 5]; outMat[ 6] = inMat[ 9];
|
|
outMat[ 8] = inMat[ 2]; outMat[ 9] = inMat[ 6]; outMat[10] = inMat[10];
|
|
|
|
v = outMat + 0; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
|
|
v = outMat + 4; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
|
|
v = outMat + 8; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
|
|
|
|
trans[0] = inMat[ 3];
|
|
trans[1] = inMat[ 7];
|
|
trans[2] = inMat[11];
|
|
|
|
outMat[ 3] = -DotProduct(outMat + 0, trans);
|
|
outMat[ 7] = -DotProduct(outMat + 4, trans);
|
|
outMat[11] = -DotProduct(outMat + 8, trans);
|
|
}
|
|
static void QuatSlerp(const quat_t from, const quat_t _to, float fraction, quat_t out) {
|
|
float angle, cosAngle, sinAngle, backlerp, lerp;
|
|
quat_t to;
|
|
|
|
// cos() of angle
|
|
cosAngle = from[0] * _to[0] + from[1] * _to[1] + from[2] * _to[2] + from[3] * _to[3];
|
|
|
|
// negative handling is needed for taking shortest path (required for model joints)
|
|
if ( cosAngle < 0.0f ) {
|
|
cosAngle = -cosAngle;
|
|
to[0] = - _to[0];
|
|
to[1] = - _to[1];
|
|
to[2] = - _to[2];
|
|
to[3] = - _to[3];
|
|
} else {
|
|
QuatCopy( _to, to );
|
|
}
|
|
|
|
if ( cosAngle < 0.999999f ) {
|
|
// spherical lerp (slerp)
|
|
angle = acosf( cosAngle );
|
|
sinAngle = sinf( angle );
|
|
backlerp = sinf( ( 1.0f - fraction ) * angle ) / sinAngle;
|
|
lerp = sinf( fraction * angle ) / sinAngle;
|
|
} else {
|
|
// linear lerp
|
|
backlerp = 1.0f - fraction;
|
|
lerp = fraction;
|
|
}
|
|
|
|
out[0] = from[0] * backlerp + to[0] * lerp;
|
|
out[1] = from[1] * backlerp + to[1] * lerp;
|
|
out[2] = from[2] * backlerp + to[2] * lerp;
|
|
out[3] = from[3] * backlerp + to[3] * lerp;
|
|
}
|
|
static vec_t QuatNormalize2( const quat_t v, quat_t out) {
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2] + v[3]*v[3];
|
|
|
|
if (length) {
|
|
/* writing it this way allows gcc to recognize that rsqrt can be used */
|
|
ilength = 1/(float)sqrt (length);
|
|
/* sqrt(length) = length * (1 / sqrt(length)) */
|
|
length *= ilength;
|
|
out[0] = v[0]*ilength;
|
|
out[1] = v[1]*ilength;
|
|
out[2] = v[2]*ilength;
|
|
out[3] = v[3]*ilength;
|
|
} else {
|
|
out[0] = out[1] = out[2] = 0;
|
|
out[3] = -1;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_LoadIQM
|
|
|
|
Load an IQM model and compute the joint matrices for every frame.
|
|
=================
|
|
*/
|
|
qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_name ) {
|
|
iqmHeader_t *header;
|
|
iqmVertexArray_t *vertexarray;
|
|
iqmTriangle_t *triangle;
|
|
iqmMesh_t *mesh;
|
|
iqmJoint_t *joint;
|
|
iqmPose_t *pose;
|
|
iqmBounds_t *bounds;
|
|
unsigned short *framedata;
|
|
char *str;
|
|
int i, j, k;
|
|
iqmTransform_t *transform;
|
|
float *mat, *matInv;
|
|
size_t size, joint_names;
|
|
byte *dataPtr;
|
|
iqmData_t *iqmData;
|
|
srfIQModel_t *surface;
|
|
char meshName[MAX_QPATH];
|
|
int vertexArrayFormat[IQM_COLOR+1];
|
|
int allocateInfluences;
|
|
byte *blendIndexes;
|
|
union {
|
|
byte *b;
|
|
float *f;
|
|
} blendWeights;
|
|
|
|
if( filesize < sizeof(iqmHeader_t) ) {
|
|
return qfalse;
|
|
}
|
|
|
|
header = (iqmHeader_t *)buffer;
|
|
if( Q_strncmp( header->magic, IQM_MAGIC, sizeof(header->magic) ) ) {
|
|
return qfalse;
|
|
}
|
|
|
|
LL( header->version );
|
|
if( header->version != IQM_VERSION ) {
|
|
ri.Printf(PRINT_WARNING, "R_LoadIQM: %s is a unsupported IQM version (%d), only version %d is supported.\n",
|
|
mod_name, header->version, IQM_VERSION);
|
|
return qfalse;
|
|
}
|
|
|
|
LL( header->filesize );
|
|
if( header->filesize > filesize || header->filesize > 16<<20 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
LL( header->flags );
|
|
LL( header->num_text );
|
|
LL( header->ofs_text );
|
|
LL( header->num_meshes );
|
|
LL( header->ofs_meshes );
|
|
LL( header->num_vertexarrays );
|
|
LL( header->num_vertexes );
|
|
LL( header->ofs_vertexarrays );
|
|
LL( header->num_triangles );
|
|
LL( header->ofs_triangles );
|
|
LL( header->ofs_adjacency );
|
|
LL( header->num_joints );
|
|
LL( header->ofs_joints );
|
|
LL( header->num_poses );
|
|
LL( header->ofs_poses );
|
|
LL( header->num_anims );
|
|
LL( header->ofs_anims );
|
|
LL( header->num_frames );
|
|
LL( header->num_framechannels );
|
|
LL( header->ofs_frames );
|
|
LL( header->ofs_bounds );
|
|
LL( header->num_comment );
|
|
LL( header->ofs_comment );
|
|
LL( header->num_extensions );
|
|
LL( header->ofs_extensions );
|
|
|
|
// check ioq3 joint limit
|
|
if ( header->num_joints > IQM_MAX_JOINTS ) {
|
|
ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %d joints (%d).\n",
|
|
mod_name, IQM_MAX_JOINTS, header->num_joints);
|
|
return qfalse;
|
|
}
|
|
|
|
for ( i = 0; i < ARRAY_LEN( vertexArrayFormat ); i++ ) {
|
|
vertexArrayFormat[i] = -1;
|
|
}
|
|
|
|
blendIndexes = NULL;
|
|
blendWeights.b = NULL;
|
|
|
|
allocateInfluences = 0;
|
|
|
|
if ( header->num_meshes )
|
|
{
|
|
// check and swap vertex arrays
|
|
if( IQM_CheckRange( header, header->ofs_vertexarrays,
|
|
header->num_vertexarrays,
|
|
sizeof(iqmVertexArray_t) ) ) {
|
|
return qfalse;
|
|
}
|
|
vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays);
|
|
for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) {
|
|
int n, *intPtr;
|
|
|
|
if( vertexarray->size <= 0 || vertexarray->size > 4 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
// total number of values
|
|
n = header->num_vertexes * vertexarray->size;
|
|
|
|
switch( vertexarray->format ) {
|
|
case IQM_BYTE:
|
|
case IQM_UBYTE:
|
|
// 1 byte, no swapping necessary
|
|
if( IQM_CheckRange( header, vertexarray->offset,
|
|
n, sizeof(byte) ) ) {
|
|
return qfalse;
|
|
}
|
|
break;
|
|
case IQM_INT:
|
|
case IQM_UINT:
|
|
case IQM_FLOAT:
|
|
// 4-byte swap
|
|
if( IQM_CheckRange( header, vertexarray->offset,
|
|
n, sizeof(float) ) ) {
|
|
return qfalse;
|
|
}
|
|
intPtr = (int *)((byte *)header + vertexarray->offset);
|
|
for( j = 0; j < n; j++, intPtr++ ) {
|
|
LL( *intPtr );
|
|
}
|
|
break;
|
|
default:
|
|
// not supported
|
|
return qfalse;
|
|
break;
|
|
}
|
|
|
|
if( vertexarray->type < ARRAY_LEN( vertexArrayFormat ) ) {
|
|
vertexArrayFormat[vertexarray->type] = vertexarray->format;
|
|
}
|
|
|
|
switch( vertexarray->type ) {
|
|
case IQM_POSITION:
|
|
case IQM_NORMAL:
|
|
if( vertexarray->format != IQM_FLOAT ||
|
|
vertexarray->size != 3 ) {
|
|
return qfalse;
|
|
}
|
|
break;
|
|
case IQM_TANGENT:
|
|
if( vertexarray->format != IQM_FLOAT ||
|
|
vertexarray->size != 4 ) {
|
|
return qfalse;
|
|
}
|
|
break;
|
|
case IQM_TEXCOORD:
|
|
if( vertexarray->format != IQM_FLOAT ||
|
|
vertexarray->size != 2 ) {
|
|
return qfalse;
|
|
}
|
|
break;
|
|
case IQM_BLENDINDEXES:
|
|
if( (vertexarray->format != IQM_INT &&
|
|
vertexarray->format != IQM_UBYTE) ||
|
|
vertexarray->size != 4 ) {
|
|
return qfalse;
|
|
}
|
|
blendIndexes = (byte*)header + vertexarray->offset;
|
|
break;
|
|
case IQM_BLENDWEIGHTS:
|
|
if( (vertexarray->format != IQM_FLOAT &&
|
|
vertexarray->format != IQM_UBYTE) ||
|
|
vertexarray->size != 4 ) {
|
|
return qfalse;
|
|
}
|
|
if( vertexarray->format == IQM_FLOAT ) {
|
|
blendWeights.f = (float*)( (byte*)header + vertexarray->offset );
|
|
} else {
|
|
blendWeights.b = (byte*)header + vertexarray->offset;
|
|
}
|
|
break;
|
|
case IQM_COLOR:
|
|
if( vertexarray->format != IQM_UBYTE ||
|
|
vertexarray->size != 4 ) {
|
|
return qfalse;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// check for required vertex arrays
|
|
if( vertexArrayFormat[IQM_POSITION] == -1 || vertexArrayFormat[IQM_NORMAL] == -1 || vertexArrayFormat[IQM_TEXCOORD] == -1 ) {
|
|
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s is missing IQM_POSITION, IQM_NORMAL, and/or IQM_TEXCOORD array.\n", mod_name );
|
|
return qfalse;
|
|
}
|
|
|
|
if( header->num_joints ) {
|
|
if( vertexArrayFormat[IQM_BLENDINDEXES] == -1 || vertexArrayFormat[IQM_BLENDWEIGHTS] == -1 ) {
|
|
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s is missing IQM_BLENDINDEXES and/or IQM_BLENDWEIGHTS array.\n", mod_name );
|
|
return qfalse;
|
|
}
|
|
} else {
|
|
// ignore blend arrays if present
|
|
vertexArrayFormat[IQM_BLENDINDEXES] = -1;
|
|
vertexArrayFormat[IQM_BLENDWEIGHTS] = -1;
|
|
}
|
|
|
|
// opengl2 renderer requires tangents
|
|
if( vertexArrayFormat[IQM_TANGENT] == -1 ) {
|
|
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s is missing IQM_TANGENT array.\n", mod_name );
|
|
return qfalse;
|
|
}
|
|
|
|
// check and swap triangles
|
|
if( IQM_CheckRange( header, header->ofs_triangles,
|
|
header->num_triangles, sizeof(iqmTriangle_t) ) ) {
|
|
return qfalse;
|
|
}
|
|
triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles);
|
|
for( i = 0; i < header->num_triangles; i++, triangle++ ) {
|
|
LL( triangle->vertex[0] );
|
|
LL( triangle->vertex[1] );
|
|
LL( triangle->vertex[2] );
|
|
|
|
if( triangle->vertex[0] > header->num_vertexes ||
|
|
triangle->vertex[1] > header->num_vertexes ||
|
|
triangle->vertex[2] > header->num_vertexes ) {
|
|
return qfalse;
|
|
}
|
|
}
|
|
|
|
// check and swap meshes
|
|
if( IQM_CheckRange( header, header->ofs_meshes,
|
|
header->num_meshes, sizeof(iqmMesh_t) ) ) {
|
|
return qfalse;
|
|
}
|
|
mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes);
|
|
for( i = 0; i < header->num_meshes; i++, mesh++) {
|
|
LL( mesh->name );
|
|
LL( mesh->material );
|
|
LL( mesh->first_vertex );
|
|
LL( mesh->num_vertexes );
|
|
LL( mesh->first_triangle );
|
|
LL( mesh->num_triangles );
|
|
|
|
if ( mesh->name < header->num_text ) {
|
|
Q_strncpyz( meshName, (char*)header + header->ofs_text + mesh->name, sizeof (meshName) );
|
|
} else {
|
|
meshName[0] = '\0';
|
|
}
|
|
|
|
// check ioq3 limits
|
|
if ( mesh->num_vertexes >= SHADER_MAX_VERTEXES ) {
|
|
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s has more than %i verts on %s (%i).\n",
|
|
mod_name, SHADER_MAX_VERTEXES - 1, meshName[0] ? meshName : "a surface",
|
|
mesh->num_vertexes );
|
|
return qfalse;
|
|
}
|
|
if ( mesh->num_triangles*3 >= SHADER_MAX_INDEXES ) {
|
|
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s has more than %i triangles on %s (%i).\n",
|
|
mod_name, ( SHADER_MAX_INDEXES / 3 ) - 1, meshName[0] ? meshName : "a surface",
|
|
mesh->num_triangles );
|
|
return qfalse;
|
|
}
|
|
|
|
if( mesh->first_vertex >= header->num_vertexes ||
|
|
mesh->first_vertex + mesh->num_vertexes > header->num_vertexes ||
|
|
mesh->first_triangle >= header->num_triangles ||
|
|
mesh->first_triangle + mesh->num_triangles > header->num_triangles ||
|
|
mesh->name >= header->num_text ||
|
|
mesh->material >= header->num_text ) {
|
|
return qfalse;
|
|
}
|
|
|
|
// find number of unique blend influences per mesh
|
|
if( header->num_joints ) {
|
|
for( j = 0; j < mesh->num_vertexes; j++ ) {
|
|
int vtx = mesh->first_vertex + j;
|
|
|
|
for( k = 0; k < j; k++ ) {
|
|
int influence = mesh->first_vertex + k;
|
|
|
|
if( *(int*)&blendIndexes[4*influence] != *(int*)&blendIndexes[4*vtx] ) {
|
|
continue;
|
|
}
|
|
|
|
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
|
if ( blendWeights.f[4*influence+0] == blendWeights.f[4*vtx+0] &&
|
|
blendWeights.f[4*influence+1] == blendWeights.f[4*vtx+1] &&
|
|
blendWeights.f[4*influence+2] == blendWeights.f[4*vtx+2] &&
|
|
blendWeights.f[4*influence+3] == blendWeights.f[4*vtx+3] ) {
|
|
break;
|
|
}
|
|
} else {
|
|
if ( *(int*)&blendWeights.b[4*influence] == *(int*)&blendWeights.b[4*vtx] ) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( k == j ) {
|
|
allocateInfluences++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( header->num_poses != header->num_joints && header->num_poses != 0 ) {
|
|
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s has %d poses and %d joints, must have the same number or 0 poses\n",
|
|
mod_name, header->num_poses, header->num_joints );
|
|
return qfalse;
|
|
}
|
|
|
|
joint_names = 0;
|
|
|
|
if ( header->num_joints )
|
|
{
|
|
// check and swap joints
|
|
if( IQM_CheckRange( header, header->ofs_joints,
|
|
header->num_joints, sizeof(iqmJoint_t) ) ) {
|
|
return qfalse;
|
|
}
|
|
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
|
|
for( i = 0; i < header->num_joints; i++, joint++ ) {
|
|
LL( joint->name );
|
|
LL( joint->parent );
|
|
LL( joint->translate[0] );
|
|
LL( joint->translate[1] );
|
|
LL( joint->translate[2] );
|
|
LL( joint->rotate[0] );
|
|
LL( joint->rotate[1] );
|
|
LL( joint->rotate[2] );
|
|
LL( joint->rotate[3] );
|
|
LL( joint->scale[0] );
|
|
LL( joint->scale[1] );
|
|
LL( joint->scale[2] );
|
|
|
|
if( joint->parent < -1 ||
|
|
joint->parent >= (int)header->num_joints ||
|
|
joint->name >= (int)header->num_text ) {
|
|
return qfalse;
|
|
}
|
|
joint_names += strlen( (char *)header + header->ofs_text +
|
|
joint->name ) + 1;
|
|
}
|
|
}
|
|
|
|
if ( header->num_poses )
|
|
{
|
|
// check and swap poses
|
|
if( IQM_CheckRange( header, header->ofs_poses,
|
|
header->num_poses, sizeof(iqmPose_t) ) ) {
|
|
return qfalse;
|
|
}
|
|
pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
|
|
for( i = 0; i < header->num_poses; i++, pose++ ) {
|
|
LL( pose->parent );
|
|
LL( pose->mask );
|
|
LL( pose->channeloffset[0] );
|
|
LL( pose->channeloffset[1] );
|
|
LL( pose->channeloffset[2] );
|
|
LL( pose->channeloffset[3] );
|
|
LL( pose->channeloffset[4] );
|
|
LL( pose->channeloffset[5] );
|
|
LL( pose->channeloffset[6] );
|
|
LL( pose->channeloffset[7] );
|
|
LL( pose->channeloffset[8] );
|
|
LL( pose->channeloffset[9] );
|
|
LL( pose->channelscale[0] );
|
|
LL( pose->channelscale[1] );
|
|
LL( pose->channelscale[2] );
|
|
LL( pose->channelscale[3] );
|
|
LL( pose->channelscale[4] );
|
|
LL( pose->channelscale[5] );
|
|
LL( pose->channelscale[6] );
|
|
LL( pose->channelscale[7] );
|
|
LL( pose->channelscale[8] );
|
|
LL( pose->channelscale[9] );
|
|
}
|
|
}
|
|
|
|
if (header->ofs_bounds)
|
|
{
|
|
// check and swap model bounds
|
|
if(IQM_CheckRange(header, header->ofs_bounds,
|
|
header->num_frames, sizeof(*bounds)))
|
|
{
|
|
return qfalse;
|
|
}
|
|
bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds);
|
|
for(i = 0; i < header->num_frames; i++)
|
|
{
|
|
LL(bounds->bbmin[0]);
|
|
LL(bounds->bbmin[1]);
|
|
LL(bounds->bbmin[2]);
|
|
LL(bounds->bbmax[0]);
|
|
LL(bounds->bbmax[1]);
|
|
LL(bounds->bbmax[2]);
|
|
|
|
bounds++;
|
|
}
|
|
}
|
|
|
|
// allocate the model and copy the data
|
|
size = sizeof(iqmData_t);
|
|
if( header->num_meshes ) {
|
|
size += header->num_meshes * sizeof( srfIQModel_t ); // surfaces
|
|
size += header->num_triangles * 3 * sizeof(int); // triangles
|
|
size += header->num_vertexes * 3 * sizeof(float); // positions
|
|
size += header->num_vertexes * 2 * sizeof(float); // texcoords
|
|
size += header->num_vertexes * 3 * sizeof(float); // normals
|
|
|
|
if ( vertexArrayFormat[IQM_TANGENT] != -1 ) {
|
|
size += header->num_vertexes * 4 * sizeof(float); // tangents
|
|
}
|
|
|
|
if ( vertexArrayFormat[IQM_COLOR] != -1 ) {
|
|
size += header->num_vertexes * 4 * sizeof(byte); // colors
|
|
}
|
|
|
|
if ( allocateInfluences ) {
|
|
size += header->num_vertexes * sizeof(int); // influences
|
|
size += allocateInfluences * 4 * sizeof(byte); // influenceBlendIndexes
|
|
|
|
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
|
|
size += allocateInfluences * 4 * sizeof(byte); // influenceBlendWeights
|
|
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
|
size += allocateInfluences * 4 * sizeof(float); // influenceBlendWeights
|
|
}
|
|
}
|
|
}
|
|
if( header->num_joints ) {
|
|
size += joint_names; // joint names
|
|
size += header->num_joints * sizeof(int); // joint parents
|
|
size += header->num_joints * 12 * sizeof(float); // bind joint matricies
|
|
size += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
|
|
}
|
|
if( header->num_poses ) {
|
|
size += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
|
|
}
|
|
if( header->ofs_bounds ) {
|
|
size += header->num_frames * 6 * sizeof(float); // model bounds
|
|
} else if( header->num_meshes && header->num_frames == 0 ) {
|
|
size += 6 * sizeof(float); // model bounds
|
|
}
|
|
|
|
mod->type = MOD_IQM;
|
|
iqmData = (iqmData_t *)ri.Hunk_Alloc( size, h_low );
|
|
mod->modelData = iqmData;
|
|
|
|
// fill header
|
|
iqmData->num_vertexes = ( header->num_meshes > 0 ) ? header->num_vertexes : 0;
|
|
iqmData->num_triangles = ( header->num_meshes > 0 ) ? header->num_triangles : 0;
|
|
iqmData->num_frames = header->num_frames;
|
|
iqmData->num_surfaces = header->num_meshes;
|
|
iqmData->num_joints = header->num_joints;
|
|
iqmData->num_poses = header->num_poses;
|
|
iqmData->blendWeightsType = vertexArrayFormat[IQM_BLENDWEIGHTS];
|
|
|
|
dataPtr = (byte*)iqmData + sizeof(iqmData_t);
|
|
if( header->num_meshes ) {
|
|
iqmData->surfaces = (struct srfIQModel_s*)dataPtr;
|
|
dataPtr += header->num_meshes * sizeof( srfIQModel_t );
|
|
|
|
iqmData->triangles = (int*)dataPtr;
|
|
dataPtr += header->num_triangles * 3 * sizeof(int); // triangles
|
|
|
|
iqmData->positions = (float*)dataPtr;
|
|
dataPtr += header->num_vertexes * 3 * sizeof(float); // positions
|
|
|
|
iqmData->texcoords = (float*)dataPtr;
|
|
dataPtr += header->num_vertexes * 2 * sizeof(float); // texcoords
|
|
|
|
iqmData->normals = (float*)dataPtr;
|
|
dataPtr += header->num_vertexes * 3 * sizeof(float); // normals
|
|
|
|
if ( vertexArrayFormat[IQM_TANGENT] != -1 ) {
|
|
iqmData->tangents = (float*)dataPtr;
|
|
dataPtr += header->num_vertexes * 4 * sizeof(float); // tangents
|
|
}
|
|
|
|
if ( vertexArrayFormat[IQM_COLOR] != -1 ) {
|
|
iqmData->colors = (byte*)dataPtr;
|
|
dataPtr += header->num_vertexes * 4 * sizeof(byte); // colors
|
|
}
|
|
|
|
if ( allocateInfluences ) {
|
|
iqmData->influences = (int*)dataPtr;
|
|
dataPtr += header->num_vertexes * sizeof(int); // influences
|
|
|
|
iqmData->influenceBlendIndexes = (byte*)dataPtr;
|
|
dataPtr += allocateInfluences * 4 * sizeof(byte); // influenceBlendIndexes
|
|
|
|
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
|
|
iqmData->influenceBlendWeights.b = (byte*)dataPtr;
|
|
dataPtr += allocateInfluences * 4 * sizeof(byte); // influenceBlendWeights
|
|
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
|
iqmData->influenceBlendWeights.f = (float*)dataPtr;
|
|
dataPtr += allocateInfluences * 4 * sizeof(float); // influenceBlendWeights
|
|
}
|
|
}
|
|
}
|
|
if( header->num_joints ) {
|
|
iqmData->jointNames = (char*)dataPtr;
|
|
dataPtr += joint_names; // joint names
|
|
|
|
iqmData->jointParents = (int*)dataPtr;
|
|
dataPtr += header->num_joints * sizeof(int); // joint parents
|
|
|
|
iqmData->bindJoints = (float*)dataPtr;
|
|
dataPtr += header->num_joints * 12 * sizeof(float); // bind joint matricies
|
|
|
|
iqmData->invBindJoints = (float*)dataPtr;
|
|
dataPtr += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
|
|
}
|
|
if( header->num_poses ) {
|
|
iqmData->poses = (iqmTransform_t*)dataPtr;
|
|
dataPtr += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
|
|
}
|
|
if( header->ofs_bounds ) {
|
|
iqmData->bounds = (float*)dataPtr;
|
|
dataPtr += header->num_frames * 6 * sizeof(float); // model bounds
|
|
} else if( header->num_meshes && header->num_frames == 0 ) {
|
|
iqmData->bounds = (float*)dataPtr;
|
|
dataPtr += 6 * sizeof(float); // model bounds
|
|
}
|
|
|
|
if( header->num_meshes )
|
|
{
|
|
// register shaders
|
|
// overwrite the material offset with the shader index
|
|
mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes);
|
|
surface = iqmData->surfaces;
|
|
str = (char *)header + header->ofs_text;
|
|
for( i = 0; i < header->num_meshes; i++, mesh++, surface++ ) {
|
|
surface->surfaceType = SF_IQM;
|
|
Q_strncpyz(surface->name, str + mesh->name, sizeof (surface->name));
|
|
Q_strlwr(surface->name); // lowercase the surface name so skin compares are faster
|
|
surface->shader = R_FindShader( str + mesh->material, LIGHTMAP_NONE, qtrue );
|
|
if( surface->shader->defaultShader )
|
|
surface->shader = tr.defaultShader;
|
|
surface->data = iqmData;
|
|
surface->first_vertex = mesh->first_vertex;
|
|
surface->num_vertexes = mesh->num_vertexes;
|
|
surface->first_triangle = mesh->first_triangle;
|
|
surface->num_triangles = mesh->num_triangles;
|
|
}
|
|
|
|
// copy triangles
|
|
triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles);
|
|
for( i = 0; i < header->num_triangles; i++, triangle++ ) {
|
|
iqmData->triangles[3*i+0] = triangle->vertex[0];
|
|
iqmData->triangles[3*i+1] = triangle->vertex[1];
|
|
iqmData->triangles[3*i+2] = triangle->vertex[2];
|
|
}
|
|
|
|
// copy vertexarrays and indexes
|
|
vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays);
|
|
for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) {
|
|
int n;
|
|
|
|
// skip disabled arrays
|
|
if( vertexarray->type < ARRAY_LEN( vertexArrayFormat )
|
|
&& vertexArrayFormat[vertexarray->type] == -1 )
|
|
continue;
|
|
|
|
// total number of values
|
|
n = header->num_vertexes * vertexarray->size;
|
|
|
|
switch( vertexarray->type ) {
|
|
case IQM_POSITION:
|
|
Com_Memcpy( iqmData->positions,
|
|
(byte *)header + vertexarray->offset,
|
|
n * sizeof(float) );
|
|
break;
|
|
case IQM_NORMAL:
|
|
Com_Memcpy( iqmData->normals,
|
|
(byte *)header + vertexarray->offset,
|
|
n * sizeof(float) );
|
|
break;
|
|
case IQM_TANGENT:
|
|
Com_Memcpy( iqmData->tangents,
|
|
(byte *)header + vertexarray->offset,
|
|
n * sizeof(float) );
|
|
break;
|
|
case IQM_TEXCOORD:
|
|
Com_Memcpy( iqmData->texcoords,
|
|
(byte *)header + vertexarray->offset,
|
|
n * sizeof(float) );
|
|
break;
|
|
case IQM_BLENDINDEXES:
|
|
case IQM_BLENDWEIGHTS:
|
|
break;
|
|
case IQM_COLOR:
|
|
Com_Memcpy( iqmData->colors,
|
|
(byte *)header + vertexarray->offset,
|
|
n * sizeof(byte) );
|
|
break;
|
|
}
|
|
}
|
|
|
|
// find unique blend influences per mesh
|
|
if( allocateInfluences ) {
|
|
int vtx, influence, totalInfluences = 0;
|
|
|
|
surface = iqmData->surfaces;
|
|
for( i = 0; i < header->num_meshes; i++, surface++ ) {
|
|
surface->first_influence = totalInfluences;
|
|
surface->num_influences = 0;
|
|
|
|
for( j = 0; j < surface->num_vertexes; j++ ) {
|
|
vtx = surface->first_vertex + j;
|
|
|
|
for( k = 0; k < surface->num_influences; k++ ) {
|
|
influence = surface->first_influence + k;
|
|
|
|
if( *(int*)&iqmData->influenceBlendIndexes[4*influence] != *(int*)&blendIndexes[4*vtx] ) {
|
|
continue;
|
|
}
|
|
|
|
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
|
if ( iqmData->influenceBlendWeights.f[4*influence+0] == blendWeights.f[4*vtx+0] &&
|
|
iqmData->influenceBlendWeights.f[4*influence+1] == blendWeights.f[4*vtx+1] &&
|
|
iqmData->influenceBlendWeights.f[4*influence+2] == blendWeights.f[4*vtx+2] &&
|
|
iqmData->influenceBlendWeights.f[4*influence+3] == blendWeights.f[4*vtx+3] ) {
|
|
break;
|
|
}
|
|
} else {
|
|
if ( *(int*)&iqmData->influenceBlendWeights.b[4*influence] == *(int*)&blendWeights.b[4*vtx] ) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
iqmData->influences[vtx] = surface->first_influence + k;
|
|
|
|
if( k == surface->num_influences ) {
|
|
influence = surface->first_influence + k;
|
|
|
|
iqmData->influenceBlendIndexes[4*influence+0] = blendIndexes[4*vtx+0];
|
|
iqmData->influenceBlendIndexes[4*influence+1] = blendIndexes[4*vtx+1];
|
|
iqmData->influenceBlendIndexes[4*influence+2] = blendIndexes[4*vtx+2];
|
|
iqmData->influenceBlendIndexes[4*influence+3] = blendIndexes[4*vtx+3];
|
|
|
|
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
|
iqmData->influenceBlendWeights.f[4*influence+0] = blendWeights.f[4*vtx+0];
|
|
iqmData->influenceBlendWeights.f[4*influence+1] = blendWeights.f[4*vtx+1];
|
|
iqmData->influenceBlendWeights.f[4*influence+2] = blendWeights.f[4*vtx+2];
|
|
iqmData->influenceBlendWeights.f[4*influence+3] = blendWeights.f[4*vtx+3];
|
|
} else {
|
|
iqmData->influenceBlendWeights.b[4*influence+0] = blendWeights.b[4*vtx+0];
|
|
iqmData->influenceBlendWeights.b[4*influence+1] = blendWeights.b[4*vtx+1];
|
|
iqmData->influenceBlendWeights.b[4*influence+2] = blendWeights.b[4*vtx+2];
|
|
iqmData->influenceBlendWeights.b[4*influence+3] = blendWeights.b[4*vtx+3];
|
|
}
|
|
|
|
totalInfluences++;
|
|
surface->num_influences++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( header->num_joints )
|
|
{
|
|
// copy joint names
|
|
str = iqmData->jointNames;
|
|
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
|
|
for( i = 0; i < header->num_joints; i++, joint++ ) {
|
|
char *name = (char *)header + header->ofs_text +
|
|
joint->name;
|
|
int len = strlen( name ) + 1;
|
|
Com_Memcpy( str, name, len );
|
|
str += len;
|
|
}
|
|
|
|
// copy joint parents
|
|
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
|
|
for( i = 0; i < header->num_joints; i++, joint++ ) {
|
|
iqmData->jointParents[i] = joint->parent;
|
|
}
|
|
|
|
// calculate bind joint matrices and their inverses
|
|
mat = iqmData->bindJoints;
|
|
matInv = iqmData->invBindJoints;
|
|
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
|
|
for( i = 0; i < header->num_joints; i++, joint++ ) {
|
|
float baseFrame[12], invBaseFrame[12];
|
|
|
|
QuatNormalize2( joint->rotate, joint->rotate );
|
|
|
|
JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame );
|
|
Matrix34Invert( baseFrame, invBaseFrame );
|
|
|
|
if ( joint->parent >= 0 )
|
|
{
|
|
Matrix34Multiply( iqmData->bindJoints + 12 * joint->parent, baseFrame, mat );
|
|
mat += 12;
|
|
Matrix34Multiply( invBaseFrame, iqmData->invBindJoints + 12 * joint->parent, matInv );
|
|
matInv += 12;
|
|
}
|
|
else
|
|
{
|
|
Com_Memcpy( mat, baseFrame, sizeof(baseFrame) );
|
|
mat += 12;
|
|
Com_Memcpy( matInv, invBaseFrame, sizeof(invBaseFrame) );
|
|
matInv += 12;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( header->num_poses )
|
|
{
|
|
// calculate pose transforms
|
|
transform = iqmData->poses;
|
|
framedata = (unsigned short *)((byte *)header + header->ofs_frames);
|
|
for( i = 0; i < header->num_frames; i++ ) {
|
|
pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
|
|
for( j = 0; j < header->num_poses; j++, pose++, transform++ ) {
|
|
vec3_t translate;
|
|
quat_t rotate;
|
|
vec3_t scale;
|
|
|
|
translate[0] = pose->channeloffset[0];
|
|
if( pose->mask & 0x001)
|
|
translate[0] += *framedata++ * pose->channelscale[0];
|
|
translate[1] = pose->channeloffset[1];
|
|
if( pose->mask & 0x002)
|
|
translate[1] += *framedata++ * pose->channelscale[1];
|
|
translate[2] = pose->channeloffset[2];
|
|
if( pose->mask & 0x004)
|
|
translate[2] += *framedata++ * pose->channelscale[2];
|
|
|
|
rotate[0] = pose->channeloffset[3];
|
|
if( pose->mask & 0x008)
|
|
rotate[0] += *framedata++ * pose->channelscale[3];
|
|
rotate[1] = pose->channeloffset[4];
|
|
if( pose->mask & 0x010)
|
|
rotate[1] += *framedata++ * pose->channelscale[4];
|
|
rotate[2] = pose->channeloffset[5];
|
|
if( pose->mask & 0x020)
|
|
rotate[2] += *framedata++ * pose->channelscale[5];
|
|
rotate[3] = pose->channeloffset[6];
|
|
if( pose->mask & 0x040)
|
|
rotate[3] += *framedata++ * pose->channelscale[6];
|
|
|
|
scale[0] = pose->channeloffset[7];
|
|
if( pose->mask & 0x080)
|
|
scale[0] += *framedata++ * pose->channelscale[7];
|
|
scale[1] = pose->channeloffset[8];
|
|
if( pose->mask & 0x100)
|
|
scale[1] += *framedata++ * pose->channelscale[8];
|
|
scale[2] = pose->channeloffset[9];
|
|
if( pose->mask & 0x200)
|
|
scale[2] += *framedata++ * pose->channelscale[9];
|
|
|
|
VectorCopy( translate, transform->translate );
|
|
QuatNormalize2( rotate, transform->rotate );
|
|
VectorCopy( scale, transform->scale );
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy model bounds
|
|
if(header->ofs_bounds)
|
|
{
|
|
mat = iqmData->bounds;
|
|
bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds);
|
|
for(i = 0; i < header->num_frames; i++)
|
|
{
|
|
mat[0] = bounds->bbmin[0];
|
|
mat[1] = bounds->bbmin[1];
|
|
mat[2] = bounds->bbmin[2];
|
|
mat[3] = bounds->bbmax[0];
|
|
mat[4] = bounds->bbmax[1];
|
|
mat[5] = bounds->bbmax[2];
|
|
|
|
mat += 6;
|
|
bounds++;
|
|
}
|
|
}
|
|
else if( header->num_meshes && header->num_frames == 0 )
|
|
{
|
|
mat = iqmData->bounds;
|
|
|
|
ClearBounds( &iqmData->bounds[0], &iqmData->bounds[3] );
|
|
for ( i = 0 ; i < header->num_vertexes ; i++ ) {
|
|
AddPointToBounds( &iqmData->positions[i*3], &iqmData->bounds[0], &iqmData->bounds[3] );
|
|
}
|
|
}
|
|
|
|
// Create VAO surfaces
|
|
if ( iqmData->num_surfaces && iqmData->num_joints <= glRefConfig.glslMaxAnimatedBones )
|
|
{
|
|
srfVaoIQModel_t *vaoSurf;
|
|
srfIQModel_t *surf;
|
|
|
|
iqmData->numVaoSurfaces = iqmData->num_surfaces;
|
|
iqmData->vaoSurfaces = ri.Hunk_Alloc(sizeof(*iqmData->vaoSurfaces) * iqmData->numVaoSurfaces, h_low);
|
|
|
|
vaoSurf = iqmData->vaoSurfaces;
|
|
surf = iqmData->surfaces;
|
|
for (i = 0; i < iqmData->num_surfaces; i++, vaoSurf++, surf++)
|
|
{
|
|
uint32_t offset_xyz, offset_st, offset_normal, offset_tangent;
|
|
uint32_t offset_blendindexes, offset_blendweights, stride;
|
|
uint32_t dataSize, dataOfs;
|
|
uint8_t *data;
|
|
glIndex_t indexes[SHADER_MAX_INDEXES];
|
|
glIndex_t *ptr;
|
|
int *tri;
|
|
|
|
offset_xyz = 0;
|
|
offset_st = offset_xyz + sizeof(float) * 3;
|
|
offset_normal = offset_st + sizeof(float) * 2;
|
|
offset_tangent = offset_normal + sizeof(int16_t) * 4;
|
|
|
|
if ( iqmData->num_joints )
|
|
{
|
|
offset_blendindexes = offset_tangent + sizeof(int16_t) * 4;
|
|
offset_blendweights = offset_blendindexes + sizeof(byte) * 4;
|
|
|
|
if ( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
|
stride = offset_blendweights + sizeof(float) * 4;
|
|
} else {
|
|
stride = offset_blendweights + sizeof(byte) * 4;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
stride = offset_tangent + sizeof(int16_t) * 4;
|
|
}
|
|
|
|
dataSize = surf->num_vertexes * stride;
|
|
|
|
data = ri.Malloc(dataSize);
|
|
dataOfs = 0;
|
|
|
|
for ( j = 0; j < surf->num_vertexes; j++ )
|
|
{
|
|
int vtx = surf->first_vertex + j;
|
|
|
|
// xyz
|
|
memcpy(data + dataOfs, &iqmData->positions[vtx*3], sizeof(float) * 3);
|
|
dataOfs += sizeof(float) * 3;
|
|
|
|
// st
|
|
memcpy(data + dataOfs, &iqmData->texcoords[vtx*2], sizeof(float) * 2);
|
|
dataOfs += sizeof(float) * 2;
|
|
|
|
// normal
|
|
R_VaoPackNormal((int16_t*)(data + dataOfs), &iqmData->normals[vtx*3]);
|
|
dataOfs += sizeof(int16_t) * 4;
|
|
|
|
// tangent
|
|
R_VaoPackTangent((int16_t*)(data + dataOfs), &iqmData->tangents[vtx*4]);
|
|
dataOfs += sizeof(int16_t) * 4;
|
|
|
|
if ( iqmData->num_joints )
|
|
{
|
|
// blendindexes
|
|
memcpy(data + dataOfs, &blendIndexes[vtx*4], sizeof(byte) * 4);
|
|
dataOfs += sizeof(byte) * 4;
|
|
|
|
// blendweights
|
|
if ( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
|
memcpy(data + dataOfs, &blendWeights.f[vtx*4], sizeof(float) * 4);
|
|
dataOfs += sizeof(float) * 4;
|
|
} else {
|
|
memcpy(data + dataOfs, &blendWeights.b[vtx*4], sizeof(byte) * 4);
|
|
dataOfs += sizeof(byte) * 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
tri = iqmData->triangles + 3 * surf->first_triangle;
|
|
ptr = indexes;
|
|
|
|
for( j = 0; j < surf->num_triangles; j++ ) {
|
|
*ptr++ = (*tri++ - surf->first_vertex);
|
|
*ptr++ = (*tri++ - surf->first_vertex);
|
|
*ptr++ = (*tri++ - surf->first_vertex);
|
|
}
|
|
|
|
vaoSurf->surfaceType = SF_VAO_IQM;
|
|
vaoSurf->iqmData = iqmData;
|
|
vaoSurf->iqmSurface = surf;
|
|
vaoSurf->numIndexes = surf->num_triangles * 3;
|
|
vaoSurf->numVerts = surf->num_vertexes;
|
|
|
|
vaoSurf->vao = R_CreateVao(va("staticIQMMesh_VAO '%s'", surf->name), data, dataSize, (byte *)indexes, surf->num_triangles * 3 * sizeof(indexes[0]), VAO_USAGE_STATIC);
|
|
|
|
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].enabled = 1;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].enabled = 1;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].enabled = 1;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].enabled = 1;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].enabled = 1;
|
|
|
|
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].count = 3;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].count = 2;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].count = 4;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].count = 4;
|
|
|
|
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].type = GL_FLOAT;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].type = GL_FLOAT;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].type = GL_SHORT;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].type = GL_SHORT;
|
|
|
|
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].normalized = GL_FALSE;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].normalized = GL_FALSE;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].normalized = GL_TRUE;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].normalized = GL_TRUE;
|
|
|
|
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].offset = offset_xyz;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].offset = offset_st;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].offset = offset_normal;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].offset = offset_tangent;
|
|
|
|
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].stride = stride;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].stride = stride;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].stride = stride;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].stride = stride;
|
|
|
|
if ( iqmData->num_joints )
|
|
{
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].enabled = 1;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].enabled = 1;
|
|
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].count = 4;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].count = 4;
|
|
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].type = GL_UNSIGNED_BYTE;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].normalized = GL_FALSE;
|
|
|
|
if ( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].type = GL_FLOAT;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].normalized = GL_FALSE;
|
|
} else {
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].type = GL_UNSIGNED_BYTE;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].normalized = GL_TRUE;
|
|
}
|
|
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].offset = offset_blendindexes;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].offset = offset_blendweights;
|
|
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].stride = stride;
|
|
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].stride = stride;
|
|
}
|
|
|
|
Vao_SetVertexPointers(vaoSurf->vao);
|
|
|
|
ri.Free(data);
|
|
}
|
|
}
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
R_CullIQM
|
|
=============
|
|
*/
|
|
static int R_CullIQM( iqmData_t *data, trRefEntity_t *ent ) {
|
|
vec3_t bounds[2];
|
|
vec_t *oldBounds, *newBounds;
|
|
int i;
|
|
|
|
if (!data->bounds) {
|
|
tr.pc.c_box_cull_md3_clip++;
|
|
return CULL_CLIP;
|
|
}
|
|
|
|
// compute bounds pointers
|
|
oldBounds = data->bounds + 6*ent->e.oldframe;
|
|
newBounds = data->bounds + 6*ent->e.frame;
|
|
|
|
// calculate a bounding box in the current coordinate system
|
|
for (i = 0 ; i < 3 ; i++) {
|
|
bounds[0][i] = oldBounds[i] < newBounds[i] ? oldBounds[i] : newBounds[i];
|
|
bounds[1][i] = oldBounds[i+3] > newBounds[i+3] ? oldBounds[i+3] : newBounds[i+3];
|
|
}
|
|
|
|
switch ( R_CullLocalBox( bounds ) )
|
|
{
|
|
case CULL_IN:
|
|
tr.pc.c_box_cull_md3_in++;
|
|
return CULL_IN;
|
|
case CULL_CLIP:
|
|
tr.pc.c_box_cull_md3_clip++;
|
|
return CULL_CLIP;
|
|
case CULL_OUT:
|
|
default:
|
|
tr.pc.c_box_cull_md3_out++;
|
|
return CULL_OUT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_ComputeIQMFogNum
|
|
|
|
=================
|
|
*/
|
|
int R_ComputeIQMFogNum( iqmData_t *data, trRefEntity_t *ent ) {
|
|
int i, j;
|
|
fog_t *fog;
|
|
const vec_t *bounds;
|
|
const vec_t defaultBounds[6] = { -8, -8, -8, 8, 8, 8 };
|
|
vec3_t diag, center;
|
|
vec3_t localOrigin;
|
|
vec_t radius;
|
|
|
|
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
|
|
return 0;
|
|
}
|
|
|
|
// FIXME: non-normalized axis issues
|
|
if (data->bounds) {
|
|
bounds = data->bounds + 6*ent->e.frame;
|
|
} else {
|
|
bounds = defaultBounds;
|
|
}
|
|
VectorSubtract( bounds+3, bounds, diag );
|
|
VectorMA( bounds, 0.5f, diag, center );
|
|
VectorAdd( ent->e.origin, center, localOrigin );
|
|
radius = 0.5f * VectorLength( diag );
|
|
|
|
for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
|
|
fog = &tr.world->fogs[i];
|
|
for ( j = 0 ; j < 3 ; j++ ) {
|
|
if ( localOrigin[j] - radius >= fog->bounds[1][j] ) {
|
|
break;
|
|
}
|
|
if ( localOrigin[j] + radius <= fog->bounds[0][j] ) {
|
|
break;
|
|
}
|
|
}
|
|
if ( j == 3 ) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_AddIQMSurfaces
|
|
|
|
Add all surfaces of this model
|
|
=================
|
|
*/
|
|
void R_AddIQMSurfaces( trRefEntity_t *ent ) {
|
|
iqmData_t *data;
|
|
srfIQModel_t *surface;
|
|
void *drawSurf;
|
|
int i, j;
|
|
qboolean personalModel;
|
|
int cull;
|
|
int fogNum;
|
|
int cubemapIndex;
|
|
shader_t *shader;
|
|
skin_t *skin;
|
|
|
|
data = tr.currentModel->modelData;
|
|
surface = data->surfaces;
|
|
|
|
// don't add third_person objects if not in a portal
|
|
personalModel = (ent->e.renderfx & RF_THIRD_PERSON) && !(tr.viewParms.isPortal
|
|
|| (tr.viewParms.flags & (VPF_SHADOWMAP | VPF_DEPTHSHADOW)));
|
|
|
|
if ( ent->e.renderfx & RF_WRAP_FRAMES ) {
|
|
ent->e.frame %= data->num_frames;
|
|
ent->e.oldframe %= data->num_frames;
|
|
}
|
|
|
|
//
|
|
// Validate the frames so there is no chance of a crash.
|
|
// This will write directly into the entity structure, so
|
|
// when the surfaces are rendered, they don't need to be
|
|
// range checked again.
|
|
//
|
|
if ( (ent->e.frame >= data->num_frames)
|
|
|| (ent->e.frame < 0)
|
|
|| (ent->e.oldframe >= data->num_frames)
|
|
|| (ent->e.oldframe < 0) ) {
|
|
ri.Printf( PRINT_DEVELOPER, "R_AddIQMSurfaces: no such frame %d to %d for '%s'\n",
|
|
ent->e.oldframe, ent->e.frame,
|
|
tr.currentModel->name );
|
|
ent->e.frame = 0;
|
|
ent->e.oldframe = 0;
|
|
}
|
|
|
|
//
|
|
// cull the entire model if merged bounding box of both frames
|
|
// is outside the view frustum.
|
|
//
|
|
cull = R_CullIQM ( data, ent );
|
|
if ( cull == CULL_OUT ) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// set up lighting now that we know we aren't culled
|
|
//
|
|
if ( !personalModel || r_shadows->integer > 1 ) {
|
|
R_SetupEntityLighting( &tr.refdef, ent );
|
|
}
|
|
|
|
//
|
|
// see if we are in a fog volume
|
|
//
|
|
fogNum = R_ComputeIQMFogNum( data, ent );
|
|
|
|
cubemapIndex = R_CubemapForPoint(ent->e.origin);
|
|
|
|
for ( i = 0 ; i < data->num_surfaces ; i++ ) {
|
|
if(ent->e.customShader)
|
|
shader = R_GetShaderByHandle( ent->e.customShader );
|
|
else if(ent->e.customSkin > 0 && ent->e.customSkin < tr.numSkins)
|
|
{
|
|
skin = R_GetSkinByHandle(ent->e.customSkin);
|
|
shader = tr.defaultShader;
|
|
|
|
for(j = 0; j < skin->numSurfaces; j++)
|
|
{
|
|
if (!strcmp(skin->surfaces[j].name, surface->name))
|
|
{
|
|
shader = skin->surfaces[j].shader;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
shader = surface->shader;
|
|
}
|
|
|
|
if ( data->numVaoSurfaces ) {
|
|
drawSurf = &data->vaoSurfaces[i];
|
|
} else {
|
|
drawSurf = surface;
|
|
}
|
|
|
|
// we will add shadows even if the main object isn't visible in the view
|
|
|
|
// stencil shadows can't do personal models unless I polyhedron clip
|
|
if ( !personalModel
|
|
&& r_shadows->integer == 2
|
|
&& fogNum == 0
|
|
&& !(ent->e.renderfx & ( RF_NOSHADOW | RF_DEPTHHACK ) )
|
|
&& shader->sort == SS_OPAQUE ) {
|
|
R_AddDrawSurf( drawSurf, tr.shadowShader, 0, 0, 0, 0 );
|
|
}
|
|
|
|
// projection shadows work fine with personal models
|
|
if ( r_shadows->integer == 3
|
|
&& fogNum == 0
|
|
&& (ent->e.renderfx & RF_SHADOW_PLANE )
|
|
&& shader->sort == SS_OPAQUE ) {
|
|
R_AddDrawSurf( drawSurf, tr.projectionShadowShader, 0, 0, 0, 0 );
|
|
}
|
|
|
|
if( !personalModel ) {
|
|
R_AddDrawSurf( drawSurf, shader, fogNum, 0, 0, cubemapIndex );
|
|
}
|
|
|
|
surface++;
|
|
}
|
|
}
|
|
|
|
|
|
static void ComputePoseMats( iqmData_t *data, int frame, int oldframe,
|
|
float backlerp, float *poseMats ) {
|
|
iqmTransform_t relativeJoints[IQM_MAX_JOINTS];
|
|
iqmTransform_t *relativeJoint;
|
|
const iqmTransform_t *pose;
|
|
const iqmTransform_t *oldpose;
|
|
const int *jointParent;
|
|
const float *invBindMat;
|
|
float *poseMat, lerp;
|
|
int i;
|
|
|
|
relativeJoint = relativeJoints;
|
|
|
|
// copy or lerp animation frame pose
|
|
if ( oldframe == frame ) {
|
|
pose = &data->poses[frame * data->num_poses];
|
|
for ( i = 0; i < data->num_poses; i++, pose++, relativeJoint++ ) {
|
|
VectorCopy( pose->translate, relativeJoint->translate );
|
|
QuatCopy( pose->rotate, relativeJoint->rotate );
|
|
VectorCopy( pose->scale, relativeJoint->scale );
|
|
}
|
|
} else {
|
|
lerp = 1.0f - backlerp;
|
|
pose = &data->poses[frame * data->num_poses];
|
|
oldpose = &data->poses[oldframe * data->num_poses];
|
|
for ( i = 0; i < data->num_poses; i++, oldpose++, pose++, relativeJoint++ ) {
|
|
relativeJoint->translate[0] = oldpose->translate[0] * backlerp + pose->translate[0] * lerp;
|
|
relativeJoint->translate[1] = oldpose->translate[1] * backlerp + pose->translate[1] * lerp;
|
|
relativeJoint->translate[2] = oldpose->translate[2] * backlerp + pose->translate[2] * lerp;
|
|
|
|
relativeJoint->scale[0] = oldpose->scale[0] * backlerp + pose->scale[0] * lerp;
|
|
relativeJoint->scale[1] = oldpose->scale[1] * backlerp + pose->scale[1] * lerp;
|
|
relativeJoint->scale[2] = oldpose->scale[2] * backlerp + pose->scale[2] * lerp;
|
|
|
|
QuatSlerp( oldpose->rotate, pose->rotate, lerp, relativeJoint->rotate );
|
|
}
|
|
}
|
|
|
|
// multiply by inverse of bind pose and parent 'pose mat' (bind pose transform matrix)
|
|
relativeJoint = relativeJoints;
|
|
jointParent = data->jointParents;
|
|
invBindMat = data->invBindJoints;
|
|
poseMat = poseMats;
|
|
for ( i = 0; i < data->num_poses; i++, relativeJoint++, jointParent++, invBindMat += 12, poseMat += 12 ) {
|
|
float mat1[12], mat2[12];
|
|
|
|
JointToMatrix( relativeJoint->rotate, relativeJoint->scale, relativeJoint->translate, mat1 );
|
|
|
|
if ( *jointParent >= 0 ) {
|
|
Matrix34Multiply( &data->bindJoints[(*jointParent)*12], mat1, mat2 );
|
|
Matrix34Multiply( mat2, invBindMat, mat1 );
|
|
Matrix34Multiply( &poseMats[(*jointParent)*12], mat1, poseMat );
|
|
} else {
|
|
Matrix34Multiply( mat1, invBindMat, poseMat );
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
|
|
float backlerp, float *mat ) {
|
|
float *mat1;
|
|
int i;
|
|
|
|
if ( data->num_poses == 0 ) {
|
|
Com_Memcpy( mat, data->bindJoints, data->num_joints * 12 * sizeof(float) );
|
|
return;
|
|
}
|
|
|
|
ComputePoseMats( data, frame, oldframe, backlerp, mat );
|
|
|
|
for( i = 0; i < data->num_joints; i++ ) {
|
|
float outmat[12];
|
|
mat1 = mat + 12 * i;
|
|
|
|
Com_Memcpy(outmat, mat1, sizeof(outmat));
|
|
|
|
Matrix34Multiply( outmat, data->bindJoints + 12*i, mat1 );
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
RB_AddIQMSurfaces
|
|
|
|
Compute vertices for this model surface
|
|
=================
|
|
*/
|
|
void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
|
|
srfIQModel_t *surf = (srfIQModel_t *)surface;
|
|
iqmData_t *data = surf->data;
|
|
float poseMats[IQM_MAX_JOINTS * 12];
|
|
float influenceVtxMat[SHADER_MAX_VERTEXES * 12];
|
|
float influenceNrmMat[SHADER_MAX_VERTEXES * 9];
|
|
int i;
|
|
|
|
float *xyz;
|
|
float *normal;
|
|
float *tangent;
|
|
float *texCoords;
|
|
byte *color;
|
|
vec4_t *outXYZ;
|
|
int16_t *outNormal;
|
|
int16_t *outTangent;
|
|
vec2_t *outTexCoord;
|
|
uint16_t *outColor;
|
|
|
|
int frame = data->num_frames ? backEnd.currentEntity->e.frame % data->num_frames : 0;
|
|
int oldframe = data->num_frames ? backEnd.currentEntity->e.oldframe % data->num_frames : 0;
|
|
float backlerp = backEnd.currentEntity->e.backlerp;
|
|
|
|
int *tri;
|
|
glIndex_t *ptr;
|
|
glIndex_t base;
|
|
|
|
RB_CHECKOVERFLOW( surf->num_vertexes, surf->num_triangles * 3 );
|
|
|
|
xyz = &data->positions[surf->first_vertex * 3];
|
|
normal = &data->normals[surf->first_vertex * 3];
|
|
tangent = &data->tangents[surf->first_vertex * 4];
|
|
texCoords = &data->texcoords[surf->first_vertex * 2];
|
|
|
|
if ( data->colors ) {
|
|
color = &data->colors[surf->first_vertex * 4];
|
|
} else {
|
|
color = NULL;
|
|
}
|
|
|
|
outXYZ = &tess.xyz[tess.numVertexes];
|
|
outNormal = tess.normal[tess.numVertexes];
|
|
outTangent = tess.tangent[tess.numVertexes];
|
|
outTexCoord = &tess.texCoords[tess.numVertexes];
|
|
outColor = tess.color[tess.numVertexes];
|
|
|
|
if ( data->num_poses > 0 ) {
|
|
// compute interpolated joint matrices
|
|
ComputePoseMats( data, frame, oldframe, backlerp, poseMats );
|
|
|
|
// compute vertex blend influence matricies
|
|
for( i = 0; i < surf->num_influences; i++ ) {
|
|
int influence = surf->first_influence + i;
|
|
float *vtxMat = &influenceVtxMat[12*i];
|
|
float *nrmMat = &influenceNrmMat[9*i];
|
|
int j;
|
|
float blendWeights[4];
|
|
|
|
if ( data->blendWeightsType == IQM_FLOAT ) {
|
|
blendWeights[0] = data->influenceBlendWeights.f[4*influence + 0];
|
|
blendWeights[1] = data->influenceBlendWeights.f[4*influence + 1];
|
|
blendWeights[2] = data->influenceBlendWeights.f[4*influence + 2];
|
|
blendWeights[3] = data->influenceBlendWeights.f[4*influence + 3];
|
|
} else {
|
|
blendWeights[0] = (float)data->influenceBlendWeights.b[4*influence + 0] / 255.0f;
|
|
blendWeights[1] = (float)data->influenceBlendWeights.b[4*influence + 1] / 255.0f;
|
|
blendWeights[2] = (float)data->influenceBlendWeights.b[4*influence + 2] / 255.0f;
|
|
blendWeights[3] = (float)data->influenceBlendWeights.b[4*influence + 3] / 255.0f;
|
|
}
|
|
|
|
if ( blendWeights[0] <= 0.0f ) {
|
|
// no blend joint, use identity matrix.
|
|
vtxMat[0] = identityMatrix[0];
|
|
vtxMat[1] = identityMatrix[1];
|
|
vtxMat[2] = identityMatrix[2];
|
|
vtxMat[3] = identityMatrix[3];
|
|
vtxMat[4] = identityMatrix[4];
|
|
vtxMat[5] = identityMatrix[5];
|
|
vtxMat[6] = identityMatrix[6];
|
|
vtxMat[7] = identityMatrix[7];
|
|
vtxMat[8] = identityMatrix[8];
|
|
vtxMat[9] = identityMatrix[9];
|
|
vtxMat[10] = identityMatrix[10];
|
|
vtxMat[11] = identityMatrix[11];
|
|
} else {
|
|
// compute the vertex matrix by blending the up to
|
|
// four blend weights
|
|
vtxMat[0] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 0];
|
|
vtxMat[1] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 1];
|
|
vtxMat[2] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 2];
|
|
vtxMat[3] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 3];
|
|
vtxMat[4] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 4];
|
|
vtxMat[5] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 5];
|
|
vtxMat[6] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 6];
|
|
vtxMat[7] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 7];
|
|
vtxMat[8] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 8];
|
|
vtxMat[9] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 9];
|
|
vtxMat[10] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 10];
|
|
vtxMat[11] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 11];
|
|
|
|
for( j = 1; j < 4; j++ ) {
|
|
if ( blendWeights[j] <= 0.0f ) {
|
|
break;
|
|
}
|
|
|
|
vtxMat[0] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 0];
|
|
vtxMat[1] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 1];
|
|
vtxMat[2] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 2];
|
|
vtxMat[3] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 3];
|
|
vtxMat[4] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 4];
|
|
vtxMat[5] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 5];
|
|
vtxMat[6] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 6];
|
|
vtxMat[7] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 7];
|
|
vtxMat[8] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 8];
|
|
vtxMat[9] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 9];
|
|
vtxMat[10] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 10];
|
|
vtxMat[11] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 11];
|
|
}
|
|
}
|
|
|
|
// compute the normal matrix as transpose of the adjoint
|
|
// of the vertex matrix
|
|
nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9];
|
|
nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10];
|
|
nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8];
|
|
nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10];
|
|
nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8];
|
|
nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9];
|
|
nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5];
|
|
nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6];
|
|
nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4];
|
|
}
|
|
|
|
// transform vertexes and fill other data
|
|
for( i = 0; i < surf->num_vertexes;
|
|
i++, xyz+=3, normal+=3, tangent+=4, texCoords+=2,
|
|
outXYZ++, outNormal+=4, outTangent+=4, outTexCoord++ ) {
|
|
int influence = data->influences[surf->first_vertex + i] - surf->first_influence;
|
|
float *vtxMat = &influenceVtxMat[12*influence];
|
|
float *nrmMat = &influenceNrmMat[9*influence];
|
|
|
|
(*outTexCoord)[0] = texCoords[0];
|
|
(*outTexCoord)[1] = texCoords[1];
|
|
|
|
(*outXYZ)[0] =
|
|
vtxMat[ 0] * xyz[0] +
|
|
vtxMat[ 1] * xyz[1] +
|
|
vtxMat[ 2] * xyz[2] +
|
|
vtxMat[ 3];
|
|
(*outXYZ)[1] =
|
|
vtxMat[ 4] * xyz[0] +
|
|
vtxMat[ 5] * xyz[1] +
|
|
vtxMat[ 6] * xyz[2] +
|
|
vtxMat[ 7];
|
|
(*outXYZ)[2] =
|
|
vtxMat[ 8] * xyz[0] +
|
|
vtxMat[ 9] * xyz[1] +
|
|
vtxMat[10] * xyz[2] +
|
|
vtxMat[11];
|
|
|
|
{
|
|
vec3_t unpackedNormal;
|
|
vec4_t unpackedTangent;
|
|
|
|
unpackedNormal[0] = DotProduct(&nrmMat[0], normal);
|
|
unpackedNormal[1] = DotProduct(&nrmMat[3], normal);
|
|
unpackedNormal[2] = DotProduct(&nrmMat[6], normal);
|
|
|
|
R_VaoPackNormal(outNormal, unpackedNormal);
|
|
|
|
unpackedTangent[0] = DotProduct(&nrmMat[0], tangent);
|
|
unpackedTangent[1] = DotProduct(&nrmMat[3], tangent);
|
|
unpackedTangent[2] = DotProduct(&nrmMat[6], tangent);
|
|
unpackedTangent[3] = tangent[3];
|
|
|
|
R_VaoPackTangent(outTangent, unpackedTangent);
|
|
}
|
|
}
|
|
} else {
|
|
// copy vertexes and fill other data
|
|
for( i = 0; i < surf->num_vertexes;
|
|
i++, xyz+=3, normal+=3, tangent+=4, texCoords+=2,
|
|
outXYZ++, outNormal+=4, outTangent+=4, outTexCoord++ ) {
|
|
(*outTexCoord)[0] = texCoords[0];
|
|
(*outTexCoord)[1] = texCoords[1];
|
|
|
|
(*outXYZ)[0] = xyz[0];
|
|
(*outXYZ)[1] = xyz[1];
|
|
(*outXYZ)[2] = xyz[2];
|
|
|
|
R_VaoPackNormal(outNormal, normal);
|
|
R_VaoPackTangent(outTangent, tangent);
|
|
}
|
|
}
|
|
|
|
if ( color ) {
|
|
for( i = 0; i < surf->num_vertexes; i++, color+=4, outColor+=4 ) {
|
|
outColor[0] = color[0] * 257;
|
|
outColor[1] = color[1] * 257;
|
|
outColor[2] = color[2] * 257;
|
|
outColor[3] = color[3] * 257;
|
|
}
|
|
} else {
|
|
for( i = 0; i < surf->num_vertexes; i++, outColor+=4 ) {
|
|
outColor[0] = 0;
|
|
outColor[1] = 0;
|
|
outColor[2] = 0;
|
|
outColor[3] = 0;
|
|
}
|
|
}
|
|
|
|
tri = data->triangles + 3 * surf->first_triangle;
|
|
ptr = &tess.indexes[tess.numIndexes];
|
|
base = tess.numVertexes;
|
|
|
|
for( i = 0; i < surf->num_triangles; i++ ) {
|
|
*ptr++ = base + (*tri++ - surf->first_vertex);
|
|
*ptr++ = base + (*tri++ - surf->first_vertex);
|
|
*ptr++ = base + (*tri++ - surf->first_vertex);
|
|
}
|
|
|
|
tess.numIndexes += 3 * surf->num_triangles;
|
|
tess.numVertexes += surf->num_vertexes;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
RB_IQMSurfaceAnimVao
|
|
=================
|
|
*/
|
|
void RB_IQMSurfaceAnimVao(srfVaoIQModel_t * surface)
|
|
{
|
|
iqmData_t *data = surface->iqmData;
|
|
|
|
if (ShaderRequiresCPUDeforms(tess.shader))
|
|
{
|
|
RB_IQMSurfaceAnim((surfaceType_t*)surface->iqmSurface);
|
|
return;
|
|
}
|
|
|
|
if(!surface->vao)
|
|
return;
|
|
|
|
//RB_CheckVao(surface->vao);
|
|
RB_EndSurface();
|
|
RB_BeginSurface(tess.shader, tess.fogNum, tess.cubemapIndex);
|
|
|
|
R_BindVao(surface->vao);
|
|
|
|
tess.useInternalVao = qfalse;
|
|
|
|
tess.numIndexes = surface->numIndexes;
|
|
tess.numVertexes = surface->numVerts;
|
|
|
|
glState.boneAnimation = data->num_poses;
|
|
|
|
if ( glState.boneAnimation ) {
|
|
float jointMats[IQM_MAX_JOINTS * 12];
|
|
int frame = data->num_frames ? backEnd.currentEntity->e.frame % data->num_frames : 0;
|
|
int oldframe = data->num_frames ? backEnd.currentEntity->e.oldframe % data->num_frames : 0;
|
|
float backlerp = backEnd.currentEntity->e.backlerp;
|
|
int i;
|
|
|
|
// compute interpolated joint matrices
|
|
ComputePoseMats( surface->iqmData, frame, oldframe, backlerp, jointMats );
|
|
|
|
// convert row-major order 3x4 matrix to column-major order 4x4 matrix
|
|
for ( i = 0; i < data->num_poses; i++ ) {
|
|
glState.boneMatrix[i][0] = jointMats[i*12+0];
|
|
glState.boneMatrix[i][1] = jointMats[i*12+4];
|
|
glState.boneMatrix[i][2] = jointMats[i*12+8];
|
|
glState.boneMatrix[i][3] = 0.0f;
|
|
glState.boneMatrix[i][4] = jointMats[i*12+1];
|
|
glState.boneMatrix[i][5] = jointMats[i*12+5];
|
|
glState.boneMatrix[i][6] = jointMats[i*12+9];
|
|
glState.boneMatrix[i][7] = 0.0f;
|
|
glState.boneMatrix[i][8] = jointMats[i*12+2];
|
|
glState.boneMatrix[i][9] = jointMats[i*12+6];
|
|
glState.boneMatrix[i][10] = jointMats[i*12+10];
|
|
glState.boneMatrix[i][11] = 0.0f;
|
|
glState.boneMatrix[i][12] = jointMats[i*12+3];
|
|
glState.boneMatrix[i][13] = jointMats[i*12+7];
|
|
glState.boneMatrix[i][14] = jointMats[i*12+11];
|
|
glState.boneMatrix[i][15] = 1.0f;
|
|
}
|
|
}
|
|
|
|
RB_EndSurface();
|
|
|
|
glState.boneAnimation = 0;
|
|
}
|
|
|
|
int R_IQMLerpTag( orientation_t *tag, iqmData_t *data,
|
|
int startFrame, int endFrame,
|
|
float frac, const char *tagName ) {
|
|
float jointMats[IQM_MAX_JOINTS * 12];
|
|
int joint;
|
|
char *names = data->jointNames;
|
|
|
|
// get joint number by reading the joint names
|
|
for( joint = 0; joint < data->num_joints; joint++ ) {
|
|
if( !strcmp( tagName, names ) )
|
|
break;
|
|
names += strlen( names ) + 1;
|
|
}
|
|
if( joint >= data->num_joints ) {
|
|
AxisClear( tag->axis );
|
|
VectorClear( tag->origin );
|
|
return qfalse;
|
|
}
|
|
|
|
ComputeJointMats( data, startFrame, endFrame, frac, jointMats );
|
|
|
|
tag->axis[0][0] = jointMats[12 * joint + 0];
|
|
tag->axis[1][0] = jointMats[12 * joint + 1];
|
|
tag->axis[2][0] = jointMats[12 * joint + 2];
|
|
tag->origin[0] = jointMats[12 * joint + 3];
|
|
tag->axis[0][1] = jointMats[12 * joint + 4];
|
|
tag->axis[1][1] = jointMats[12 * joint + 5];
|
|
tag->axis[2][1] = jointMats[12 * joint + 6];
|
|
tag->origin[1] = jointMats[12 * joint + 7];
|
|
tag->axis[0][2] = jointMats[12 * joint + 8];
|
|
tag->axis[1][2] = jointMats[12 * joint + 9];
|
|
tag->axis[2][2] = jointMats[12 * joint + 10];
|
|
tag->origin[2] = jointMats[12 * joint + 11];
|
|
|
|
return qtrue;
|
|
}
|