mirror of
https://github.com/Q3Rally-Team/q3rally.git
synced 2024-11-22 20:11:48 +00:00
0d5fb492cd
Fix GCC 6 misleading-indentation warning add SECURITY.md OpenGL2: Restore adding fixed ambient light when HDR is enabled Few LCC memory fixes. fix a few potential buffer overwrite in Game VM Enable compiler optimization on all macOS architectures Don't allow qagame module to create "botlib.log" at ANY filesystem location Make FS_BuildOSPath for botlib.log consistent with typical usage tiny readme thing Remove extra plus sign from Huff_Compress() Fix VMs being able to change CVAR_PROTECTED cvars Don't register fs_game cvar everywhere just to get the value Don't let VMs change engine latch cvars immediately Fix fs_game '..' reading outside of home and base path Fix VMs forcing engine latch cvar to update to latched value Revert my recent cvar latch changes Revert "Don't let VMs change engine latch cvars immediately" Partially revert "Fix fs_game '..' reading outside of home and base path" Revert "Fix VMs forcing engine latch cvar to update to latched value" Fix exploit to bypass filename restrictions on Windows Changes to systemd q3a.service Fix Q_vsnprintf for mingw-w64 Fix timelimit causing an infinite map ending loop Fix invalid access to cluster 0 in AAS_AreaRouteToGoalArea() Fix negative frag/capturelimit causing an infinite map end loop OpenGL2: Fix dark lightmap on shader in mpteam6 Make FS_InvalidGameDir() consider subdirectories invalid [qcommon] Remove dead serialization code [qcommon] Make several zone variables and functions static. Fix MAC_OS_X_VERSION_MIN_REQUIRED for macOS 10.10 and later Increase q3_ui .arena filename list buffer size to 4096 bytes OpenGL2: Fix crash when BSP has deluxe maps and vertex lit surfaces Support Unicode characters greater than 0xFF in cl_consoleKeys Fix macOS app bundle with space in name OpenGL1: Use glGenTextures instead of hardcoded values Remove CON_FlushIn function and where STDIN needs flushing, use tcflush POSIX function Update libogg from 1.3.2 to 1.3.3 Rename (already updated) libogg-1.3.2 to libogg-1.3.3 Update libvorbis from 1.3.5 to 1.3.6 * Fix CVE-2018-5146 - out-of-bounds write on codebook decoding. * Fix CVE-2017-14632 - free() on unitialized data * Fix CVE-2017-14633 - out-of-bounds read Rename (already updated) libvorbis-1.3.5 to libvorbis-1.3.6 Update opus from 1.1.4 to 1.2.1 Rename (already updated) opus-1.1.4 to opus-1.2.1 Update opusfile from 0.8 to 0.9 Rename (already updated) opusfile-0.8 to opusfile-0.9 First swing at a CONTRIBUTING.md Allow loading system OpenAL library on macOS again Remove duplicate setting of FREETYPE_CFLAGS in Makefile Fix exploit to reset player by sending wrong serverId Fix "Going to CS_ZOMBIE for [clientname]" developer message Fix MSG_Read*String*() functions not being able to read last byte from message
644 lines
21 KiB
C
644 lines
21 KiB
C
/* Copyright (c) 2007-2008 CSIRO
|
|
Copyright (c) 2007-2009 Xiph.Org Foundation
|
|
Written by Jean-Marc Valin */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include "modes.h"
|
|
#include "cwrs.h"
|
|
#include "arch.h"
|
|
#include "os_support.h"
|
|
|
|
#include "entcode.h"
|
|
#include "rate.h"
|
|
|
|
static const unsigned char LOG2_FRAC_TABLE[24]={
|
|
0,
|
|
8,13,
|
|
16,19,21,23,
|
|
24,26,27,28,29,30,31,32,
|
|
32,33,34,34,35,36,36,37,37
|
|
};
|
|
|
|
#ifdef CUSTOM_MODES
|
|
|
|
/*Determines if V(N,K) fits in a 32-bit unsigned integer.
|
|
N and K are themselves limited to 15 bits.*/
|
|
static int fits_in32(int _n, int _k)
|
|
{
|
|
static const opus_int16 maxN[15] = {
|
|
32767, 32767, 32767, 1476, 283, 109, 60, 40,
|
|
29, 24, 20, 18, 16, 14, 13};
|
|
static const opus_int16 maxK[15] = {
|
|
32767, 32767, 32767, 32767, 1172, 238, 95, 53,
|
|
36, 27, 22, 18, 16, 15, 13};
|
|
if (_n>=14)
|
|
{
|
|
if (_k>=14)
|
|
return 0;
|
|
else
|
|
return _n <= maxN[_k];
|
|
} else {
|
|
return _k <= maxK[_n];
|
|
}
|
|
}
|
|
|
|
void compute_pulse_cache(CELTMode *m, int LM)
|
|
{
|
|
int C;
|
|
int i;
|
|
int j;
|
|
int curr=0;
|
|
int nbEntries=0;
|
|
int entryN[100], entryK[100], entryI[100];
|
|
const opus_int16 *eBands = m->eBands;
|
|
PulseCache *cache = &m->cache;
|
|
opus_int16 *cindex;
|
|
unsigned char *bits;
|
|
unsigned char *cap;
|
|
|
|
cindex = (opus_int16 *)opus_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2));
|
|
cache->index = cindex;
|
|
|
|
/* Scan for all unique band sizes */
|
|
for (i=0;i<=LM+1;i++)
|
|
{
|
|
for (j=0;j<m->nbEBands;j++)
|
|
{
|
|
int k;
|
|
int N = (eBands[j+1]-eBands[j])<<i>>1;
|
|
cindex[i*m->nbEBands+j] = -1;
|
|
/* Find other bands that have the same size */
|
|
for (k=0;k<=i;k++)
|
|
{
|
|
int n;
|
|
for (n=0;n<m->nbEBands && (k!=i || n<j);n++)
|
|
{
|
|
if (N == (eBands[n+1]-eBands[n])<<k>>1)
|
|
{
|
|
cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (cache->index[i*m->nbEBands+j] == -1 && N!=0)
|
|
{
|
|
int K;
|
|
entryN[nbEntries] = N;
|
|
K = 0;
|
|
while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO)
|
|
K++;
|
|
entryK[nbEntries] = K;
|
|
cindex[i*m->nbEBands+j] = curr;
|
|
entryI[nbEntries] = curr;
|
|
|
|
curr += K+1;
|
|
nbEntries++;
|
|
}
|
|
}
|
|
}
|
|
bits = (unsigned char *)opus_alloc(sizeof(unsigned char)*curr);
|
|
cache->bits = bits;
|
|
cache->size = curr;
|
|
/* Compute the cache for all unique sizes */
|
|
for (i=0;i<nbEntries;i++)
|
|
{
|
|
unsigned char *ptr = bits+entryI[i];
|
|
opus_int16 tmp[CELT_MAX_PULSES+1];
|
|
get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES);
|
|
for (j=1;j<=entryK[i];j++)
|
|
ptr[j] = tmp[get_pulses(j)]-1;
|
|
ptr[0] = entryK[i];
|
|
}
|
|
|
|
/* Compute the maximum rate for each band at which we'll reliably use as
|
|
many bits as we ask for. */
|
|
cache->caps = cap = (unsigned char *)opus_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands);
|
|
for (i=0;i<=LM;i++)
|
|
{
|
|
for (C=1;C<=2;C++)
|
|
{
|
|
for (j=0;j<m->nbEBands;j++)
|
|
{
|
|
int N0;
|
|
int max_bits;
|
|
N0 = m->eBands[j+1]-m->eBands[j];
|
|
/* N=1 bands only have a sign bit and fine bits. */
|
|
if (N0<<i == 1)
|
|
max_bits = C*(1+MAX_FINE_BITS)<<BITRES;
|
|
else
|
|
{
|
|
const unsigned char *pcache;
|
|
opus_int32 num;
|
|
opus_int32 den;
|
|
int LM0;
|
|
int N;
|
|
int offset;
|
|
int ndof;
|
|
int qb;
|
|
int k;
|
|
LM0 = 0;
|
|
/* Even-sized bands bigger than N=2 can be split one more time.
|
|
As of commit 44203907 all bands >1 are even, including custom modes.*/
|
|
if (N0 > 2)
|
|
{
|
|
N0>>=1;
|
|
LM0--;
|
|
}
|
|
/* N0=1 bands can't be split down to N<2. */
|
|
else if (N0 <= 1)
|
|
{
|
|
LM0=IMIN(i,1);
|
|
N0<<=LM0;
|
|
}
|
|
/* Compute the cost for the lowest-level PVQ of a fully split
|
|
band. */
|
|
pcache = bits + cindex[(LM0+1)*m->nbEBands+j];
|
|
max_bits = pcache[pcache[0]]+1;
|
|
/* Add in the cost of coding regular splits. */
|
|
N = N0;
|
|
for(k=0;k<i-LM0;k++){
|
|
max_bits <<= 1;
|
|
/* Offset the number of qtheta bits by log2(N)/2
|
|
+ QTHETA_OFFSET compared to their "fair share" of
|
|
total/N */
|
|
offset = ((m->logN[j]+((LM0+k)<<BITRES))>>1)-QTHETA_OFFSET;
|
|
/* The number of qtheta bits we'll allocate if the remainder
|
|
is to be max_bits.
|
|
The average measured cost for theta is 0.89701 times qb,
|
|
approximated here as 459/512. */
|
|
num=459*(opus_int32)((2*N-1)*offset+max_bits);
|
|
den=((opus_int32)(2*N-1)<<9)-459;
|
|
qb = IMIN((num+(den>>1))/den, 57);
|
|
celt_assert(qb >= 0);
|
|
max_bits += qb;
|
|
N <<= 1;
|
|
}
|
|
/* Add in the cost of a stereo split, if necessary. */
|
|
if (C==2)
|
|
{
|
|
max_bits <<= 1;
|
|
offset = ((m->logN[j]+(i<<BITRES))>>1)-(N==2?QTHETA_OFFSET_TWOPHASE:QTHETA_OFFSET);
|
|
ndof = 2*N-1-(N==2);
|
|
/* The average measured cost for theta with the step PDF is
|
|
0.95164 times qb, approximated here as 487/512. */
|
|
num = (N==2?512:487)*(opus_int32)(max_bits+ndof*offset);
|
|
den = ((opus_int32)ndof<<9)-(N==2?512:487);
|
|
qb = IMIN((num+(den>>1))/den, (N==2?64:61));
|
|
celt_assert(qb >= 0);
|
|
max_bits += qb;
|
|
}
|
|
/* Add the fine bits we'll use. */
|
|
/* Compensate for the extra DoF in stereo */
|
|
ndof = C*N + ((C==2 && N>2) ? 1 : 0);
|
|
/* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET
|
|
compared to their "fair share" of total/N */
|
|
offset = ((m->logN[j] + (i<<BITRES))>>1)-FINE_OFFSET;
|
|
/* N=2 is the only point that doesn't match the curve */
|
|
if (N==2)
|
|
offset += 1<<BITRES>>2;
|
|
/* The number of fine bits we'll allocate if the remainder is
|
|
to be max_bits. */
|
|
num = max_bits+ndof*offset;
|
|
den = (ndof-1)<<BITRES;
|
|
qb = IMIN((num+(den>>1))/den, MAX_FINE_BITS);
|
|
celt_assert(qb >= 0);
|
|
max_bits += C*qb<<BITRES;
|
|
}
|
|
max_bits = (4*max_bits/(C*((m->eBands[j+1]-m->eBands[j])<<i)))-64;
|
|
celt_assert(max_bits >= 0);
|
|
celt_assert(max_bits < 256);
|
|
*cap++ = (unsigned char)max_bits;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
#define ALLOC_STEPS 6
|
|
|
|
static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start,
|
|
const int *bits1, const int *bits2, const int *thresh, const int *cap, opus_int32 total, opus_int32 *_balance,
|
|
int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits,
|
|
int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
|
|
{
|
|
opus_int32 psum;
|
|
int lo, hi;
|
|
int i, j;
|
|
int logM;
|
|
int stereo;
|
|
int codedBands=-1;
|
|
int alloc_floor;
|
|
opus_int32 left, percoeff;
|
|
int done;
|
|
opus_int32 balance;
|
|
SAVE_STACK;
|
|
|
|
alloc_floor = C<<BITRES;
|
|
stereo = C>1;
|
|
|
|
logM = LM<<BITRES;
|
|
lo = 0;
|
|
hi = 1<<ALLOC_STEPS;
|
|
for (i=0;i<ALLOC_STEPS;i++)
|
|
{
|
|
int mid = (lo+hi)>>1;
|
|
psum = 0;
|
|
done = 0;
|
|
for (j=end;j-->start;)
|
|
{
|
|
int tmp = bits1[j] + (mid*(opus_int32)bits2[j]>>ALLOC_STEPS);
|
|
if (tmp >= thresh[j] || done)
|
|
{
|
|
done = 1;
|
|
/* Don't allocate more than we can actually use */
|
|
psum += IMIN(tmp, cap[j]);
|
|
} else {
|
|
if (tmp >= alloc_floor)
|
|
psum += alloc_floor;
|
|
}
|
|
}
|
|
if (psum > total)
|
|
hi = mid;
|
|
else
|
|
lo = mid;
|
|
}
|
|
psum = 0;
|
|
/*printf ("interp bisection gave %d\n", lo);*/
|
|
done = 0;
|
|
for (j=end;j-->start;)
|
|
{
|
|
int tmp = bits1[j] + ((opus_int32)lo*bits2[j]>>ALLOC_STEPS);
|
|
if (tmp < thresh[j] && !done)
|
|
{
|
|
if (tmp >= alloc_floor)
|
|
tmp = alloc_floor;
|
|
else
|
|
tmp = 0;
|
|
} else
|
|
done = 1;
|
|
/* Don't allocate more than we can actually use */
|
|
tmp = IMIN(tmp, cap[j]);
|
|
bits[j] = tmp;
|
|
psum += tmp;
|
|
}
|
|
|
|
/* Decide which bands to skip, working backwards from the end. */
|
|
for (codedBands=end;;codedBands--)
|
|
{
|
|
int band_width;
|
|
int band_bits;
|
|
int rem;
|
|
j = codedBands-1;
|
|
/* Never skip the first band, nor a band that has been boosted by
|
|
dynalloc.
|
|
In the first case, we'd be coding a bit to signal we're going to waste
|
|
all the other bits.
|
|
In the second case, we'd be coding a bit to redistribute all the bits
|
|
we just signaled should be cocentrated in this band. */
|
|
if (j<=skip_start)
|
|
{
|
|
/* Give the bit we reserved to end skipping back. */
|
|
total += skip_rsv;
|
|
break;
|
|
}
|
|
/*Figure out how many left-over bits we would be adding to this band.
|
|
This can include bits we've stolen back from higher, skipped bands.*/
|
|
left = total-psum;
|
|
percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
|
|
left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
|
|
rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0);
|
|
band_width = m->eBands[codedBands]-m->eBands[j];
|
|
band_bits = (int)(bits[j] + percoeff*band_width + rem);
|
|
/*Only code a skip decision if we're above the threshold for this band.
|
|
Otherwise it is force-skipped.
|
|
This ensures that we have enough bits to code the skip flag.*/
|
|
if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES)))
|
|
{
|
|
if (encode)
|
|
{
|
|
/*This if() block is the only part of the allocation function that
|
|
is not a mandatory part of the bitstream: any bands we choose to
|
|
skip here must be explicitly signaled.*/
|
|
int depth_threshold;
|
|
/*We choose a threshold with some hysteresis to keep bands from
|
|
fluctuating in and out, but we try not to fold below a certain point. */
|
|
if (codedBands > 17)
|
|
depth_threshold = j<prev ? 7 : 9;
|
|
else
|
|
depth_threshold = 0;
|
|
#ifdef FUZZING
|
|
if ((rand()&0x1) == 0)
|
|
#else
|
|
if (codedBands<=start+2 || (band_bits > (depth_threshold*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth))
|
|
#endif
|
|
{
|
|
ec_enc_bit_logp(ec, 1, 1);
|
|
break;
|
|
}
|
|
ec_enc_bit_logp(ec, 0, 1);
|
|
} else if (ec_dec_bit_logp(ec, 1)) {
|
|
break;
|
|
}
|
|
/*We used a bit to skip this band.*/
|
|
psum += 1<<BITRES;
|
|
band_bits -= 1<<BITRES;
|
|
}
|
|
/*Reclaim the bits originally allocated to this band.*/
|
|
psum -= bits[j]+intensity_rsv;
|
|
if (intensity_rsv > 0)
|
|
intensity_rsv = LOG2_FRAC_TABLE[j-start];
|
|
psum += intensity_rsv;
|
|
if (band_bits >= alloc_floor)
|
|
{
|
|
/*If we have enough for a fine energy bit per channel, use it.*/
|
|
psum += alloc_floor;
|
|
bits[j] = alloc_floor;
|
|
} else {
|
|
/*Otherwise this band gets nothing at all.*/
|
|
bits[j] = 0;
|
|
}
|
|
}
|
|
|
|
celt_assert(codedBands > start);
|
|
/* Code the intensity and dual stereo parameters. */
|
|
if (intensity_rsv > 0)
|
|
{
|
|
if (encode)
|
|
{
|
|
*intensity = IMIN(*intensity, codedBands);
|
|
ec_enc_uint(ec, *intensity-start, codedBands+1-start);
|
|
}
|
|
else
|
|
*intensity = start+ec_dec_uint(ec, codedBands+1-start);
|
|
}
|
|
else
|
|
*intensity = 0;
|
|
if (*intensity <= start)
|
|
{
|
|
total += dual_stereo_rsv;
|
|
dual_stereo_rsv = 0;
|
|
}
|
|
if (dual_stereo_rsv > 0)
|
|
{
|
|
if (encode)
|
|
ec_enc_bit_logp(ec, *dual_stereo, 1);
|
|
else
|
|
*dual_stereo = ec_dec_bit_logp(ec, 1);
|
|
}
|
|
else
|
|
*dual_stereo = 0;
|
|
|
|
/* Allocate the remaining bits */
|
|
left = total-psum;
|
|
percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
|
|
left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
|
|
for (j=start;j<codedBands;j++)
|
|
bits[j] += ((int)percoeff*(m->eBands[j+1]-m->eBands[j]));
|
|
for (j=start;j<codedBands;j++)
|
|
{
|
|
int tmp = (int)IMIN(left, m->eBands[j+1]-m->eBands[j]);
|
|
bits[j] += tmp;
|
|
left -= tmp;
|
|
}
|
|
/*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/
|
|
|
|
balance = 0;
|
|
for (j=start;j<codedBands;j++)
|
|
{
|
|
int N0, N, den;
|
|
int offset;
|
|
int NClogN;
|
|
opus_int32 excess, bit;
|
|
|
|
celt_assert(bits[j] >= 0);
|
|
N0 = m->eBands[j+1]-m->eBands[j];
|
|
N=N0<<LM;
|
|
bit = (opus_int32)bits[j]+balance;
|
|
|
|
if (N>1)
|
|
{
|
|
excess = MAX32(bit-cap[j],0);
|
|
bits[j] = bit-excess;
|
|
|
|
/* Compensate for the extra DoF in stereo */
|
|
den=(C*N+ ((C==2 && N>2 && !*dual_stereo && j<*intensity) ? 1 : 0));
|
|
|
|
NClogN = den*(m->logN[j] + logM);
|
|
|
|
/* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET
|
|
compared to their "fair share" of total/N */
|
|
offset = (NClogN>>1)-den*FINE_OFFSET;
|
|
|
|
/* N=2 is the only point that doesn't match the curve */
|
|
if (N==2)
|
|
offset += den<<BITRES>>2;
|
|
|
|
/* Changing the offset for allocating the second and third
|
|
fine energy bit */
|
|
if (bits[j] + offset < den*2<<BITRES)
|
|
offset += NClogN>>2;
|
|
else if (bits[j] + offset < den*3<<BITRES)
|
|
offset += NClogN>>3;
|
|
|
|
/* Divide with rounding */
|
|
ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))));
|
|
ebits[j] = celt_udiv(ebits[j], den)>>BITRES;
|
|
|
|
/* Make sure not to bust */
|
|
if (C*ebits[j] > (bits[j]>>BITRES))
|
|
ebits[j] = bits[j] >> stereo >> BITRES;
|
|
|
|
/* More than that is useless because that's about as far as PVQ can go */
|
|
ebits[j] = IMIN(ebits[j], MAX_FINE_BITS);
|
|
|
|
/* If we rounded down or capped this band, make it a candidate for the
|
|
final fine energy pass */
|
|
fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset;
|
|
|
|
/* Remove the allocated fine bits; the rest are assigned to PVQ */
|
|
bits[j] -= C*ebits[j]<<BITRES;
|
|
|
|
} else {
|
|
/* For N=1, all bits go to fine energy except for a single sign bit */
|
|
excess = MAX32(0,bit-(C<<BITRES));
|
|
bits[j] = bit-excess;
|
|
ebits[j] = 0;
|
|
fine_priority[j] = 1;
|
|
}
|
|
|
|
/* Fine energy can't take advantage of the re-balancing in
|
|
quant_all_bands().
|
|
Instead, do the re-balancing here.*/
|
|
if(excess > 0)
|
|
{
|
|
int extra_fine;
|
|
int extra_bits;
|
|
extra_fine = IMIN(excess>>(stereo+BITRES),MAX_FINE_BITS-ebits[j]);
|
|
ebits[j] += extra_fine;
|
|
extra_bits = extra_fine*C<<BITRES;
|
|
fine_priority[j] = extra_bits >= excess-balance;
|
|
excess -= extra_bits;
|
|
}
|
|
balance = excess;
|
|
|
|
celt_assert(bits[j] >= 0);
|
|
celt_assert(ebits[j] >= 0);
|
|
}
|
|
/* Save any remaining bits over the cap for the rebalancing in
|
|
quant_all_bands(). */
|
|
*_balance = balance;
|
|
|
|
/* The skipped bands use all their bits for fine energy. */
|
|
for (;j<end;j++)
|
|
{
|
|
ebits[j] = bits[j] >> stereo >> BITRES;
|
|
celt_assert(C*ebits[j]<<BITRES == bits[j]);
|
|
bits[j] = 0;
|
|
fine_priority[j] = ebits[j]<1;
|
|
}
|
|
RESTORE_STACK;
|
|
return codedBands;
|
|
}
|
|
|
|
int compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo,
|
|
opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
|
|
{
|
|
int lo, hi, len, j;
|
|
int codedBands;
|
|
int skip_start;
|
|
int skip_rsv;
|
|
int intensity_rsv;
|
|
int dual_stereo_rsv;
|
|
VARDECL(int, bits1);
|
|
VARDECL(int, bits2);
|
|
VARDECL(int, thresh);
|
|
VARDECL(int, trim_offset);
|
|
SAVE_STACK;
|
|
|
|
total = IMAX(total, 0);
|
|
len = m->nbEBands;
|
|
skip_start = start;
|
|
/* Reserve a bit to signal the end of manually skipped bands. */
|
|
skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0;
|
|
total -= skip_rsv;
|
|
/* Reserve bits for the intensity and dual stereo parameters. */
|
|
intensity_rsv = dual_stereo_rsv = 0;
|
|
if (C==2)
|
|
{
|
|
intensity_rsv = LOG2_FRAC_TABLE[end-start];
|
|
if (intensity_rsv>total)
|
|
intensity_rsv = 0;
|
|
else
|
|
{
|
|
total -= intensity_rsv;
|
|
dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0;
|
|
total -= dual_stereo_rsv;
|
|
}
|
|
}
|
|
ALLOC(bits1, len, int);
|
|
ALLOC(bits2, len, int);
|
|
ALLOC(thresh, len, int);
|
|
ALLOC(trim_offset, len, int);
|
|
|
|
for (j=start;j<end;j++)
|
|
{
|
|
/* Below this threshold, we're sure not to allocate any PVQ bits */
|
|
thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES)>>4);
|
|
/* Tilt of the allocation curve */
|
|
trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(end-j-1)
|
|
*(1<<(LM+BITRES))>>6;
|
|
/* Giving less resolution to single-coefficient bands because they get
|
|
more benefit from having one coarse value per coefficient*/
|
|
if ((m->eBands[j+1]-m->eBands[j])<<LM==1)
|
|
trim_offset[j] -= C<<BITRES;
|
|
}
|
|
lo = 1;
|
|
hi = m->nbAllocVectors - 1;
|
|
do
|
|
{
|
|
int done = 0;
|
|
int psum = 0;
|
|
int mid = (lo+hi) >> 1;
|
|
for (j=end;j-->start;)
|
|
{
|
|
int bitsj;
|
|
int N = m->eBands[j+1]-m->eBands[j];
|
|
bitsj = C*N*m->allocVectors[mid*len+j]<<LM>>2;
|
|
if (bitsj > 0)
|
|
bitsj = IMAX(0, bitsj + trim_offset[j]);
|
|
bitsj += offsets[j];
|
|
if (bitsj >= thresh[j] || done)
|
|
{
|
|
done = 1;
|
|
/* Don't allocate more than we can actually use */
|
|
psum += IMIN(bitsj, cap[j]);
|
|
} else {
|
|
if (bitsj >= C<<BITRES)
|
|
psum += C<<BITRES;
|
|
}
|
|
}
|
|
if (psum > total)
|
|
hi = mid - 1;
|
|
else
|
|
lo = mid + 1;
|
|
/*printf ("lo = %d, hi = %d\n", lo, hi);*/
|
|
}
|
|
while (lo <= hi);
|
|
hi = lo--;
|
|
/*printf ("interp between %d and %d\n", lo, hi);*/
|
|
for (j=start;j<end;j++)
|
|
{
|
|
int bits1j, bits2j;
|
|
int N = m->eBands[j+1]-m->eBands[j];
|
|
bits1j = C*N*m->allocVectors[lo*len+j]<<LM>>2;
|
|
bits2j = hi>=m->nbAllocVectors ?
|
|
cap[j] : C*N*m->allocVectors[hi*len+j]<<LM>>2;
|
|
if (bits1j > 0)
|
|
bits1j = IMAX(0, bits1j + trim_offset[j]);
|
|
if (bits2j > 0)
|
|
bits2j = IMAX(0, bits2j + trim_offset[j]);
|
|
if (lo > 0)
|
|
bits1j += offsets[j];
|
|
bits2j += offsets[j];
|
|
if (offsets[j]>0)
|
|
skip_start = j;
|
|
bits2j = IMAX(0,bits2j-bits1j);
|
|
bits1[j] = bits1j;
|
|
bits2[j] = bits2j;
|
|
}
|
|
codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh, cap,
|
|
total, balance, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv,
|
|
pulses, ebits, fine_priority, C, LM, ec, encode, prev, signalBandwidth);
|
|
RESTORE_STACK;
|
|
return codedBands;
|
|
}
|
|
|