mirror of
https://github.com/Q3Rally-Team/q3rally.git
synced 2024-11-22 20:11:48 +00:00
0d5fb492cd
Fix GCC 6 misleading-indentation warning add SECURITY.md OpenGL2: Restore adding fixed ambient light when HDR is enabled Few LCC memory fixes. fix a few potential buffer overwrite in Game VM Enable compiler optimization on all macOS architectures Don't allow qagame module to create "botlib.log" at ANY filesystem location Make FS_BuildOSPath for botlib.log consistent with typical usage tiny readme thing Remove extra plus sign from Huff_Compress() Fix VMs being able to change CVAR_PROTECTED cvars Don't register fs_game cvar everywhere just to get the value Don't let VMs change engine latch cvars immediately Fix fs_game '..' reading outside of home and base path Fix VMs forcing engine latch cvar to update to latched value Revert my recent cvar latch changes Revert "Don't let VMs change engine latch cvars immediately" Partially revert "Fix fs_game '..' reading outside of home and base path" Revert "Fix VMs forcing engine latch cvar to update to latched value" Fix exploit to bypass filename restrictions on Windows Changes to systemd q3a.service Fix Q_vsnprintf for mingw-w64 Fix timelimit causing an infinite map ending loop Fix invalid access to cluster 0 in AAS_AreaRouteToGoalArea() Fix negative frag/capturelimit causing an infinite map end loop OpenGL2: Fix dark lightmap on shader in mpteam6 Make FS_InvalidGameDir() consider subdirectories invalid [qcommon] Remove dead serialization code [qcommon] Make several zone variables and functions static. Fix MAC_OS_X_VERSION_MIN_REQUIRED for macOS 10.10 and later Increase q3_ui .arena filename list buffer size to 4096 bytes OpenGL2: Fix crash when BSP has deluxe maps and vertex lit surfaces Support Unicode characters greater than 0xFF in cl_consoleKeys Fix macOS app bundle with space in name OpenGL1: Use glGenTextures instead of hardcoded values Remove CON_FlushIn function and where STDIN needs flushing, use tcflush POSIX function Update libogg from 1.3.2 to 1.3.3 Rename (already updated) libogg-1.3.2 to libogg-1.3.3 Update libvorbis from 1.3.5 to 1.3.6 * Fix CVE-2018-5146 - out-of-bounds write on codebook decoding. * Fix CVE-2017-14632 - free() on unitialized data * Fix CVE-2017-14633 - out-of-bounds read Rename (already updated) libvorbis-1.3.5 to libvorbis-1.3.6 Update opus from 1.1.4 to 1.2.1 Rename (already updated) opus-1.1.4 to opus-1.2.1 Update opusfile from 0.8 to 0.9 Rename (already updated) opusfile-0.8 to opusfile-0.9 First swing at a CONTRIBUTING.md Allow loading system OpenAL library on macOS again Remove duplicate setting of FREETYPE_CFLAGS in Makefile Fix exploit to reset player by sending wrong serverId Fix "Going to CS_ZOMBIE for [clientname]" developer message Fix MSG_Read*String*() functions not being able to read last byte from message
453 lines
12 KiB
C
453 lines
12 KiB
C
/********************************************************************
|
|
* *
|
|
* THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
|
|
* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
|
|
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
|
|
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
|
|
* *
|
|
* THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 *
|
|
* by the Xiph.Org Foundation http://www.xiph.org/ *
|
|
* *
|
|
********************************************************************
|
|
|
|
function: LSP (also called LSF) conversion routines
|
|
|
|
The LSP generation code is taken (with minimal modification and a
|
|
few bugfixes) from "On the Computation of the LSP Frequencies" by
|
|
Joseph Rothweiler (see http://www.rothweiler.us for contact info).
|
|
The paper is available at:
|
|
|
|
http://www.myown1.com/joe/lsf
|
|
|
|
********************************************************************/
|
|
|
|
/* Note that the lpc-lsp conversion finds the roots of polynomial with
|
|
an iterative root polisher (CACM algorithm 283). It *is* possible
|
|
to confuse this algorithm into not converging; that should only
|
|
happen with absurdly closely spaced roots (very sharp peaks in the
|
|
LPC f response) which in turn should be impossible in our use of
|
|
the code. If this *does* happen anyway, it's a bug in the floor
|
|
finder; find the cause of the confusion (probably a single bin
|
|
spike or accidental near-float-limit resolution problems) and
|
|
correct it. */
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include "lsp.h"
|
|
#include "os.h"
|
|
#include "misc.h"
|
|
#include "lookup.h"
|
|
#include "scales.h"
|
|
|
|
/* three possible LSP to f curve functions; the exact computation
|
|
(float), a lookup based float implementation, and an integer
|
|
implementation. The float lookup is likely the optimal choice on
|
|
any machine with an FPU. The integer implementation is *not* fixed
|
|
point (due to the need for a large dynamic range and thus a
|
|
separately tracked exponent) and thus much more complex than the
|
|
relatively simple float implementations. It's mostly for future
|
|
work on a fully fixed point implementation for processors like the
|
|
ARM family. */
|
|
|
|
/* define either of these (preferably FLOAT_LOOKUP) to have faster
|
|
but less precise implementation. */
|
|
#undef FLOAT_LOOKUP
|
|
#undef INT_LOOKUP
|
|
|
|
#ifdef FLOAT_LOOKUP
|
|
#include "lookup.c" /* catch this in the build system; we #include for
|
|
compilers (like gcc) that can't inline across
|
|
modules */
|
|
|
|
/* side effect: changes *lsp to cosines of lsp */
|
|
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
|
|
float amp,float ampoffset){
|
|
int i;
|
|
float wdel=M_PI/ln;
|
|
vorbis_fpu_control fpu;
|
|
|
|
vorbis_fpu_setround(&fpu);
|
|
for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
|
|
|
|
i=0;
|
|
while(i<n){
|
|
int k=map[i];
|
|
int qexp;
|
|
float p=.7071067812f;
|
|
float q=.7071067812f;
|
|
float w=vorbis_coslook(wdel*k);
|
|
float *ftmp=lsp;
|
|
int c=m>>1;
|
|
|
|
while(c--){
|
|
q*=ftmp[0]-w;
|
|
p*=ftmp[1]-w;
|
|
ftmp+=2;
|
|
}
|
|
|
|
if(m&1){
|
|
/* odd order filter; slightly assymetric */
|
|
/* the last coefficient */
|
|
q*=ftmp[0]-w;
|
|
q*=q;
|
|
p*=p*(1.f-w*w);
|
|
}else{
|
|
/* even order filter; still symmetric */
|
|
q*=q*(1.f+w);
|
|
p*=p*(1.f-w);
|
|
}
|
|
|
|
q=frexp(p+q,&qexp);
|
|
q=vorbis_fromdBlook(amp*
|
|
vorbis_invsqlook(q)*
|
|
vorbis_invsq2explook(qexp+m)-
|
|
ampoffset);
|
|
|
|
do{
|
|
curve[i++]*=q;
|
|
}while(map[i]==k);
|
|
}
|
|
vorbis_fpu_restore(fpu);
|
|
}
|
|
|
|
#else
|
|
|
|
#ifdef INT_LOOKUP
|
|
#include "lookup.c" /* catch this in the build system; we #include for
|
|
compilers (like gcc) that can't inline across
|
|
modules */
|
|
|
|
static const int MLOOP_1[64]={
|
|
0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
|
|
14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
|
|
15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
|
|
15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
|
|
};
|
|
|
|
static const int MLOOP_2[64]={
|
|
0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
|
|
8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
|
|
9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
|
|
9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
|
|
};
|
|
|
|
static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};
|
|
|
|
|
|
/* side effect: changes *lsp to cosines of lsp */
|
|
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
|
|
float amp,float ampoffset){
|
|
|
|
/* 0 <= m < 256 */
|
|
|
|
/* set up for using all int later */
|
|
int i;
|
|
int ampoffseti=rint(ampoffset*4096.f);
|
|
int ampi=rint(amp*16.f);
|
|
long *ilsp=alloca(m*sizeof(*ilsp));
|
|
for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
|
|
|
|
i=0;
|
|
while(i<n){
|
|
int j,k=map[i];
|
|
unsigned long pi=46341; /* 2**-.5 in 0.16 */
|
|
unsigned long qi=46341;
|
|
int qexp=0,shift;
|
|
long wi=vorbis_coslook_i(k*65536/ln);
|
|
|
|
qi*=labs(ilsp[0]-wi);
|
|
pi*=labs(ilsp[1]-wi);
|
|
|
|
for(j=3;j<m;j+=2){
|
|
if(!(shift=MLOOP_1[(pi|qi)>>25]))
|
|
if(!(shift=MLOOP_2[(pi|qi)>>19]))
|
|
shift=MLOOP_3[(pi|qi)>>16];
|
|
qi=(qi>>shift)*labs(ilsp[j-1]-wi);
|
|
pi=(pi>>shift)*labs(ilsp[j]-wi);
|
|
qexp+=shift;
|
|
}
|
|
if(!(shift=MLOOP_1[(pi|qi)>>25]))
|
|
if(!(shift=MLOOP_2[(pi|qi)>>19]))
|
|
shift=MLOOP_3[(pi|qi)>>16];
|
|
|
|
/* pi,qi normalized collectively, both tracked using qexp */
|
|
|
|
if(m&1){
|
|
/* odd order filter; slightly assymetric */
|
|
/* the last coefficient */
|
|
qi=(qi>>shift)*labs(ilsp[j-1]-wi);
|
|
pi=(pi>>shift)<<14;
|
|
qexp+=shift;
|
|
|
|
if(!(shift=MLOOP_1[(pi|qi)>>25]))
|
|
if(!(shift=MLOOP_2[(pi|qi)>>19]))
|
|
shift=MLOOP_3[(pi|qi)>>16];
|
|
|
|
pi>>=shift;
|
|
qi>>=shift;
|
|
qexp+=shift-14*((m+1)>>1);
|
|
|
|
pi=((pi*pi)>>16);
|
|
qi=((qi*qi)>>16);
|
|
qexp=qexp*2+m;
|
|
|
|
pi*=(1<<14)-((wi*wi)>>14);
|
|
qi+=pi>>14;
|
|
|
|
}else{
|
|
/* even order filter; still symmetric */
|
|
|
|
/* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
|
|
worth tracking step by step */
|
|
|
|
pi>>=shift;
|
|
qi>>=shift;
|
|
qexp+=shift-7*m;
|
|
|
|
pi=((pi*pi)>>16);
|
|
qi=((qi*qi)>>16);
|
|
qexp=qexp*2+m;
|
|
|
|
pi*=(1<<14)-wi;
|
|
qi*=(1<<14)+wi;
|
|
qi=(qi+pi)>>14;
|
|
|
|
}
|
|
|
|
|
|
/* we've let the normalization drift because it wasn't important;
|
|
however, for the lookup, things must be normalized again. We
|
|
need at most one right shift or a number of left shifts */
|
|
|
|
if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
|
|
qi>>=1; qexp++;
|
|
}else
|
|
while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
|
|
qi<<=1; qexp--;
|
|
}
|
|
|
|
amp=vorbis_fromdBlook_i(ampi* /* n.4 */
|
|
vorbis_invsqlook_i(qi,qexp)-
|
|
/* m.8, m+n<=8 */
|
|
ampoffseti); /* 8.12[0] */
|
|
|
|
curve[i]*=amp;
|
|
while(map[++i]==k)curve[i]*=amp;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
/* old, nonoptimized but simple version for any poor sap who needs to
|
|
figure out what the hell this code does, or wants the other
|
|
fraction of a dB precision */
|
|
|
|
/* side effect: changes *lsp to cosines of lsp */
|
|
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
|
|
float amp,float ampoffset){
|
|
int i;
|
|
float wdel=M_PI/ln;
|
|
for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
|
|
|
|
i=0;
|
|
while(i<n){
|
|
int j,k=map[i];
|
|
float p=.5f;
|
|
float q=.5f;
|
|
float w=2.f*cos(wdel*k);
|
|
for(j=1;j<m;j+=2){
|
|
q *= w-lsp[j-1];
|
|
p *= w-lsp[j];
|
|
}
|
|
if(j==m){
|
|
/* odd order filter; slightly assymetric */
|
|
/* the last coefficient */
|
|
q*=w-lsp[j-1];
|
|
p*=p*(4.f-w*w);
|
|
q*=q;
|
|
}else{
|
|
/* even order filter; still symmetric */
|
|
p*=p*(2.f-w);
|
|
q*=q*(2.f+w);
|
|
}
|
|
|
|
q=fromdB(amp/sqrt(p+q)-ampoffset);
|
|
|
|
curve[i]*=q;
|
|
while(map[++i]==k)curve[i]*=q;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
static void cheby(float *g, int ord) {
|
|
int i, j;
|
|
|
|
g[0] *= .5f;
|
|
for(i=2; i<= ord; i++) {
|
|
for(j=ord; j >= i; j--) {
|
|
g[j-2] -= g[j];
|
|
g[j] += g[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
static int comp(const void *a,const void *b){
|
|
return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
|
|
}
|
|
|
|
/* Newton-Raphson-Maehly actually functioned as a decent root finder,
|
|
but there are root sets for which it gets into limit cycles
|
|
(exacerbated by zero suppression) and fails. We can't afford to
|
|
fail, even if the failure is 1 in 100,000,000, so we now use
|
|
Laguerre and later polish with Newton-Raphson (which can then
|
|
afford to fail) */
|
|
|
|
#define EPSILON 10e-7
|
|
static int Laguerre_With_Deflation(float *a,int ord,float *r){
|
|
int i,m;
|
|
double *defl=alloca(sizeof(*defl)*(ord+1));
|
|
for(i=0;i<=ord;i++)defl[i]=a[i];
|
|
|
|
for(m=ord;m>0;m--){
|
|
double new=0.f,delta;
|
|
|
|
/* iterate a root */
|
|
while(1){
|
|
double p=defl[m],pp=0.f,ppp=0.f,denom;
|
|
|
|
/* eval the polynomial and its first two derivatives */
|
|
for(i=m;i>0;i--){
|
|
ppp = new*ppp + pp;
|
|
pp = new*pp + p;
|
|
p = new*p + defl[i-1];
|
|
}
|
|
|
|
/* Laguerre's method */
|
|
denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
|
|
if(denom<0)
|
|
return(-1); /* complex root! The LPC generator handed us a bad filter */
|
|
|
|
if(pp>0){
|
|
denom = pp + sqrt(denom);
|
|
if(denom<EPSILON)denom=EPSILON;
|
|
}else{
|
|
denom = pp - sqrt(denom);
|
|
if(denom>-(EPSILON))denom=-(EPSILON);
|
|
}
|
|
|
|
delta = m*p/denom;
|
|
new -= delta;
|
|
|
|
if(delta<0.f)delta*=-1;
|
|
|
|
if(fabs(delta/new)<10e-12)break;
|
|
}
|
|
|
|
r[m-1]=new;
|
|
|
|
/* forward deflation */
|
|
|
|
for(i=m;i>0;i--)
|
|
defl[i-1]+=new*defl[i];
|
|
defl++;
|
|
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
|
|
/* for spit-and-polish only */
|
|
static int Newton_Raphson(float *a,int ord,float *r){
|
|
int i, k, count=0;
|
|
double error=1.f;
|
|
double *root=alloca(ord*sizeof(*root));
|
|
|
|
for(i=0; i<ord;i++) root[i] = r[i];
|
|
|
|
while(error>1e-20){
|
|
error=0;
|
|
|
|
for(i=0; i<ord; i++) { /* Update each point. */
|
|
double pp=0.,delta;
|
|
double rooti=root[i];
|
|
double p=a[ord];
|
|
for(k=ord-1; k>= 0; k--) {
|
|
|
|
pp= pp* rooti + p;
|
|
p = p * rooti + a[k];
|
|
}
|
|
|
|
delta = p/pp;
|
|
root[i] -= delta;
|
|
error+= delta*delta;
|
|
}
|
|
|
|
if(count>40)return(-1);
|
|
|
|
count++;
|
|
}
|
|
|
|
/* Replaced the original bubble sort with a real sort. With your
|
|
help, we can eliminate the bubble sort in our lifetime. --Monty */
|
|
|
|
for(i=0; i<ord;i++) r[i] = root[i];
|
|
return(0);
|
|
}
|
|
|
|
|
|
/* Convert lpc coefficients to lsp coefficients */
|
|
int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
|
|
int order2=(m+1)>>1;
|
|
int g1_order,g2_order;
|
|
float *g1=alloca(sizeof(*g1)*(order2+1));
|
|
float *g2=alloca(sizeof(*g2)*(order2+1));
|
|
float *g1r=alloca(sizeof(*g1r)*(order2+1));
|
|
float *g2r=alloca(sizeof(*g2r)*(order2+1));
|
|
int i;
|
|
|
|
/* even and odd are slightly different base cases */
|
|
g1_order=(m+1)>>1;
|
|
g2_order=(m) >>1;
|
|
|
|
/* Compute the lengths of the x polynomials. */
|
|
/* Compute the first half of K & R F1 & F2 polynomials. */
|
|
/* Compute half of the symmetric and antisymmetric polynomials. */
|
|
/* Remove the roots at +1 and -1. */
|
|
|
|
g1[g1_order] = 1.f;
|
|
for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
|
|
g2[g2_order] = 1.f;
|
|
for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
|
|
|
|
if(g1_order>g2_order){
|
|
for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
|
|
}else{
|
|
for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
|
|
for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
|
|
}
|
|
|
|
/* Convert into polynomials in cos(alpha) */
|
|
cheby(g1,g1_order);
|
|
cheby(g2,g2_order);
|
|
|
|
/* Find the roots of the 2 even polynomials.*/
|
|
if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
|
|
Laguerre_With_Deflation(g2,g2_order,g2r))
|
|
return(-1);
|
|
|
|
Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
|
|
Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
|
|
|
|
qsort(g1r,g1_order,sizeof(*g1r),comp);
|
|
qsort(g2r,g2_order,sizeof(*g2r),comp);
|
|
|
|
for(i=0;i<g1_order;i++)
|
|
lsp[i*2] = acos(g1r[i]);
|
|
|
|
for(i=0;i<g2_order;i++)
|
|
lsp[i*2+1] = acos(g2r[i]);
|
|
return(0);
|
|
}
|