q3rally/engine/code/game/g_rally_scripted_objects.c
2015-11-13 22:41:34 +00:00

1071 lines
29 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
Copyright (C) 2002-2015 Q3Rally Team (Per Thormann - q3rally@gmail.com)
This file is part of q3rally source code.
q3rally source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
q3rally source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with q3rally; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "g_local.h"
#define MAX_SCRIPT_TEXT 8192
// collision types
#define CT_BOX 0
#define CT_CONE 1
#define CT_CYLINDER 2
qboolean SeekToSection( char **pointer, char *str ){
char *token;
// UPDATE: using strstr instead?
// UPDATE: check if end of file is inside of a bracket (ie bad brackets in script file)
// seek to 'str {'
while ( 1 ) {
token = COM_Parse( pointer );
if( !token || token[0] == 0 )
return qfalse;
if ( !Q_stricmp( token, "{" ) ){
// loop through this
while ( 1 ) {
token = COM_Parse( pointer );
if( !token || token[0] == 0 )
return qfalse;
if ( !Q_stricmp( token, "}" ) )
break;
}
}
if ( !Q_stricmp( token, str ) )
break;
}
if( !token || token[0] == 0 ) // model not found
return qfalse;
return qtrue;
}
qboolean G_ParseScriptedObject( gentity_t *ent ){
char *text_p;
int len, i;
char *token;
char text[MAX_SCRIPT_TEXT];
char filename[MAX_QPATH];
// char model[MAX_QPATH];
// char deadmodel[MAX_QPATH];
fileHandle_t f;
// setup defaults
ent->takedamage = qfalse;
VectorLength(ent->r.mins);
VectorLength(ent->r.maxs);
ent->elasticity = 0.1f;
ent->mass = 100;
ent->moveable = qfalse;
ent->number = 0;
if (!ent->script || ent->script[0] == 0){
Com_Printf("No Script file specified\n");
return qfalse;
}
// for debugging only load one object
// if( Q_stricmp( ent->script, "models/mapobjects/barrels/barrel01" ) )
// return qfalse;
Q_strncpyz(filename, ent->script, sizeof(filename));
token = strchr(filename, '.');
if (!token)
Q_strcat(filename, sizeof(filename), ".script");
if (g_developer.integer)
Com_Printf("Attempting to load script %s\n", filename);
// load the file
len = trap_FS_FOpenFile( filename, &f, FS_READ );
if ( !f ){
Com_Printf("Could not find script %s\n", filename);
return qfalse;
}
if ( len >= MAX_SCRIPT_TEXT ) {
len = MAX_SCRIPT_TEXT - 1;
}
trap_FS_Read( text, len, f );
text[len] = 0;
trap_FS_FCloseFile( f );
// parse the text
text_p = text;
// seek to "rally_scripted_object {"
if ( !SeekToSection( &text_p, "rally_scripted_object" ) ){
Com_Printf( "Script file '%s' did not contain rally_scripted_object\n", filename );
return qfalse;
}
// send script file name in CS so we dont need
// to do all of the drawing and stuff server side.
ent->s.modelindex = G_ScriptIndex( ent->script );
// read optional parameters
while ( 1 ) {
token = COM_Parse( &text_p );
if( !token || token[0] == 0 || !Q_stricmp( token, "}" ) ) {
break;
}
if ( !Q_stricmp( token, "{" ) )
continue;
if (g_developer.integer)
Com_Printf("Found token: %s\n", token);
if ( !Q_stricmp( token, "type" ) ){
token = COM_Parse( &text_p );
if ( !token ) {
break;
}
ent->s.weapon = atoi(token);
continue;
}
else if ( !Q_stricmp( token, "model" ) ){
COM_Parse( &text_p );
}
else if ( !Q_stricmp( token, "deadmodel" ) ){
COM_Parse( &text_p );
}
else if ( !Q_stricmp( token, "moveable" ) ){
token = COM_Parse( &text_p );
if ( !token ) {
break;
}
ent->moveable = atoi(token);
continue;
}
else if ( !Q_stricmp( token, "elasticity" ) ){
token = COM_Parse( &text_p );
if ( !token ) {
break;
}
ent->elasticity = atof(token);
continue;
}
else if ( !Q_stricmp( token, "mass" ) ){
token = COM_Parse( &text_p );
if ( !token ) {
break;
}
ent->mass = atoi(token);
if (ent->mass <= 0)
ent->mass = 100;
continue;
}
else if ( !Q_stricmp( token, "frames" ) ){
COM_Parse( &text_p );
COM_Parse( &text_p );
COM_Parse( &text_p );
COM_Parse( &text_p );
}
else if ( !Q_stricmp( token, "health" ) ){
token = COM_Parse( &text_p );
if ( !token ) {
break;
}
ent->maxHealth = ent->health = atoi(token);
if (ent->health >= 0)
ent->takedamage = qtrue;
continue;
}
else if ( !Q_stricmp( token, "mins" ) ){
for (i = 0; i < 3; i++){
token = COM_Parse( &text_p );
if ( !token ) break;
ent->r.mins[i] = atof(token);
}
continue;
}
else if ( !Q_stricmp( token, "maxs" ) ){
for (i = 0; i < 3; i++){
token = COM_Parse( &text_p );
if ( !token ) break;
ent->r.maxs[i] = atof(token);
}
continue;
}
else if ( !Q_stricmp( token, "hitsound" ) ){
COM_Parse( &text_p );
}
else if ( !Q_stricmp( token, "presound" ) ){
COM_Parse( &text_p );
}
else if ( !Q_stricmp( token, "postsound" ) ){
COM_Parse( &text_p );
}
else if ( !Q_stricmp( token, "destroysound" ) ){
COM_Parse( &text_p );
}
else if ( !Q_stricmp( token, "gibs" ) ) {
// skip gibs part of script (it is only used client side)
token = COM_Parse( &text_p );
if ( !token ) {
break;
}
if ( !Q_stricmp( token, "{" ) ){
// loop through this
while ( 1 ) {
token = COM_Parse( &text_p );
if( !token || token[0] == 0 )
return qfalse;
if ( !Q_stricmp( token, "}" ) )
break;
}
}
continue;
}
else {
Com_Printf("Warning: Skipping unknown token %s in %s\n", token, filename);
continue;
}
}
if (g_developer.integer)
Com_Printf("Successfully parsed script file\n");
return qtrue;
}
void G_ScriptedObject_ApplyForce( gentity_t *self, vec3_t force, vec3_t at ){
vec3_t arm, moment;
VectorSubtract( at, self->s.pos.trBase, arm );
VectorAdd( self->netForce, force, self->netForce );
CrossProduct( arm, force, moment );
VectorAdd( self->netMoment, moment, self->netMoment );
}
qboolean G_ScriptedObject_ApplyCollision( gentity_t *self, vec3_t at, vec3_t normal, float elasticity ){
vec3_t arm;
vec3_t vP1;
vec3_t impulse, impulseMoment;
vec3_t cross, cross2;
float impulseNum, impulseDen, dot;
// float oppositeImpulseNum;
// temp for inverseWorldInertiaTensor
vec3_t axis[3];
vec3_t inverseBodyInertiaTensor;
vec3_t inverseWorldInertiaTensor[3];
VectorSubtract( at, self->s.pos.trBase, arm );
// if (pm->pDebug){
// Com_Printf("PM_ApplyCollision: arm %0.3f, %0.3f, %0.3f\n", arm[0], arm[1], arm[2]);
// Com_Printf("PM_ApplyCollision: normal %0.3f, %0.3f, %0.3f\n", normal[0], normal[1], normal[2]);
// }
CrossProduct( self->s.apos.trDelta, arm, cross );
VectorAdd( self->s.pos.trDelta, cross, vP1 );
{
float m[3][3], m2[3][3];
AnglesToOrientation( self->s.apos.trBase, axis );
inverseBodyInertiaTensor[0] = 1.0f * 3.0f / (self->mass * (self->r.maxs[1] * self->r.maxs[1] + self->r.maxs[2] * self->r.maxs[2]));
inverseBodyInertiaTensor[1] = 1.0f * 3.0f / (self->mass * (self->r.maxs[0] * self->r.maxs[0] + self->r.maxs[2] * self->r.maxs[2]));
inverseBodyInertiaTensor[2] = 1.0f * 3.0f / (self->mass * (self->r.maxs[0] * self->r.maxs[0] + self->r.maxs[1] * self->r.maxs[1]));
m[0][0] = inverseBodyInertiaTensor[0] * axis[0][0];
m[1][0] = inverseBodyInertiaTensor[0] * axis[1][0];
m[2][0] = inverseBodyInertiaTensor[0] * axis[2][0];
m[0][1] = inverseBodyInertiaTensor[1] * axis[0][1];
m[1][1] = inverseBodyInertiaTensor[1] * axis[1][1];
m[2][1] = inverseBodyInertiaTensor[1] * axis[2][1];
m[0][2] = inverseBodyInertiaTensor[2] * axis[0][2];
m[1][2] = inverseBodyInertiaTensor[2] * axis[1][2];
m[2][2] = inverseBodyInertiaTensor[2] * axis[2][2];
MatrixTranspose( axis, m2 );
MatrixMultiply( m, m2, inverseWorldInertiaTensor );
}
// added from collision
VectorClear(impulse);
dot = DotProduct(normal, vP1);
if ( dot < -8 ){
impulseNum = -(1.0f + elasticity) * DotProduct(normal, vP1);
// oppositeImpulseNum = -(1.0f - elasticity) * DotProduct(normal, vP1);
CrossProduct( arm, normal, cross );
VectorRotate( cross, inverseWorldInertiaTensor, cross2 );
CrossProduct( cross2, arm, cross );
// Com_Printf( "oneOverMass %f, cross.normal %f\n", 1.0f / body->mass, DotProduct(cross, normal) );
impulseDen = 1.0f / self->mass + DotProduct( cross, normal );
VectorScale( normal, impulseNum / impulseDen, impulse );
}
else {
// not hitting surface
// Com_Printf( "PM_ApplyCollision: not hitting surface, %f\n", dot );
return qfalse;
}
// apply impulse to primary quantities
VectorMA( self->s.pos.trDelta, 1.0 / self->mass, impulse, self->s.pos.trDelta );
CrossProduct( arm, impulse, impulseMoment );
VectorAdd( self->angularMomentum, impulseMoment, self->angularMomentum );
// compute affected auxiliary quantities
// VectorRotate( self->angularMomentum, inverseWorldInertiaTensor, self->s.apos.trDelta );
return qtrue;
}
/*
qboolean G_TraceIntersect( trace_t *tr, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int passEntityNum, int contentmask, vec3_t intersect )
{
vec3_t dir;
vec3_t n, u, p, line;
vec3_t lineP;
int firstAxis, axis, lineAxis, next, next2;
float len, len2, d, denom;
trap_Trace( tr, start, mins, maxs, end, passEntityNum, contentmask );
if( tr->fraction == 1.0f || tr->startsolid || tr->allsolid )
{
VectorCopy( tr->endpos, intersect );
return qfalse;
}
Com_Printf( "Trace: fraction %f, normal (%f %f %f), dist %f\n", tr->fraction, tr->plane.normal[0], tr->plane.normal[1], tr->plane.normal[2], tr->plane.dist );
VectorSubtract( end, start, dir );
len = VectorNormalize( dir );
if( len == 0 )
{
VectorCopy( tr->endpos, intersect );
return qfalse;
}
axis = 0;
if( fabs(dir[1]) > fabs(dir[0]) && fabs(dir[1]) > fabs(dir[2]) )
axis = 1;
else if( fabs(dir[2]) > fabs(dir[0]) && fabs(dir[2]) > fabs(dir[1]) )
axis = 2;
firstAxis = axis;
Com_Printf( "Axis %i, plane type %i\n", axis, tr->plane.type );
// create plane normal and point
VectorClear( n );
VectorCopy( tr->endpos, p );
if( dir[axis] > 0.0f )
{
p[axis] += maxs[axis];
n[axis] = 1.0f;
}
else
{
p[axis] += mins[axis];
n[axis] = -1.0f;
}
if( tr->plane.type == axis )
{
// FIXME: need to check other plane now? or check distances to make sure we are right.
Com_Printf( "Coplaniar\n" );
VectorCopy( p, intersect );
Com_Printf( "1: Point at (%f %f %f)\n", intersect[0], intersect[1], intersect[2] );
return qtrue;
}
d = p[axis] * n[axis];
Com_Printf( "Plane point (%f %f %f), normal (%f %f %f), dist %f\n", p[0], p[1], p[2], n[0], n[1], n[2], d );
CrossProduct( n, tr->plane.normal, u );
// FIXME: why is u not normalized already since n and plane.normal are normalized
len = VectorNormalize( u );
// if( len == 0 )
// {
// planes are parallel, Should already be handled previously
// }
lineAxis = 0;
if( fabs(u[1]) > fabs(u[0]) && fabs(u[1]) > fabs(u[2]) )
lineAxis = 1;
else if( fabs(u[2]) > fabs(u[0]) && fabs(u[2]) > fabs(u[1]) )
lineAxis = 2;
Com_Printf( "Line Axis %i\n", lineAxis );
next = (lineAxis + 1) % 3;
next2 = (next + 1) % 3;
// trace plane is 1, bbox plane is 2
Com_Printf( "Next %i, next2 %i\n", next, next2 );
denom = ( n[next] * tr->plane.normal[next2] - n[next2] * tr->plane.normal[next] );
Com_Printf( "Denom %f\n", denom );
lineP[axis] = 0;
lineP[next] = ( d * tr->plane.normal[next2] - n[next2] * tr->plane.dist ) / denom;
lineP[next2] = ( tr->plane.dist * n[next] - tr->plane.normal[next] * d ) / denom;
Com_Printf( "Line at (%f %f %f) in direction (%f %f %f)\n", lineP[0], lineP[1], lineP[2], u[0], u[1], u[2] );
axis = 0;
if( fabs(dir[1]) <= fabs(dir[0]) && fabs(dir[1]) > fabs(dir[2]) )
axis = 1;
else if( fabs(dir[1]) > fabs(dir[0]) && fabs(dir[1]) <= fabs(dir[2]) )
axis = 1;
else if( fabs(dir[2]) <= fabs(dir[0]) && fabs(dir[2]) > fabs(dir[1]) )
axis = 2;
else if( fabs(dir[2]) > fabs(dir[0]) && fabs(dir[2]) <= fabs(dir[1]) )
axis = 2;
if( axis == firstAxis )
axis = (axis + 1) % 3;
Com_Printf( "Axis %i\n", axis );
// create plane normal and point
VectorClear( n );
VectorCopy( tr->endpos, p );
if( dir[axis] > 0.0f )
{
p[axis] += maxs[axis];
n[axis] = 1.0f;
}
else
{
p[axis] += mins[axis];
n[axis] = -1.0f;
}
VectorSubtract( lineP, p, line );
len = DotProduct( line, n );
len2 = DotProduct( u, n );
Com_Printf( "len %f, len2 %f\n", len, len2 );
if( len2 == 0.0f )
{
// intersection line of two previous planes is parallel to the plane
VectorCopy( lineP, intersect );
// intersect[lineAxis] = tr->endpos[lineAxis];
next = (firstAxis + 1) % 3;
next2 = (next + 1) % 3;
if( next == axis )
intersect[next2] = tr->endpos[next2];
else
intersect[next] = tr->endpos[next];
intersect[axis] = tr->endpos[axis];
// intersect[1] = -intersect[1];
Com_Printf( "2: Point at (%f %f %f)\n", intersect[0], intersect[1], intersect[2] );
return qtrue;
}
VectorMA( p, -len / len2, u, intersect );
Com_Printf( "3: Point at (%f %f %f)\n", intersect[0], intersect[1], intersect[2] );
return qtrue;
}
void G_ScriptedObject_TracePhysics( gentity_t *self, float time )
{
trace_t tr;
vec3_t dir;
vec3_t start, end, intersect;
float dot;
float moveDist, dist;
if( VectorLengthSquared( self->s.pos.trDelta ) == 0.0f )
{
dist = VectorNormalize2( self->lastNonZeroVelocity, dir );
}
else
{
dist = VectorNormalize2( self->s.pos.trDelta, dir );
}
moveDist = 0.5f > dist ? dist * 0.5f : 0.5f;
VectorMA( self->s.pos.trBase, -1, dir, start );
VectorMA( self->s.pos.trBase, time * ( dist + moveDist ), dir, end );
// trap_Trace( &tr, start, self->r.mins, self->r.maxs, end, self->s.clientNum, CONTENTS_SOLID|CONTENTS_BODY );
if( G_TraceIntersect( &tr, start, self->r.mins, self->r.maxs, end, self->s.clientNum, CONTENTS_SOLID|CONTENTS_BODY, intersect ) )
{
G_SetOrigin( &g_entities[level.testModelID], intersect );
trap_LinkEntity( &g_entities[level.testModelID] );
}
if( tr.startsolid || tr.allsolid )
{
float moveAhead = dist < 1.0f ? dist - 0.01f : 1.0f;
VectorMA( self->s.pos.trBase, moveAhead, dir, start );
// trap_Trace( &tr, start, self->r.mins, self->r.maxs, end, self->s.clientNum, CONTENTS_SOLID|CONTENTS_BODY );
if( G_TraceIntersect( &tr, start, self->r.mins, self->r.maxs, end, self->s.clientNum, CONTENTS_SOLID|CONTENTS_BODY, intersect ) )
{
G_SetOrigin( &g_entities[level.testModelID], intersect );
trap_LinkEntity( &g_entities[level.testModelID] );
}
if( tr.startsolid || tr.allsolid )
{
Com_Printf( "in solid twice, vel %f %f %f, allsolid %i\n", self->s.pos.trDelta[0], self->s.pos.trDelta[1], self->s.pos.trDelta[2], tr.allsolid );
}
}
// if( tr.fraction == 1.0f )
// return;
if( tr.plane.normal[0] == 0 &&
tr.plane.normal[1] == 0 &&
tr.plane.normal[2] == 0 )
return;
dot = DotProduct( tr.plane.normal, self->s.pos.trDelta );
if( dot < -16.0f )
{
VectorMA( self->s.pos.trDelta, -dot * ( 1.00f + self->elasticity ), tr.plane.normal, self->s.pos.trDelta );
}
else if( dot < 0.0f )
{
// stop the object once it is slow enough
// VectorClear( self->s.pos.trDelta );
VectorMA( self->s.pos.trDelta, -dot, tr.plane.normal, self->s.pos.trDelta );
}
#if 0
if( !G_ScriptedObject_ApplyCollision( self, intersect, tr.plane.normal, self->elasticity ) )
{
// stop the object once it is slow enough
VectorClear( self->s.pos.trDelta );
// VectorMA( self->s.pos.trDelta, -dot, tr.plane.normal, self->s.pos.trDelta );
// HACK for the angular velocity if we are stopped on the ground
// kind of the same thing as friction
VectorScale( self->angularMomentum, 0.99f, self->angularMomentum );
}
#endif
dot = DotProduct( tr.plane.normal, self->netForce );
if( dot < 0.0f )
{
// vec3_t force;
// VectorScale( tr.plane.normal, -dot, force );
// G_ScriptedObject_ApplyForce( self, force, intersect );
VectorMA( self->netForce, -dot, tr.plane.normal, self->netForce );
}
}
*/
// Traces a cone at the current position and angles.
int G_TraceCone( trace_t *tr, vec3_t origin, vec3_t angles, vec3_t mins, vec3_t maxs, int passEntityNum, int contentmask )
{
vec3_t forward, right, up;
vec3_t start, end, bottom, top;
float radius;
vec3_t normal, intersect;
float firstHit;
int numHits;
VectorClear( normal );
VectorClear( intersect );
firstHit = 1.0f;
numHits = 0;
AngleVectors( angles, forward, right, up );
radius = ( maxs[0] - mins[0] ) / 2.0f;
VectorMA( origin, mins[2], up, bottom );
VectorMA( origin, maxs[2], up, top );
VectorCopy( origin, start );
// right
VectorMA( bottom, radius, right, end );
trap_Trace( tr, start, NULL, NULL, end, passEntityNum, contentmask );
if( tr->fraction < 1.0f )
{
VectorAdd( intersect, tr->endpos, intersect );
VectorAdd( normal, tr->plane.normal, normal );
if( tr->fraction < firstHit )
firstHit = tr->fraction;
numHits++;
}
else
{
trap_Trace( tr, end, NULL, NULL, top, passEntityNum, contentmask );
if( tr->fraction < 1.0f && !tr->startsolid && !tr->allsolid )
{
VectorAdd( intersect, tr->endpos, intersect );
VectorAdd( normal, tr->plane.normal, normal );
if( tr->fraction < firstHit )
firstHit = tr->fraction;
numHits++;
}
}
// left
VectorMA( bottom, -radius, right, end );
trap_Trace( tr, start, NULL, NULL, end, passEntityNum, contentmask );
if( tr->fraction < 1.0f )
{
VectorAdd( intersect, tr->endpos, intersect );
VectorAdd( normal, tr->plane.normal, normal );
if( tr->fraction < firstHit )
firstHit = tr->fraction;
numHits++;
}
else
{
trap_Trace( tr, end, NULL, NULL, top, passEntityNum, contentmask );
if( tr->fraction < 1.0f && !tr->startsolid && !tr->allsolid )
{
VectorAdd( intersect, tr->endpos, intersect );
VectorAdd( normal, tr->plane.normal, normal );
if( tr->fraction < firstHit )
firstHit = tr->fraction;
numHits++;
}
}
// front
VectorMA( bottom, radius, forward, end );
trap_Trace( tr, start, NULL, NULL, end, passEntityNum, contentmask );
if( tr->fraction < 1.0f )
{
VectorAdd( intersect, tr->endpos, intersect );
VectorAdd( normal, tr->plane.normal, normal );
if( tr->fraction < firstHit )
firstHit = tr->fraction;
numHits++;
}
else
{
trap_Trace( tr, end, NULL, NULL, top, passEntityNum, contentmask );
if( tr->fraction < 1.0f && !tr->startsolid && !tr->allsolid )
{
VectorAdd( intersect, tr->endpos, intersect );
VectorAdd( normal, tr->plane.normal, normal );
if( tr->fraction < firstHit )
firstHit = tr->fraction;
numHits++;
}
}
// back
VectorMA( bottom, -radius, forward, end );
trap_Trace( tr, start, NULL, NULL, end, passEntityNum, contentmask );
if( tr->fraction < 1.0f )
{
VectorAdd( intersect, tr->endpos, intersect );
VectorAdd( normal, tr->plane.normal, normal );
if( tr->fraction < firstHit )
firstHit = tr->fraction;
numHits++;
}
else
{
trap_Trace( tr, end, NULL, NULL, top, passEntityNum, contentmask );
if( tr->fraction < 1.0f && !tr->startsolid && !tr->allsolid )
{
VectorAdd( intersect, tr->endpos, intersect );
VectorAdd( normal, tr->plane.normal, normal );
if( tr->fraction < firstHit )
firstHit = tr->fraction;
numHits++;
}
}
if( numHits )
{
// VectorScale( normal, 1.0f / numHits, tr->plane.normal );
VectorNormalize2( normal, tr->plane.normal );
VectorScale( intersect, 1.0f / numHits, tr->endpos );
tr->fraction = firstHit;
return numHits;
}
return 0;
}
void G_ScriptedObject_TracePhysics( gentity_t *self, float time )
{
trace_t tr;
vec3_t dir;
vec3_t start, end;
float dot;
float moveDist, dist;
if( VectorLengthSquared( self->s.pos.trDelta ) == 0.0f )
{
dist = VectorNormalize2( self->lastNonZeroVelocity, dir );
}
else
{
dist = VectorNormalize2( self->s.pos.trDelta, dir );
}
moveDist = 0.5f > dist ? dist * 0.5f : 0.5f;
VectorMA( self->s.pos.trBase, -1, dir, start );
VectorMA( self->s.pos.trBase, time * ( dist + moveDist ), dir, end );
trap_Trace( &tr, start, NULL, NULL, end, self->s.number, MASK_PLAYERSOLID );
if( tr.startsolid || tr.allsolid )
{
trap_Trace( &tr, start, NULL, NULL, end, self->s.number, MASK_PLAYERSOLID & ~CONTENTS_BODY );
if( tr.fraction < 1.0f || G_TraceCone( &tr, end, self->s.apos.trBase, self->r.mins, self->r.maxs, self->s.number, MASK_PLAYERSOLID & ~CONTENTS_BODY ) )
{
// G_SetOrigin( &g_entities[level.testModelID], tr.endpos );
// trap_LinkEntity( &g_entities[level.testModelID] );
}
}
else if( tr.fraction < 1.0f || G_TraceCone( &tr, end, self->s.apos.trBase, self->r.mins, self->r.maxs, self->s.number, MASK_PLAYERSOLID ) )
{
// G_SetOrigin( &g_entities[level.testModelID], tr.endpos );
// trap_LinkEntity( &g_entities[level.testModelID] );
}
if( tr.plane.normal[0] == 0 &&
tr.plane.normal[1] == 0 &&
tr.plane.normal[2] == 0 )
return;
dot = DotProduct( tr.plane.normal, self->s.pos.trDelta );
if( dot < -16.0f )
{
VectorMA( self->s.pos.trDelta, -dot * ( 1.0f + self->elasticity ), tr.plane.normal, self->s.pos.trDelta );
}
else if( dot < 0.00f )
{
// stop the object once it is slow enough
// VectorClear( self->s.pos.trDelta );
VectorMA( self->s.pos.trDelta, -dot * 1.00f, tr.plane.normal, self->s.pos.trDelta );
}
/*
if( !G_ScriptedObject_ApplyCollision( self, tr.endpos, tr.plane.normal, self->elasticity ) )
{
// stop the object once it is slow enough
// VectorClear( self->s.pos.trDelta );
VectorMA( self->s.pos.trDelta, -dot, tr.plane.normal, self->s.pos.trDelta );
// HACK for the angular velocity if we are stopped on the ground
// kind of the same thing as friction
// VectorScale( self->angularMomentum, 0.99f, self->angularMomentum );
}
*/
// friction
VectorMA( self->s.pos.trDelta, -dot, tr.plane.normal, dir );
// VectorScale( dir, -1.0f * self->mass, dir );
// G_ScriptedObject_ApplyForce( self, dir, tr.endpos );
VectorMA( self->netForce, -1.0f * self->mass, dir, self->netForce );
dot = DotProduct( tr.plane.normal, self->netForce );
if( dot < 0.00f )
{
// vec3_t force;
// VectorScale( tr.plane.normal, -dot, force );
// G_ScriptedObject_ApplyForce( self, force, intersect );
VectorMA( self->netForce, -dot * 1.00f, tr.plane.normal, self->netForce );
}
}
void G_ScriptedObject_IntegratePhysics( gentity_t *self, float time )
{
float inverseWorldInertiaTensor[3][3], m[3][3];
float m2[3][3];
vec3_t axis[3];
vec3_t inverseBodyInertiaTensor;
qboolean doAngular = qfalse;
if( self->netMoment[0] != 0 ||
self->netMoment[1] != 0 ||
self->netMoment[2] != 0 ||
self->angularMomentum[0] != 0 ||
self->angularMomentum[1] != 0 ||
self->angularMomentum[2] != 0 )
{
doAngular = qtrue;
}
if( doAngular )
{
AnglesToOrientation( self->s.apos.trBase, axis );
inverseBodyInertiaTensor[0] = 1.0f * 3.0f / (self->mass * (self->r.maxs[1] * self->r.maxs[1] + self->r.maxs[2] * self->r.maxs[2]));
inverseBodyInertiaTensor[1] = 1.0f * 3.0f / (self->mass * (self->r.maxs[0] * self->r.maxs[0] + self->r.maxs[2] * self->r.maxs[2]));
inverseBodyInertiaTensor[2] = 1.0f * 3.0f / (self->mass * (self->r.maxs[0] * self->r.maxs[0] + self->r.maxs[1] * self->r.maxs[1]));
m[0][0] = inverseBodyInertiaTensor[0] * axis[0][0];
m[1][0] = inverseBodyInertiaTensor[0] * axis[1][0];
m[2][0] = inverseBodyInertiaTensor[0] * axis[2][0];
m[0][1] = inverseBodyInertiaTensor[1] * axis[0][1];
m[1][1] = inverseBodyInertiaTensor[1] * axis[1][1];
m[2][1] = inverseBodyInertiaTensor[1] * axis[2][1];
m[0][2] = inverseBodyInertiaTensor[2] * axis[0][2];
m[1][2] = inverseBodyInertiaTensor[2] * axis[1][2];
m[2][2] = inverseBodyInertiaTensor[2] * axis[2][2];
MatrixTranspose( axis, m2 );
MatrixMultiply( m, m2, inverseWorldInertiaTensor );
}
//linear
VectorMA( self->s.pos.trDelta, time / self->mass, self->netForce, self->s.pos.trDelta );
VectorMA( self->s.pos.trBase, time, self->s.pos.trDelta, self->s.pos.trBase );
self->s.pos.trTime = level.time;
// angular
if( doAngular )
{
// vec3_t oldAngles;
// VectorCopy( self->s.apos.trBase, oldAngles );
VectorMA( self->angularMomentum, time, self->netMoment, self->angularMomentum );
VectorRotate( self->angularMomentum, inverseWorldInertiaTensor, self->s.apos.trDelta );
m[0][0] = 0; m[0][1] = (time) * -self->s.apos.trDelta[2]; m[0][2] = (time) * self->s.apos.trDelta[1];
m[1][0] = (time) * self->s.apos.trDelta[2]; m[1][1] = 0; m[1][2] = (time) * -self->s.apos.trDelta[0];
m[2][0] = (time) * -self->s.apos.trDelta[1]; m[2][1] = (time) * self->s.apos.trDelta[0]; m[2][2] = 0;
MatrixMultiply( m, axis, m2 );
MatrixAdd( axis, m2, axis );
OrthonormalizeOrientation( axis );
OrientationToAngles( axis, self->s.apos.trBase );
// VectorSubtract( self->s.apos.trBase, oldAngles, self->s.apos.trDelta );
// if( time != 0 )
// VectorScale( self->s.apos.trDelta, 1.0f / time, self->s.apos.trDelta );
}
if( self->s.pos.trDelta[0] != 0 ||
self->s.pos.trDelta[1] != 0 ||
self->s.pos.trDelta[2] != 0 )
{
VectorCopy( self->s.pos.trDelta, self->lastNonZeroVelocity );
}
}
void G_ScriptedObject_Destroy( gentity_t *self, gentity_t *inflictor, gentity_t *attacker, int damage, int mod ){
Com_Printf("Destroying scripted map object %s\n", self->classname);
self->s.eFlags |= EF_DEAD;
}
void G_ScriptedObject_Touch ( gentity_t *self, gentity_t *other, trace_t *trace ){
vec3_t dir;
// float angle, min;
float dot;
/*
vec3_t mins, maxs;
// FIXME: use width, height and depth instead of mins and maxs
mins[0] = min(-self->r.mins[0], self->r.maxs[0]);
mins[1] = min(-self->r.mins[1], self->r.maxs[1]);
min = min(mins[0], mins[1]);
VectorSet(mins, -min, -min, -min);
VectorSet(maxs, min, min, min);
*/
// hit sound
// if (ent->hitSound)
// FIXME: play hit sound
// VectorSubtract( self->s.pos.trBase, other->s.pos.trBase, trace->plane.normal );
// VectorNormalize( trace->plane.normal );
VectorInverse( trace->plane.normal );
VectorMA( self->s.pos.trDelta, -1, other->s.pos.trDelta, dir );
dot = DotProduct( trace->plane.normal, dir );
// if( dot < -16.0f )
// {
VectorMA( dir, -dot * ( 1.0f + self->elasticity ), trace->plane.normal, dir );
VectorAdd( other->s.pos.trDelta, dir, self->s.pos.trDelta );
// }
// else if( dot < 0.00f )
// {
// stop the object once it is slow enough
// VectorClear( self->s.pos.trDelta );
// VectorMA( dir, -dot * 1.00f, trace->plane.normal, self->s.pos.trDelta );
// }
// G_ScriptedObject_ApplyCollision( self, trace->endpos, trace->plane.normal, self->elasticity );
}
vec3_t tempForce;
void G_ScriptedObject_Think ( gentity_t *self ){
/*
float time = ( level.time - self->updateTime ) / 1000.0f;
VectorSet( self->netForce, 0, 0, -CP_CURRENT_GRAVITY * self->mass );
VectorClear( self->netMoment );
if( level.time % 5000 < 1000 )
{
if( tempForce[0] == 0 && tempForce[1] == 0 && tempForce[2] == 0 )
{
tempForce[0] = crandom();
tempForce[1] = crandom();
tempForce[2] = random() * 1.5f;
}
VectorMA( self->netForce, CP_CURRENT_GRAVITY * self->mass, tempForce, self->netForce );
// VectorSet( self->netForce, -CP_CURRENT_GRAVITY * self->mass / 4.0f, 0, 0 );
// self->netForce[0] = -1;
}
else
{
VectorClear( tempForce );
}
if( self->moveable )
{
G_ScriptedObject_TracePhysics( self, 0.050f );
G_ScriptedObject_IntegratePhysics( self, 0.050f );
}
*/
VectorCopy( self->s.pos.trBase, self->r.currentOrigin );
VectorCopy( self->s.pos.trBase, self->s.origin );
VectorCopy( self->s.apos.trBase, self->r.currentAngles );
VectorCopy( self->s.apos.trBase, self->s.angles );
trap_LinkEntity( self );
self->nextthink = level.time + 50;
self->updateTime = level.time;
}
void G_ScriptedObject_Pain ( gentity_t *self, gentity_t *attacker, int damage ){
/*
// hit sound
// if (ent->hitSound)
// FIXME: play hit sound
if (self->number > 0){
self->s.frame = self->number - ((self->maxHealth / (float)self->number) * self->health);
}
*/
// Com_Printf("Scripted map object %s was hit\n", self->classname);
}
void SP_rally_scripted_object( gentity_t *ent ){
// G_LogPrintf("Spawning a rally_scripted_object\n");
// FIXME: check if one of these types of objects have
// already been loaded and use that one instead.
if ( !G_ParseScriptedObject( ent ) ){
// if there was a problem loading the script just get rid of this ent
G_FreeEntity(ent);
return;
}
ent->s.eType = ET_SCRIPTED;
if (!ent->moveable)
ent->r.contents = CONTENTS_BODY;
ent->die = G_ScriptedObject_Destroy;
// ent->touch = G_ScriptedObject_Touch;
ent->pain = G_ScriptedObject_Pain;
ent->think = G_ScriptedObject_Think;
ent->nextthink = level.time + 1000;
ent->updateTime = ent->nextthink;
VectorClear( ent->netForce );
VectorClear( ent->netMoment );
VectorClear( ent->angularMomentum );
ent->s.pos.trType = TR_LINEAR;
ent->s.apos.trType = TR_INTERPOLATE;
VectorSet( ent->lastNonZeroVelocity, 0, 0, 0 );
// if (ent->preSoundLoop)
// ent->s.loopSound = ent->preSoundLoop;
DropToFloor(ent);
trap_LinkEntity (ent);
}