mirror of
https://github.com/Q3Rally-Team/q3rally.git
synced 2025-01-05 17:31:30 +00:00
0d5fb492cd
Fix GCC 6 misleading-indentation warning add SECURITY.md OpenGL2: Restore adding fixed ambient light when HDR is enabled Few LCC memory fixes. fix a few potential buffer overwrite in Game VM Enable compiler optimization on all macOS architectures Don't allow qagame module to create "botlib.log" at ANY filesystem location Make FS_BuildOSPath for botlib.log consistent with typical usage tiny readme thing Remove extra plus sign from Huff_Compress() Fix VMs being able to change CVAR_PROTECTED cvars Don't register fs_game cvar everywhere just to get the value Don't let VMs change engine latch cvars immediately Fix fs_game '..' reading outside of home and base path Fix VMs forcing engine latch cvar to update to latched value Revert my recent cvar latch changes Revert "Don't let VMs change engine latch cvars immediately" Partially revert "Fix fs_game '..' reading outside of home and base path" Revert "Fix VMs forcing engine latch cvar to update to latched value" Fix exploit to bypass filename restrictions on Windows Changes to systemd q3a.service Fix Q_vsnprintf for mingw-w64 Fix timelimit causing an infinite map ending loop Fix invalid access to cluster 0 in AAS_AreaRouteToGoalArea() Fix negative frag/capturelimit causing an infinite map end loop OpenGL2: Fix dark lightmap on shader in mpteam6 Make FS_InvalidGameDir() consider subdirectories invalid [qcommon] Remove dead serialization code [qcommon] Make several zone variables and functions static. Fix MAC_OS_X_VERSION_MIN_REQUIRED for macOS 10.10 and later Increase q3_ui .arena filename list buffer size to 4096 bytes OpenGL2: Fix crash when BSP has deluxe maps and vertex lit surfaces Support Unicode characters greater than 0xFF in cl_consoleKeys Fix macOS app bundle with space in name OpenGL1: Use glGenTextures instead of hardcoded values Remove CON_FlushIn function and where STDIN needs flushing, use tcflush POSIX function Update libogg from 1.3.2 to 1.3.3 Rename (already updated) libogg-1.3.2 to libogg-1.3.3 Update libvorbis from 1.3.5 to 1.3.6 * Fix CVE-2018-5146 - out-of-bounds write on codebook decoding. * Fix CVE-2017-14632 - free() on unitialized data * Fix CVE-2017-14633 - out-of-bounds read Rename (already updated) libvorbis-1.3.5 to libvorbis-1.3.6 Update opus from 1.1.4 to 1.2.1 Rename (already updated) opus-1.1.4 to opus-1.2.1 Update opusfile from 0.8 to 0.9 Rename (already updated) opusfile-0.8 to opusfile-0.9 First swing at a CONTRIBUTING.md Allow loading system OpenAL library on macOS again Remove duplicate setting of FREETYPE_CFLAGS in Makefile Fix exploit to reset player by sending wrong serverId Fix "Going to CS_ZOMBIE for [clientname]" developer message Fix MSG_Read*String*() functions not being able to read last byte from message
511 lines
13 KiB
C
511 lines
13 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Quake III Arena source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
// tr_light.c
|
|
|
|
#include "tr_local.h"
|
|
|
|
#define DLIGHT_AT_RADIUS 16
|
|
// at the edge of a dlight's influence, this amount of light will be added
|
|
|
|
#define DLIGHT_MINIMUM_RADIUS 16
|
|
// never calculate a range less than this to prevent huge light numbers
|
|
|
|
|
|
/*
|
|
===============
|
|
R_TransformDlights
|
|
|
|
Transforms the origins of an array of dlights.
|
|
Used by both the front end (for DlightBmodel) and
|
|
the back end (before doing the lighting calculation)
|
|
===============
|
|
*/
|
|
void R_TransformDlights( int count, dlight_t *dl, orientationr_t *or) {
|
|
int i;
|
|
vec3_t temp;
|
|
|
|
for ( i = 0 ; i < count ; i++, dl++ ) {
|
|
VectorSubtract( dl->origin, or->origin, temp );
|
|
dl->transformed[0] = DotProduct( temp, or->axis[0] );
|
|
dl->transformed[1] = DotProduct( temp, or->axis[1] );
|
|
dl->transformed[2] = DotProduct( temp, or->axis[2] );
|
|
}
|
|
}
|
|
|
|
/*
|
|
=============
|
|
R_DlightBmodel
|
|
|
|
Determine which dynamic lights may effect this bmodel
|
|
=============
|
|
*/
|
|
void R_DlightBmodel( bmodel_t *bmodel ) {
|
|
int i, j;
|
|
dlight_t *dl;
|
|
int mask;
|
|
msurface_t *surf;
|
|
|
|
// transform all the lights
|
|
R_TransformDlights( tr.refdef.num_dlights, tr.refdef.dlights, &tr.or );
|
|
|
|
mask = 0;
|
|
for ( i=0 ; i<tr.refdef.num_dlights ; i++ ) {
|
|
dl = &tr.refdef.dlights[i];
|
|
|
|
// see if the point is close enough to the bounds to matter
|
|
for ( j = 0 ; j < 3 ; j++ ) {
|
|
if ( dl->transformed[j] - bmodel->bounds[1][j] > dl->radius ) {
|
|
break;
|
|
}
|
|
if ( bmodel->bounds[0][j] - dl->transformed[j] > dl->radius ) {
|
|
break;
|
|
}
|
|
}
|
|
if ( j < 3 ) {
|
|
continue;
|
|
}
|
|
|
|
// we need to check this light
|
|
mask |= 1 << i;
|
|
}
|
|
|
|
tr.currentEntity->needDlights = (mask != 0);
|
|
|
|
// set the dlight bits in all the surfaces
|
|
for ( i = 0 ; i < bmodel->numSurfaces ; i++ ) {
|
|
surf = tr.world->surfaces + bmodel->firstSurface + i;
|
|
|
|
switch(*surf->data)
|
|
{
|
|
case SF_FACE:
|
|
case SF_GRID:
|
|
case SF_TRIANGLES:
|
|
((srfBspSurface_t *)surf->data)->dlightBits = mask;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=============================================================================
|
|
|
|
LIGHT SAMPLING
|
|
|
|
=============================================================================
|
|
*/
|
|
|
|
extern cvar_t *r_ambientScale;
|
|
extern cvar_t *r_directedScale;
|
|
extern cvar_t *r_debugLight;
|
|
|
|
/*
|
|
=================
|
|
R_SetupEntityLightingGrid
|
|
|
|
=================
|
|
*/
|
|
static void R_SetupEntityLightingGrid( trRefEntity_t *ent, world_t *world ) {
|
|
vec3_t lightOrigin;
|
|
int pos[3];
|
|
int i, j;
|
|
byte *gridData;
|
|
float frac[3];
|
|
int gridStep[3];
|
|
vec3_t direction;
|
|
float totalFactor;
|
|
|
|
if ( ent->e.renderfx & RF_LIGHTING_ORIGIN ) {
|
|
// separate lightOrigins are needed so an object that is
|
|
// sinking into the ground can still be lit, and so
|
|
// multi-part models can be lit identically
|
|
VectorCopy( ent->e.lightingOrigin, lightOrigin );
|
|
} else {
|
|
VectorCopy( ent->e.origin, lightOrigin );
|
|
}
|
|
|
|
VectorSubtract( lightOrigin, world->lightGridOrigin, lightOrigin );
|
|
for ( i = 0 ; i < 3 ; i++ ) {
|
|
float v;
|
|
|
|
v = lightOrigin[i]*world->lightGridInverseSize[i];
|
|
pos[i] = floor( v );
|
|
frac[i] = v - pos[i];
|
|
if ( pos[i] < 0 ) {
|
|
pos[i] = 0;
|
|
} else if ( pos[i] > world->lightGridBounds[i] - 1 ) {
|
|
pos[i] = world->lightGridBounds[i] - 1;
|
|
}
|
|
}
|
|
|
|
VectorClear( ent->ambientLight );
|
|
VectorClear( ent->directedLight );
|
|
VectorClear( direction );
|
|
|
|
assert( world->lightGridData ); // NULL with -nolight maps
|
|
|
|
// trilerp the light value
|
|
gridStep[0] = 8;
|
|
gridStep[1] = 8 * world->lightGridBounds[0];
|
|
gridStep[2] = 8 * world->lightGridBounds[0] * world->lightGridBounds[1];
|
|
gridData = world->lightGridData + pos[0] * gridStep[0]
|
|
+ pos[1] * gridStep[1] + pos[2] * gridStep[2];
|
|
|
|
totalFactor = 0;
|
|
for ( i = 0 ; i < 8 ; i++ ) {
|
|
float factor;
|
|
byte *data;
|
|
int lat, lng;
|
|
vec3_t normal;
|
|
#if idppc
|
|
float d0, d1, d2, d3, d4, d5;
|
|
#endif
|
|
factor = 1.0;
|
|
data = gridData;
|
|
for ( j = 0 ; j < 3 ; j++ ) {
|
|
if ( i & (1<<j) ) {
|
|
if ( pos[j] + 1 > world->lightGridBounds[j] - 1 ) {
|
|
break; // ignore values outside lightgrid
|
|
}
|
|
factor *= frac[j];
|
|
data += gridStep[j];
|
|
} else {
|
|
factor *= (1.0f - frac[j]);
|
|
}
|
|
}
|
|
|
|
if ( j != 3 ) {
|
|
continue;
|
|
}
|
|
|
|
if (world->lightGrid16)
|
|
{
|
|
uint16_t *data16 = world->lightGrid16 + (int)(data - world->lightGridData) / 8 * 6;
|
|
if (!(data16[0]+data16[1]+data16[2]+data16[3]+data16[4]+data16[5])) {
|
|
continue; // ignore samples in walls
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!(data[0]+data[1]+data[2]+data[3]+data[4]+data[5]) ) {
|
|
continue; // ignore samples in walls
|
|
}
|
|
}
|
|
totalFactor += factor;
|
|
#if idppc
|
|
d0 = data[0]; d1 = data[1]; d2 = data[2];
|
|
d3 = data[3]; d4 = data[4]; d5 = data[5];
|
|
|
|
ent->ambientLight[0] += factor * d0;
|
|
ent->ambientLight[1] += factor * d1;
|
|
ent->ambientLight[2] += factor * d2;
|
|
|
|
ent->directedLight[0] += factor * d3;
|
|
ent->directedLight[1] += factor * d4;
|
|
ent->directedLight[2] += factor * d5;
|
|
#else
|
|
if (world->lightGrid16)
|
|
{
|
|
// FIXME: this is hideous
|
|
uint16_t *data16 = world->lightGrid16 + (int)(data - world->lightGridData) / 8 * 6;
|
|
|
|
ent->ambientLight[0] += factor * data16[0] / 257.0f;
|
|
ent->ambientLight[1] += factor * data16[1] / 257.0f;
|
|
ent->ambientLight[2] += factor * data16[2] / 257.0f;
|
|
|
|
ent->directedLight[0] += factor * data16[3] / 257.0f;
|
|
ent->directedLight[1] += factor * data16[4] / 257.0f;
|
|
ent->directedLight[2] += factor * data16[5] / 257.0f;
|
|
}
|
|
else
|
|
{
|
|
ent->ambientLight[0] += factor * data[0];
|
|
ent->ambientLight[1] += factor * data[1];
|
|
ent->ambientLight[2] += factor * data[2];
|
|
|
|
ent->directedLight[0] += factor * data[3];
|
|
ent->directedLight[1] += factor * data[4];
|
|
ent->directedLight[2] += factor * data[5];
|
|
}
|
|
#endif
|
|
lat = data[7];
|
|
lng = data[6];
|
|
lat *= (FUNCTABLE_SIZE/256);
|
|
lng *= (FUNCTABLE_SIZE/256);
|
|
|
|
// decode X as cos( lat ) * sin( long )
|
|
// decode Y as sin( lat ) * sin( long )
|
|
// decode Z as cos( long )
|
|
|
|
normal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
|
|
normal[1] = tr.sinTable[lat] * tr.sinTable[lng];
|
|
normal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
|
|
|
|
VectorMA( direction, factor, normal, direction );
|
|
}
|
|
|
|
if ( totalFactor > 0 && totalFactor < 0.99 ) {
|
|
totalFactor = 1.0f / totalFactor;
|
|
VectorScale( ent->ambientLight, totalFactor, ent->ambientLight );
|
|
VectorScale( ent->directedLight, totalFactor, ent->directedLight );
|
|
}
|
|
|
|
VectorScale( ent->ambientLight, r_ambientScale->value, ent->ambientLight );
|
|
VectorScale( ent->directedLight, r_directedScale->value, ent->directedLight );
|
|
|
|
VectorNormalize2( direction, ent->lightDir );
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
LogLight
|
|
===============
|
|
*/
|
|
static void LogLight( trRefEntity_t *ent ) {
|
|
int max1, max2;
|
|
|
|
if ( !(ent->e.renderfx & RF_FIRST_PERSON ) ) {
|
|
return;
|
|
}
|
|
|
|
max1 = ent->ambientLight[0];
|
|
if ( ent->ambientLight[1] > max1 ) {
|
|
max1 = ent->ambientLight[1];
|
|
} else if ( ent->ambientLight[2] > max1 ) {
|
|
max1 = ent->ambientLight[2];
|
|
}
|
|
|
|
max2 = ent->directedLight[0];
|
|
if ( ent->directedLight[1] > max2 ) {
|
|
max2 = ent->directedLight[1];
|
|
} else if ( ent->directedLight[2] > max2 ) {
|
|
max2 = ent->directedLight[2];
|
|
}
|
|
|
|
ri.Printf( PRINT_ALL, "amb:%i dir:%i\n", max1, max2 );
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_SetupEntityLighting
|
|
|
|
Calculates all the lighting values that will be used
|
|
by the Calc_* functions
|
|
=================
|
|
*/
|
|
void R_SetupEntityLighting( const trRefdef_t *refdef, trRefEntity_t *ent ) {
|
|
int i;
|
|
dlight_t *dl;
|
|
float power;
|
|
vec3_t dir;
|
|
float d;
|
|
vec3_t lightDir;
|
|
vec3_t lightOrigin;
|
|
|
|
// lighting calculations
|
|
if ( ent->lightingCalculated ) {
|
|
return;
|
|
}
|
|
ent->lightingCalculated = qtrue;
|
|
|
|
//
|
|
// trace a sample point down to find ambient light
|
|
//
|
|
if ( ent->e.renderfx & RF_LIGHTING_ORIGIN ) {
|
|
// separate lightOrigins are needed so an object that is
|
|
// sinking into the ground can still be lit, and so
|
|
// multi-part models can be lit identically
|
|
VectorCopy( ent->e.lightingOrigin, lightOrigin );
|
|
} else {
|
|
VectorCopy( ent->e.origin, lightOrigin );
|
|
}
|
|
|
|
// if NOWORLDMODEL, only use dynamic lights (menu system, etc)
|
|
if ( !(refdef->rdflags & RDF_NOWORLDMODEL )
|
|
&& tr.world->lightGridData ) {
|
|
R_SetupEntityLightingGrid( ent, tr.world );
|
|
} else {
|
|
ent->ambientLight[0] = ent->ambientLight[1] =
|
|
ent->ambientLight[2] = tr.identityLight * 150;
|
|
ent->directedLight[0] = ent->directedLight[1] =
|
|
ent->directedLight[2] = tr.identityLight * 150;
|
|
VectorCopy( tr.sunDirection, ent->lightDir );
|
|
}
|
|
|
|
// bonus items and view weapons have a fixed minimum add
|
|
if ( 1 /* ent->e.renderfx & RF_MINLIGHT */ ) {
|
|
// give everything a minimum light add
|
|
ent->ambientLight[0] += tr.identityLight * 32;
|
|
ent->ambientLight[1] += tr.identityLight * 32;
|
|
ent->ambientLight[2] += tr.identityLight * 32;
|
|
}
|
|
|
|
//
|
|
// modify the light by dynamic lights
|
|
//
|
|
d = VectorLength( ent->directedLight );
|
|
VectorScale( ent->lightDir, d, lightDir );
|
|
|
|
for ( i = 0 ; i < refdef->num_dlights ; i++ ) {
|
|
dl = &refdef->dlights[i];
|
|
VectorSubtract( dl->origin, lightOrigin, dir );
|
|
d = VectorNormalize( dir );
|
|
|
|
power = DLIGHT_AT_RADIUS * ( dl->radius * dl->radius );
|
|
if ( d < DLIGHT_MINIMUM_RADIUS ) {
|
|
d = DLIGHT_MINIMUM_RADIUS;
|
|
}
|
|
d = power / ( d * d );
|
|
|
|
VectorMA( ent->directedLight, d, dl->color, ent->directedLight );
|
|
VectorMA( lightDir, d, dir, lightDir );
|
|
}
|
|
|
|
// clamp lights
|
|
// FIXME: old renderer clamps (ambient + NL * directed) per vertex
|
|
// check if that's worth implementing
|
|
{
|
|
float r, g, b, max;
|
|
|
|
r = ent->ambientLight[0];
|
|
g = ent->ambientLight[1];
|
|
b = ent->ambientLight[2];
|
|
|
|
max = MAX(MAX(r, g), b);
|
|
|
|
if (max > 255.0f)
|
|
{
|
|
max = 255.0f / max;
|
|
ent->ambientLight[0] *= max;
|
|
ent->ambientLight[1] *= max;
|
|
ent->ambientLight[2] *= max;
|
|
}
|
|
|
|
r = ent->directedLight[0];
|
|
g = ent->directedLight[1];
|
|
b = ent->directedLight[2];
|
|
|
|
max = MAX(MAX(r, g), b);
|
|
|
|
if (max > 255.0f)
|
|
{
|
|
max = 255.0f / max;
|
|
ent->directedLight[0] *= max;
|
|
ent->directedLight[1] *= max;
|
|
ent->directedLight[2] *= max;
|
|
}
|
|
}
|
|
|
|
|
|
if ( r_debugLight->integer ) {
|
|
LogLight( ent );
|
|
}
|
|
|
|
// save out the byte packet version
|
|
((byte *)&ent->ambientLightInt)[0] = ri.ftol(ent->ambientLight[0]);
|
|
((byte *)&ent->ambientLightInt)[1] = ri.ftol(ent->ambientLight[1]);
|
|
((byte *)&ent->ambientLightInt)[2] = ri.ftol(ent->ambientLight[2]);
|
|
((byte *)&ent->ambientLightInt)[3] = 0xff;
|
|
|
|
// transform the direction to local space
|
|
VectorNormalize( lightDir );
|
|
ent->modelLightDir[0] = DotProduct( lightDir, ent->e.axis[0] );
|
|
ent->modelLightDir[1] = DotProduct( lightDir, ent->e.axis[1] );
|
|
ent->modelLightDir[2] = DotProduct( lightDir, ent->e.axis[2] );
|
|
|
|
VectorCopy(lightDir, ent->lightDir);
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_LightForPoint
|
|
=================
|
|
*/
|
|
int R_LightForPoint( vec3_t point, vec3_t ambientLight, vec3_t directedLight, vec3_t lightDir )
|
|
{
|
|
trRefEntity_t ent;
|
|
|
|
if ( tr.world->lightGridData == NULL )
|
|
return qfalse;
|
|
|
|
Com_Memset(&ent, 0, sizeof(ent));
|
|
VectorCopy( point, ent.e.origin );
|
|
R_SetupEntityLightingGrid( &ent, tr.world );
|
|
VectorCopy(ent.ambientLight, ambientLight);
|
|
VectorCopy(ent.directedLight, directedLight);
|
|
VectorCopy(ent.lightDir, lightDir);
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
|
|
int R_LightDirForPoint( vec3_t point, vec3_t lightDir, vec3_t normal, world_t *world )
|
|
{
|
|
trRefEntity_t ent;
|
|
|
|
if ( world->lightGridData == NULL )
|
|
return qfalse;
|
|
|
|
Com_Memset(&ent, 0, sizeof(ent));
|
|
VectorCopy( point, ent.e.origin );
|
|
R_SetupEntityLightingGrid( &ent, world );
|
|
|
|
if (DotProduct(ent.lightDir, normal) > 0.2f)
|
|
VectorCopy(ent.lightDir, lightDir);
|
|
else
|
|
VectorCopy(normal, lightDir);
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
|
|
int R_CubemapForPoint( vec3_t point )
|
|
{
|
|
int cubemapIndex = -1;
|
|
|
|
if (r_cubeMapping->integer && tr.numCubemaps)
|
|
{
|
|
int i;
|
|
vec_t shortest = (float)WORLD_SIZE * (float)WORLD_SIZE;
|
|
|
|
for (i = 0; i < tr.numCubemaps; i++)
|
|
{
|
|
vec3_t diff;
|
|
vec_t length;
|
|
|
|
VectorSubtract(point, tr.cubemaps[i].origin, diff);
|
|
length = DotProduct(diff, diff);
|
|
|
|
if (shortest > length)
|
|
{
|
|
shortest = length;
|
|
cubemapIndex = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
return cubemapIndex + 1;
|
|
}
|