mirror of
https://github.com/Q3Rally-Team/q3rally.git
synced 2024-11-26 13:51:42 +00:00
3b4f4cdfa9
Some revision messages: Cache servers for each master server in q3_ui, otherwise servers from last updated master for shown for all Internet# sources. Play correct team sounds when in spectator mode and following a player. Check last listener number instead of clc.clientNum in S_AL_HearingThroughEntity so sound work correctly when spectate following a client. (Related to bug 5741.) When in third person, don't play player's sounds as full volume in Base sound system. OpenAL already does this. (Related to bug 5741.) really fix the confusion with game entity and refentity numbers to further reduce confusion, rename constants like MAX_ENTITIES to MAX_REFENTITIES Added Rend2, an alternate renderer. (Bug #4358) Fix restoring fs_game when default.cfg is missing. Fix restoring old fs_game upon leaving a server. Patch by Ensiform. Change more operator commands to require sv_running to be usable. Patch by Ensiform. Fix some "> MAX_*" to be ">= MAX_*". Fix follow command to find clients whose name begins with a number. Fix up "gc" command, make it more like "tell". Based on patch by Ensiform. Add usage messages for gc, tell, vtell, and votell commands. Check player names in gc, tell, vtell, and votell commands. #5799 - Change messagemode text box to display colors like in console input box. Improve "play" command, based on a patch from Ensiform. Check for invalid filename in OpenAL's RegisterSound function. Changed Base sound system to warn not error when sound filename is empty or too long. Remove references to non-existent functions CM_MarkFragments and CM_LerpTag.
3435 lines
80 KiB
C
3435 lines
80 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Quake III Arena source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
// tr_image.c
|
|
#include "tr_local.h"
|
|
|
|
static byte s_intensitytable[256];
|
|
static unsigned char s_gammatable[256];
|
|
|
|
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
|
|
int gl_filter_max = GL_LINEAR;
|
|
|
|
#define FILE_HASH_SIZE 1024
|
|
static image_t* hashTable[FILE_HASH_SIZE];
|
|
|
|
/*
|
|
** R_GammaCorrect
|
|
*/
|
|
void R_GammaCorrect( byte *buffer, int bufSize ) {
|
|
int i;
|
|
|
|
for ( i = 0; i < bufSize; i++ ) {
|
|
buffer[i] = s_gammatable[buffer[i]];
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
char *name;
|
|
int minimize, maximize;
|
|
} textureMode_t;
|
|
|
|
textureMode_t modes[] = {
|
|
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
|
|
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
|
|
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
|
|
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
|
|
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
|
|
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
|
|
};
|
|
|
|
/*
|
|
================
|
|
return a hash value for the filename
|
|
================
|
|
*/
|
|
static long generateHashValue( const char *fname ) {
|
|
int i;
|
|
long hash;
|
|
char letter;
|
|
|
|
hash = 0;
|
|
i = 0;
|
|
while (fname[i] != '\0') {
|
|
letter = tolower(fname[i]);
|
|
if (letter =='.') break; // don't include extension
|
|
if (letter =='\\') letter = '/'; // damn path names
|
|
hash+=(long)(letter)*(i+119);
|
|
i++;
|
|
}
|
|
hash &= (FILE_HASH_SIZE-1);
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
GL_TextureMode
|
|
===============
|
|
*/
|
|
void GL_TextureMode( const char *string ) {
|
|
int i;
|
|
image_t *glt;
|
|
|
|
for ( i=0 ; i< 6 ; i++ ) {
|
|
if ( !Q_stricmp( modes[i].name, string ) ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// hack to prevent trilinear from being set on voodoo,
|
|
// because their driver freaks...
|
|
if ( i == 5 && glConfig.hardwareType == GLHW_3DFX_2D3D ) {
|
|
ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" );
|
|
i = 3;
|
|
}
|
|
|
|
|
|
if ( i == 6 ) {
|
|
ri.Printf (PRINT_ALL, "bad filter name\n");
|
|
return;
|
|
}
|
|
|
|
gl_filter_min = modes[i].minimize;
|
|
gl_filter_max = modes[i].maximize;
|
|
|
|
// change all the existing mipmap texture objects
|
|
for ( i = 0 ; i < tr.numImages ; i++ ) {
|
|
glt = tr.images[ i ];
|
|
if ( glt->flags & IMGFLAG_MIPMAP ) {
|
|
GL_Bind (glt);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_SumOfUsedImages
|
|
===============
|
|
*/
|
|
int R_SumOfUsedImages( void ) {
|
|
int total;
|
|
int i;
|
|
|
|
total = 0;
|
|
for ( i = 0; i < tr.numImages; i++ ) {
|
|
if ( tr.images[i]->frameUsed == tr.frameCount ) {
|
|
total += tr.images[i]->uploadWidth * tr.images[i]->uploadHeight;
|
|
}
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_ImageList_f
|
|
===============
|
|
*/
|
|
void R_ImageList_f( void ) {
|
|
#if 1
|
|
int i;
|
|
int estTotalSize = 0;
|
|
|
|
ri.Printf(PRINT_ALL, "\n -w-- -h-- type -size- --name-------\n");
|
|
|
|
for ( i = 0 ; i < tr.numImages ; i++ )
|
|
{
|
|
image_t *image = tr.images[i];
|
|
char *format = "???? ";
|
|
char *sizeSuffix;
|
|
int estSize;
|
|
int displaySize;
|
|
|
|
estSize = image->uploadHeight * image->uploadWidth;
|
|
|
|
switch(image->internalFormat)
|
|
{
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT:
|
|
format = "sDXT1";
|
|
// 64 bits per 16 pixels, so 4 bits per pixel
|
|
estSize /= 2;
|
|
break;
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT:
|
|
format = "sDXT5";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB:
|
|
format = "sBPTC";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT:
|
|
format = "LATC ";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
|
|
format = "DXT1 ";
|
|
// 64 bits per 16 pixels, so 4 bits per pixel
|
|
estSize /= 2;
|
|
break;
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
|
|
format = "DXT5 ";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_RGBA_BPTC_UNORM_ARB:
|
|
format = "BPTC ";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_RGB4_S3TC:
|
|
format = "S3TC ";
|
|
// same as DXT1?
|
|
estSize /= 2;
|
|
break;
|
|
case GL_RGBA4:
|
|
case GL_RGBA8:
|
|
case GL_RGBA:
|
|
format = "RGBA ";
|
|
// 4 bytes per pixel
|
|
estSize *= 4;
|
|
break;
|
|
case GL_LUMINANCE8:
|
|
case GL_LUMINANCE16:
|
|
case GL_LUMINANCE:
|
|
format = "L ";
|
|
// 1 byte per pixel?
|
|
break;
|
|
case GL_RGB5:
|
|
case GL_RGB8:
|
|
case GL_RGB:
|
|
format = "RGB ";
|
|
// 3 bytes per pixel?
|
|
estSize *= 3;
|
|
break;
|
|
case GL_LUMINANCE8_ALPHA8:
|
|
case GL_LUMINANCE16_ALPHA16:
|
|
case GL_LUMINANCE_ALPHA:
|
|
format = "LA ";
|
|
// 2 bytes per pixel?
|
|
estSize *= 2;
|
|
break;
|
|
case GL_SRGB_EXT:
|
|
case GL_SRGB8_EXT:
|
|
format = "sRGB ";
|
|
// 3 bytes per pixel?
|
|
estSize *= 3;
|
|
break;
|
|
case GL_SRGB_ALPHA_EXT:
|
|
case GL_SRGB8_ALPHA8_EXT:
|
|
format = "sRGBA";
|
|
// 4 bytes per pixel?
|
|
estSize *= 4;
|
|
break;
|
|
case GL_SLUMINANCE_EXT:
|
|
case GL_SLUMINANCE8_EXT:
|
|
format = "sL ";
|
|
// 1 byte per pixel?
|
|
break;
|
|
case GL_SLUMINANCE_ALPHA_EXT:
|
|
case GL_SLUMINANCE8_ALPHA8_EXT:
|
|
format = "sLA ";
|
|
// 2 byte per pixel?
|
|
estSize *= 2;
|
|
break;
|
|
}
|
|
|
|
// mipmap adds about 50%
|
|
if (image->flags & IMGFLAG_MIPMAP)
|
|
estSize += estSize / 2;
|
|
|
|
sizeSuffix = "b ";
|
|
displaySize = estSize;
|
|
|
|
if (displaySize > 1024)
|
|
{
|
|
displaySize /= 1024;
|
|
sizeSuffix = "kb";
|
|
}
|
|
|
|
if (displaySize > 1024)
|
|
{
|
|
displaySize /= 1024;
|
|
sizeSuffix = "Mb";
|
|
}
|
|
|
|
if (displaySize > 1024)
|
|
{
|
|
displaySize /= 1024;
|
|
sizeSuffix = "Gb";
|
|
}
|
|
|
|
ri.Printf(PRINT_ALL, "%4i: %4ix%4i %s %4i%s %s\n", i, image->uploadWidth, image->uploadHeight, format, displaySize, sizeSuffix, image->imgName);
|
|
estTotalSize += estSize;
|
|
}
|
|
|
|
ri.Printf (PRINT_ALL, " ---------\n");
|
|
ri.Printf (PRINT_ALL, " approx %i bytes\n", estTotalSize);
|
|
ri.Printf (PRINT_ALL, " %i total images\n\n", tr.numImages );
|
|
#else
|
|
int i;
|
|
image_t *image;
|
|
int texels;
|
|
const char *yesno[] = {
|
|
"no ", "yes"
|
|
};
|
|
|
|
ri.Printf (PRINT_ALL, "\n -w-- -h-- -mm- -TMU- -if-- wrap --name-------\n");
|
|
texels = 0;
|
|
|
|
for ( i = 0 ; i < tr.numImages ; i++ ) {
|
|
image = tr.images[ i ];
|
|
|
|
texels += image->uploadWidth*image->uploadHeight;
|
|
ri.Printf (PRINT_ALL, "%4i: %4i %4i %s %d ",
|
|
i, image->uploadWidth, image->uploadHeight, yesno[(image->flags & IMGFLAG_MIPMAP) ? 1 : 0], image->TMU );
|
|
switch ( image->internalFormat ) {
|
|
case 1:
|
|
ri.Printf( PRINT_ALL, "I " );
|
|
break;
|
|
case 2:
|
|
ri.Printf( PRINT_ALL, "IA " );
|
|
break;
|
|
case 3:
|
|
ri.Printf( PRINT_ALL, "RGB " );
|
|
break;
|
|
case 4:
|
|
ri.Printf( PRINT_ALL, "RGBA " );
|
|
break;
|
|
case GL_RGBA8:
|
|
ri.Printf( PRINT_ALL, "RGBA8" );
|
|
break;
|
|
case GL_RGB8:
|
|
ri.Printf( PRINT_ALL, "RGB8" );
|
|
break;
|
|
case GL_RGB4_S3TC:
|
|
ri.Printf( PRINT_ALL, "S3TC " );
|
|
break;
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
|
|
ri.Printf( PRINT_ALL, "DXT1 " );
|
|
break;
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
|
|
ri.Printf( PRINT_ALL, "DXT5 " );
|
|
break;
|
|
case GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT:
|
|
ri.Printf( PRINT_ALL, "LATC " );
|
|
break;
|
|
case GL_RGBA4:
|
|
ri.Printf( PRINT_ALL, "RGBA4" );
|
|
break;
|
|
case GL_RGB5:
|
|
ri.Printf( PRINT_ALL, "RGB5 " );
|
|
break;
|
|
case GL_SRGB_EXT:
|
|
ri.Printf( PRINT_ALL, "sRGB " );
|
|
break;
|
|
case GL_SRGB8_EXT:
|
|
ri.Printf( PRINT_ALL, "sRGB8" );
|
|
break;
|
|
case GL_SRGB_ALPHA_EXT:
|
|
case GL_SRGB8_ALPHA8_EXT:
|
|
ri.Printf( PRINT_ALL, "sRGBA" );
|
|
break;
|
|
/*
|
|
case GL_SLUMINANCE_EXT:
|
|
break;
|
|
case GL_SLUMINANCE8_EXT:
|
|
break;
|
|
case GL_SLUMINANCE_ALPHA_EXT:
|
|
break;
|
|
case GL_SLUMINANCE8_ALPHA8_EXT:
|
|
break;
|
|
*/
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT:
|
|
ri.Printf( PRINT_ALL, "sDXT1" );
|
|
break;
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT:
|
|
ri.Printf( PRINT_ALL, "sDXT5" );
|
|
break;
|
|
case GL_COMPRESSED_RGBA_BPTC_UNORM_ARB:
|
|
ri.Printf( PRINT_ALL, "BPTC " );
|
|
break;
|
|
case GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB:
|
|
ri.Printf( PRINT_ALL, "sBPTC" );
|
|
break;
|
|
default:
|
|
ri.Printf( PRINT_ALL, "???? " );
|
|
}
|
|
|
|
if (image->flags & IMGFLAG_CLAMPTOEDGE)
|
|
ri.Printf( PRINT_ALL, "clmp " );
|
|
else
|
|
ri.Printf( PRINT_ALL, "rept " );
|
|
|
|
ri.Printf( PRINT_ALL, " %s\n", image->imgName );
|
|
}
|
|
ri.Printf (PRINT_ALL, " ---------\n");
|
|
ri.Printf (PRINT_ALL, " %i total texels (not including mipmaps)\n", texels);
|
|
ri.Printf (PRINT_ALL, " %i total images\n\n", tr.numImages );
|
|
#endif
|
|
}
|
|
|
|
//=======================================================================
|
|
|
|
/*
|
|
================
|
|
ResampleTexture
|
|
|
|
Used to resample images in a more general than quartering fashion.
|
|
|
|
This will only be filtered properly if the resampled size
|
|
is greater than half the original size.
|
|
|
|
If a larger shrinking is needed, use the mipmap function
|
|
before or after.
|
|
================
|
|
*/
|
|
static void ResampleTexture( byte *in, int inwidth, int inheight, byte *out,
|
|
int outwidth, int outheight ) {
|
|
int i, j;
|
|
byte *inrow, *inrow2;
|
|
int frac, fracstep;
|
|
int p1[2048], p2[2048];
|
|
byte *pix1, *pix2, *pix3, *pix4;
|
|
|
|
if (outwidth>2048)
|
|
ri.Error(ERR_DROP, "ResampleTexture: max width");
|
|
|
|
fracstep = inwidth*0x10000/outwidth;
|
|
|
|
frac = fracstep>>2;
|
|
for ( i=0 ; i<outwidth ; i++ ) {
|
|
p1[i] = 4*(frac>>16);
|
|
frac += fracstep;
|
|
}
|
|
frac = 3*(fracstep>>2);
|
|
for ( i=0 ; i<outwidth ; i++ ) {
|
|
p2[i] = 4*(frac>>16);
|
|
frac += fracstep;
|
|
}
|
|
|
|
for (i=0 ; i<outheight ; i++) {
|
|
inrow = in + 4*inwidth*(int)((i+0.25)*inheight/outheight);
|
|
inrow2 = in + 4*inwidth*(int)((i+0.75)*inheight/outheight);
|
|
frac = fracstep >> 1;
|
|
for (j=0 ; j<outwidth ; j++) {
|
|
pix1 = inrow + p1[j];
|
|
pix2 = inrow + p2[j];
|
|
pix3 = inrow2 + p1[j];
|
|
pix4 = inrow2 + p2[j];
|
|
*out++ = (pix1[0] + pix2[0] + pix3[0] + pix4[0])>>2;
|
|
*out++ = (pix1[1] + pix2[1] + pix3[1] + pix4[1])>>2;
|
|
*out++ = (pix1[2] + pix2[2] + pix3[2] + pix4[2])>>2;
|
|
*out++ = (pix1[3] + pix2[3] + pix3[3] + pix4[3])>>2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void RGBAtoYCoCgA(const byte *in, byte *out, int width, int height)
|
|
{
|
|
int x, y;
|
|
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
const byte *inbyte = in + y * width * 4;
|
|
byte *outbyte = out + y * width * 4;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
byte r, g, b, a, rb2;
|
|
|
|
r = *inbyte++;
|
|
g = *inbyte++;
|
|
b = *inbyte++;
|
|
a = *inbyte++;
|
|
rb2 = (r + b) >> 1;
|
|
|
|
*outbyte++ = (g + rb2) >> 1; // Y = R/4 + G/2 + B/4
|
|
*outbyte++ = (r - b + 256) >> 1; // Co = R/2 - B/2
|
|
*outbyte++ = (g - rb2 + 256) >> 1; // Cg = -R/4 + G/2 - B/4
|
|
*outbyte++ = a;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void YCoCgAtoRGBA(const byte *in, byte *out, int width, int height)
|
|
{
|
|
int x, y;
|
|
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
const byte *inbyte = in + y * width * 4;
|
|
byte *outbyte = out + y * width * 4;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
byte _Y, Co, Cg, a;
|
|
|
|
_Y = *inbyte++;
|
|
Co = *inbyte++;
|
|
Cg = *inbyte++;
|
|
a = *inbyte++;
|
|
|
|
*outbyte++ = CLAMP(_Y + Co - Cg, 0, 255); // R = Y + Co - Cg
|
|
*outbyte++ = CLAMP(_Y + Cg - 128, 0, 255); // G = Y + Cg
|
|
*outbyte++ = CLAMP(_Y - Co - Cg + 256, 0, 255); // B = Y - Co - Cg
|
|
*outbyte++ = a;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// uses a sobel filter to change a texture to a normal map
|
|
static void RGBAtoNormal(const byte *in, byte *out, int width, int height, qboolean clampToEdge)
|
|
{
|
|
int x, y, max;
|
|
|
|
// convert to heightmap, storing in alpha
|
|
// same as converting to Y in YCoCg
|
|
max = 1;
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
const byte *inbyte = in + y * width * 4;
|
|
byte *outbyte = out + y * width * 4 + 3;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
*outbyte = (inbyte[0] >> 2) + (inbyte[1] >> 1) + (inbyte[2] >> 2);
|
|
max = MAX(max, *outbyte);
|
|
outbyte += 4;
|
|
inbyte += 4;
|
|
}
|
|
}
|
|
|
|
// level out heights
|
|
if (max < 255)
|
|
{
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
byte *outbyte = out + y * width * 4 + 3;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
*outbyte = *outbyte + (255 - max);
|
|
outbyte += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// now run sobel filter over height values to generate X and Y
|
|
// then normalize
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
byte *outbyte = out + y * width * 4;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
// 0 1 2
|
|
// 3 4 5
|
|
// 6 7 8
|
|
|
|
byte s[9];
|
|
int x2, y2, i;
|
|
vec3_t normal;
|
|
|
|
i = 0;
|
|
for (y2 = -1; y2 <= 1; y2++)
|
|
{
|
|
int src_y = y + y2;
|
|
|
|
if (clampToEdge)
|
|
{
|
|
src_y = CLAMP(src_y, 0, height - 1);
|
|
}
|
|
else
|
|
{
|
|
src_y = (src_y + height) % height;
|
|
}
|
|
|
|
|
|
for (x2 = -1; x2 <= 1; x2++)
|
|
{
|
|
int src_x = x + x2;
|
|
|
|
if (clampToEdge)
|
|
{
|
|
src_x = CLAMP(src_x, 0, height - 1);
|
|
}
|
|
else
|
|
{
|
|
src_x = (src_x + height) % height;
|
|
}
|
|
|
|
s[i++] = *(out + (src_y * width + src_x) * 4 + 3);
|
|
}
|
|
}
|
|
|
|
normal[0] = s[0] - s[2]
|
|
+ 2 * s[3] - 2 * s[5]
|
|
+ s[6] - s[8];
|
|
|
|
normal[1] = s[0] + 2 * s[1] + s[2]
|
|
|
|
- s[6] - 2 * s[7] - s[8];
|
|
|
|
normal[2] = s[4] * 4;
|
|
|
|
if (!VectorNormalize2(normal, normal))
|
|
{
|
|
VectorSet(normal, 0, 0, 1);
|
|
}
|
|
|
|
*outbyte++ = FloatToOffsetByte(normal[0]);
|
|
*outbyte++ = FloatToOffsetByte(normal[1]);
|
|
*outbyte++ = FloatToOffsetByte(normal[2]);
|
|
outbyte++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define COPYSAMPLE(a,b) *(unsigned int *)(a) = *(unsigned int *)(b)
|
|
|
|
// based on Fast Curve Based Interpolation
|
|
// from Fast Artifacts-Free Image Interpolation (http://www.andreagiachetti.it/icbi/)
|
|
// assumes data has a 2 pixel thick border of clamped or wrapped data
|
|
// expects data to be a grid with even (0, 0), (2, 0), (0, 2), (2, 2) etc pixels filled
|
|
// only performs FCBI on specified component
|
|
static void DoFCBI(byte *in, byte *out, int width, int height, int component)
|
|
{
|
|
int x, y;
|
|
byte *outbyte, *inbyte;
|
|
|
|
// copy in to out
|
|
for (y = 2; y < height - 2; y += 2)
|
|
{
|
|
inbyte = in + (y * width + 2) * 4 + component;
|
|
outbyte = out + (y * width + 2) * 4 + component;
|
|
|
|
for (x = 2; x < width - 2; x += 2)
|
|
{
|
|
*outbyte = *inbyte;
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 3; y < height - 3; y += 2)
|
|
{
|
|
// diagonals
|
|
//
|
|
// NWp - northwest interpolated pixel
|
|
// NEp - northeast interpolated pixel
|
|
// NWd - northwest first derivative
|
|
// NEd - northeast first derivative
|
|
// NWdd - northwest second derivative
|
|
// NEdd - northeast second derivative
|
|
//
|
|
// Uses these samples:
|
|
//
|
|
// 0
|
|
// - - a - b - -
|
|
// - - - - - - -
|
|
// c - d - e - f
|
|
// 0 - - - - - - -
|
|
// g - h - i - j
|
|
// - - - - - - -
|
|
// - - k - l - -
|
|
//
|
|
// x+2 uses these samples:
|
|
//
|
|
// 0
|
|
// - - - - a - b - -
|
|
// - - - - - - - - -
|
|
// - - c - d - e - f
|
|
// 0 - - - - - - - - -
|
|
// - - g - h - i - j
|
|
// - - - - - - - - -
|
|
// - - - - k - l - -
|
|
//
|
|
// so we can reuse 8 of them on next iteration
|
|
//
|
|
// a=b, c=d, d=e, e=f, g=h, h=i, i=j, k=l
|
|
//
|
|
// only b, f, j, and l need to be sampled on next iteration
|
|
|
|
byte sa, sb, sc, sd, se, sf, sg, sh, si, sj, sk, sl;
|
|
byte *line1, *line2, *line3, *line4;
|
|
|
|
x = 3;
|
|
|
|
// optimization one
|
|
// SAMPLE2(sa, x-1, y-3);
|
|
//SAMPLE2(sc, x-3, y-1); SAMPLE2(sd, x-1, y-1); SAMPLE2(se, x+1, y-1);
|
|
//SAMPLE2(sg, x-3, y+1); SAMPLE2(sh, x-1, y+1); SAMPLE2(si, x+1, y+1);
|
|
// SAMPLE2(sk, x-1, y+3);
|
|
|
|
// optimization two
|
|
line1 = in + ((y - 3) * width + (x - 1)) * 4 + component;
|
|
line2 = in + ((y - 1) * width + (x - 3)) * 4 + component;
|
|
line3 = in + ((y + 1) * width + (x - 3)) * 4 + component;
|
|
line4 = in + ((y + 3) * width + (x - 1)) * 4 + component;
|
|
|
|
// COPYSAMPLE(sa, line1); line1 += 8;
|
|
//COPYSAMPLE(sc, line2); line2 += 8; COPYSAMPLE(sd, line2); line2 += 8; COPYSAMPLE(se, line2); line2 += 8;
|
|
//COPYSAMPLE(sg, line3); line3 += 8; COPYSAMPLE(sh, line3); line3 += 8; COPYSAMPLE(si, line3); line3 += 8;
|
|
// COPYSAMPLE(sk, line4); line4 += 8;
|
|
|
|
sa = *line1; line1 += 8;
|
|
sc = *line2; line2 += 8; sd = *line2; line2 += 8; se = *line2; line2 += 8;
|
|
sg = *line3; line3 += 8; sh = *line3; line3 += 8; si = *line3; line3 += 8;
|
|
sk = *line4; line4 += 8;
|
|
|
|
outbyte = out + (y * width + x) * 4 + component;
|
|
|
|
for ( ; x < width - 3; x += 2)
|
|
{
|
|
int NWd, NEd, NWp, NEp;
|
|
|
|
// original
|
|
// SAMPLE2(sa, x-1, y-3); SAMPLE2(sb, x+1, y-3);
|
|
//SAMPLE2(sc, x-3, y-1); SAMPLE2(sd, x-1, y-1); SAMPLE2(se, x+1, y-1); SAMPLE2(sf, x+3, y-1);
|
|
//SAMPLE2(sg, x-3, y+1); SAMPLE2(sh, x-1, y+1); SAMPLE2(si, x+1, y+1); SAMPLE2(sj, x+3, y+1);
|
|
// SAMPLE2(sk, x-1, y+3); SAMPLE2(sl, x+1, y+3);
|
|
|
|
// optimization one
|
|
//SAMPLE2(sb, x+1, y-3);
|
|
//SAMPLE2(sf, x+3, y-1);
|
|
//SAMPLE2(sj, x+3, y+1);
|
|
//SAMPLE2(sl, x+1, y+3);
|
|
|
|
// optimization two
|
|
//COPYSAMPLE(sb, line1); line1 += 8;
|
|
//COPYSAMPLE(sf, line2); line2 += 8;
|
|
//COPYSAMPLE(sj, line3); line3 += 8;
|
|
//COPYSAMPLE(sl, line4); line4 += 8;
|
|
|
|
sb = *line1; line1 += 8;
|
|
sf = *line2; line2 += 8;
|
|
sj = *line3; line3 += 8;
|
|
sl = *line4; line4 += 8;
|
|
|
|
NWp = sd + si;
|
|
NEp = se + sh;
|
|
NWd = abs(sd - si);
|
|
NEd = abs(se - sh);
|
|
|
|
if (NWd > 100 || NEd > 100 || abs(NWp-NEp) > 200)
|
|
{
|
|
if (NWd < NEd)
|
|
*outbyte = NWp >> 1;
|
|
else
|
|
*outbyte = NEp >> 1;
|
|
}
|
|
else
|
|
{
|
|
int NWdd, NEdd;
|
|
|
|
//NEdd = abs(sg + sd + sb - 3 * (se + sh) + sk + si + sf);
|
|
//NWdd = abs(sa + se + sj - 3 * (sd + si) + sc + sh + sl);
|
|
NEdd = abs(sg + sb - 3 * NEp + sk + sf + NWp);
|
|
NWdd = abs(sa + sj - 3 * NWp + sc + sl + NEp);
|
|
|
|
if (NWdd > NEdd)
|
|
*outbyte = NWp >> 1;
|
|
else
|
|
*outbyte = NEp >> 1;
|
|
}
|
|
|
|
outbyte += 8;
|
|
|
|
// COPYSAMPLE(sa, sb);
|
|
//COPYSAMPLE(sc, sd); COPYSAMPLE(sd, se); COPYSAMPLE(se, sf);
|
|
//COPYSAMPLE(sg, sh); COPYSAMPLE(sh, si); COPYSAMPLE(si, sj);
|
|
// COPYSAMPLE(sk, sl);
|
|
|
|
sa = sb;
|
|
sc = sd; sd = se; se = sf;
|
|
sg = sh; sh = si; si = sj;
|
|
sk = sl;
|
|
}
|
|
}
|
|
|
|
// hack: copy out to in again
|
|
for (y = 3; y < height - 3; y += 2)
|
|
{
|
|
inbyte = out + (y * width + 3) * 4 + component;
|
|
outbyte = in + (y * width + 3) * 4 + component;
|
|
|
|
for (x = 3; x < width - 3; x += 2)
|
|
{
|
|
*outbyte = *inbyte;
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 2; y < height - 3; y++)
|
|
{
|
|
// horizontal & vertical
|
|
//
|
|
// hp - horizontally interpolated pixel
|
|
// vp - vertically interpolated pixel
|
|
// hd - horizontal first derivative
|
|
// vd - vertical first derivative
|
|
// hdd - horizontal second derivative
|
|
// vdd - vertical second derivative
|
|
// Uses these samples:
|
|
//
|
|
// 0
|
|
// - a - b -
|
|
// c - d - e
|
|
// 0 - f - g -
|
|
// h - i - j
|
|
// - k - l -
|
|
//
|
|
// x+2 uses these samples:
|
|
//
|
|
// 0
|
|
// - - - a - b -
|
|
// - - c - d - e
|
|
// 0 - - - f - g -
|
|
// - - h - i - j
|
|
// - - - k - l -
|
|
//
|
|
// so we can reuse 7 of them on next iteration
|
|
//
|
|
// a=b, c=d, d=e, f=g, h=i, i=j, k=l
|
|
//
|
|
// only b, e, g, j, and l need to be sampled on next iteration
|
|
|
|
byte sa, sb, sc, sd, se, sf, sg, sh, si, sj, sk, sl;
|
|
byte *line1, *line2, *line3, *line4, *line5;
|
|
|
|
//x = (y + 1) % 2;
|
|
x = (y + 1) % 2 + 2;
|
|
|
|
// optimization one
|
|
// SAMPLE2(sa, x-1, y-2);
|
|
//SAMPLE2(sc, x-2, y-1); SAMPLE2(sd, x, y-1);
|
|
// SAMPLE2(sf, x-1, y );
|
|
//SAMPLE2(sh, x-2, y+1); SAMPLE2(si, x, y+1);
|
|
// SAMPLE2(sk, x-1, y+2);
|
|
|
|
line1 = in + ((y - 2) * width + (x - 1)) * 4 + component;
|
|
line2 = in + ((y - 1) * width + (x - 2)) * 4 + component;
|
|
line3 = in + ((y ) * width + (x - 1)) * 4 + component;
|
|
line4 = in + ((y + 1) * width + (x - 2)) * 4 + component;
|
|
line5 = in + ((y + 2) * width + (x - 1)) * 4 + component;
|
|
|
|
// COPYSAMPLE(sa, line1); line1 += 8;
|
|
//COPYSAMPLE(sc, line2); line2 += 8; COPYSAMPLE(sd, line2); line2 += 8;
|
|
// COPYSAMPLE(sf, line3); line3 += 8;
|
|
//COPYSAMPLE(sh, line4); line4 += 8; COPYSAMPLE(si, line4); line4 += 8;
|
|
// COPYSAMPLE(sk, line5); line5 += 8;
|
|
|
|
sa = *line1; line1 += 8;
|
|
sc = *line2; line2 += 8; sd = *line2; line2 += 8;
|
|
sf = *line3; line3 += 8;
|
|
sh = *line4; line4 += 8; si = *line4; line4 += 8;
|
|
sk = *line5; line5 += 8;
|
|
|
|
outbyte = out + (y * width + x) * 4 + component;
|
|
|
|
for ( ; x < width - 3; x+=2)
|
|
{
|
|
int hd, vd, hp, vp;
|
|
|
|
// SAMPLE2(sa, x-1, y-2); SAMPLE2(sb, x+1, y-2);
|
|
//SAMPLE2(sc, x-2, y-1); SAMPLE2(sd, x, y-1); SAMPLE2(se, x+2, y-1);
|
|
// SAMPLE2(sf, x-1, y ); SAMPLE2(sg, x+1, y );
|
|
//SAMPLE2(sh, x-2, y+1); SAMPLE2(si, x, y+1); SAMPLE2(sj, x+2, y+1);
|
|
// SAMPLE2(sk, x-1, y+2); SAMPLE2(sl, x+1, y+2);
|
|
|
|
// optimization one
|
|
//SAMPLE2(sb, x+1, y-2);
|
|
//SAMPLE2(se, x+2, y-1);
|
|
//SAMPLE2(sg, x+1, y );
|
|
//SAMPLE2(sj, x+2, y+1);
|
|
//SAMPLE2(sl, x+1, y+2);
|
|
|
|
//COPYSAMPLE(sb, line1); line1 += 8;
|
|
//COPYSAMPLE(se, line2); line2 += 8;
|
|
//COPYSAMPLE(sg, line3); line3 += 8;
|
|
//COPYSAMPLE(sj, line4); line4 += 8;
|
|
//COPYSAMPLE(sl, line5); line5 += 8;
|
|
|
|
sb = *line1; line1 += 8;
|
|
se = *line2; line2 += 8;
|
|
sg = *line3; line3 += 8;
|
|
sj = *line4; line4 += 8;
|
|
sl = *line5; line5 += 8;
|
|
|
|
hp = sf + sg;
|
|
vp = sd + si;
|
|
hd = abs(sf - sg);
|
|
vd = abs(sd - si);
|
|
|
|
if (hd > 100 || vd > 100 || abs(hp-vp) > 200)
|
|
{
|
|
if (hd < vd)
|
|
*outbyte = hp >> 1;
|
|
else
|
|
*outbyte = vp >> 1;
|
|
}
|
|
else
|
|
{
|
|
int hdd, vdd;
|
|
|
|
//hdd = abs(sc[i] + sd[i] + se[i] - 3 * (sf[i] + sg[i]) + sh[i] + si[i] + sj[i]);
|
|
//vdd = abs(sa[i] + sf[i] + sk[i] - 3 * (sd[i] + si[i]) + sb[i] + sg[i] + sl[i]);
|
|
|
|
hdd = abs(sc + se - 3 * hp + sh + sj + vp);
|
|
vdd = abs(sa + sk - 3 * vp + sb + sl + hp);
|
|
|
|
if (hdd > vdd)
|
|
*outbyte = hp >> 1;
|
|
else
|
|
*outbyte = vp >> 1;
|
|
}
|
|
|
|
outbyte += 8;
|
|
|
|
// COPYSAMPLE(sa, sb);
|
|
//COPYSAMPLE(sc, sd); COPYSAMPLE(sd, se);
|
|
// COPYSAMPLE(sf, sg);
|
|
//COPYSAMPLE(sh, si); COPYSAMPLE(si, sj);
|
|
// COPYSAMPLE(sk, sl);
|
|
sa = sb;
|
|
sc = sd; sd = se;
|
|
sf = sg;
|
|
sh = si; si = sj;
|
|
sk = sl;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Similar to FCBI, but throws out the second order derivatives for speed
|
|
static void DoFCBIQuick(byte *in, byte *out, int width, int height, int component)
|
|
{
|
|
int x, y;
|
|
byte *outbyte, *inbyte;
|
|
|
|
// copy in to out
|
|
for (y = 2; y < height - 2; y += 2)
|
|
{
|
|
inbyte = in + (y * width + 2) * 4 + component;
|
|
outbyte = out + (y * width + 2) * 4 + component;
|
|
|
|
for (x = 2; x < width - 2; x += 2)
|
|
{
|
|
*outbyte = *inbyte;
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 3; y < height - 4; y += 2)
|
|
{
|
|
byte sd, se, sh, si;
|
|
byte *line2, *line3;
|
|
|
|
x = 3;
|
|
|
|
line2 = in + ((y - 1) * width + (x - 1)) * 4 + component;
|
|
line3 = in + ((y + 1) * width + (x - 1)) * 4 + component;
|
|
|
|
sd = *line2; line2 += 8;
|
|
sh = *line3; line3 += 8;
|
|
|
|
outbyte = out + (y * width + x) * 4 + component;
|
|
|
|
for ( ; x < width - 4; x += 2)
|
|
{
|
|
int NWd, NEd, NWp, NEp;
|
|
|
|
se = *line2; line2 += 8;
|
|
si = *line3; line3 += 8;
|
|
|
|
NWp = sd + si;
|
|
NEp = se + sh;
|
|
NWd = abs(sd - si);
|
|
NEd = abs(se - sh);
|
|
|
|
if (NWd < NEd)
|
|
*outbyte = NWp >> 1;
|
|
else
|
|
*outbyte = NEp >> 1;
|
|
|
|
outbyte += 8;
|
|
|
|
sd = se;
|
|
sh = si;
|
|
}
|
|
}
|
|
|
|
// hack: copy out to in again
|
|
for (y = 3; y < height - 3; y += 2)
|
|
{
|
|
inbyte = out + (y * width + 3) * 4 + component;
|
|
outbyte = in + (y * width + 3) * 4 + component;
|
|
|
|
for (x = 3; x < width - 3; x += 2)
|
|
{
|
|
*outbyte = *inbyte;
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 2; y < height - 3; y++)
|
|
{
|
|
byte sd, sf, sg, si;
|
|
byte *line2, *line3, *line4;
|
|
|
|
x = (y + 1) % 2 + 2;
|
|
|
|
line2 = in + ((y - 1) * width + (x )) * 4 + component;
|
|
line3 = in + ((y ) * width + (x - 1)) * 4 + component;
|
|
line4 = in + ((y + 1) * width + (x )) * 4 + component;
|
|
|
|
outbyte = out + (y * width + x) * 4 + component;
|
|
|
|
sf = *line3; line3 += 8;
|
|
|
|
for ( ; x < width - 3; x+=2)
|
|
{
|
|
int hd, vd, hp, vp;
|
|
|
|
sd = *line2; line2 += 8;
|
|
sg = *line3; line3 += 8;
|
|
si = *line4; line4 += 8;
|
|
|
|
hp = sf + sg;
|
|
vp = sd + si;
|
|
hd = abs(sf - sg);
|
|
vd = abs(sd - si);
|
|
|
|
if (hd < vd)
|
|
*outbyte = hp >> 1;
|
|
else
|
|
*outbyte = vp >> 1;
|
|
|
|
outbyte += 8;
|
|
|
|
sf = sg;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Similar to DoFCBIQuick, but just takes the average instead of checking derivatives
|
|
// as well, this operates on all four components
|
|
static void DoLinear(byte *in, byte *out, int width, int height)
|
|
{
|
|
int x, y, i;
|
|
byte *outbyte, *inbyte;
|
|
|
|
// copy in to out
|
|
for (y = 2; y < height - 2; y += 2)
|
|
{
|
|
x = 2;
|
|
|
|
inbyte = in + (y * width + x) * 4;
|
|
outbyte = out + (y * width + x) * 4;
|
|
|
|
for ( ; x < width - 2; x += 2)
|
|
{
|
|
COPYSAMPLE(outbyte, inbyte);
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 1; y < height - 1; y += 2)
|
|
{
|
|
byte sd[4], se[4], sh[4], si[4];
|
|
byte *line2, *line3;
|
|
|
|
x = 1;
|
|
|
|
line2 = in + ((y - 1) * width + (x - 1)) * 4;
|
|
line3 = in + ((y + 1) * width + (x - 1)) * 4;
|
|
|
|
COPYSAMPLE(sd, line2); line2 += 8;
|
|
COPYSAMPLE(sh, line3); line3 += 8;
|
|
|
|
outbyte = out + (y * width + x) * 4;
|
|
|
|
for ( ; x < width - 1; x += 2)
|
|
{
|
|
COPYSAMPLE(se, line2); line2 += 8;
|
|
COPYSAMPLE(si, line3); line3 += 8;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
*outbyte++ = (sd[i] + si[i] + se[i] + sh[i]) >> 2;
|
|
}
|
|
|
|
outbyte += 4;
|
|
|
|
COPYSAMPLE(sd, se);
|
|
COPYSAMPLE(sh, si);
|
|
}
|
|
}
|
|
|
|
// hack: copy out to in again
|
|
for (y = 1; y < height - 1; y += 2)
|
|
{
|
|
x = 1;
|
|
|
|
inbyte = out + (y * width + x) * 4;
|
|
outbyte = in + (y * width + x) * 4;
|
|
|
|
for ( ; x < width - 1; x += 2)
|
|
{
|
|
COPYSAMPLE(outbyte, inbyte);
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 1; y < height - 1; y++)
|
|
{
|
|
byte sd[4], sf[4], sg[4], si[4];
|
|
byte *line2, *line3, *line4;
|
|
|
|
x = y % 2 + 1;
|
|
|
|
line2 = in + ((y - 1) * width + (x )) * 4;
|
|
line3 = in + ((y ) * width + (x - 1)) * 4;
|
|
line4 = in + ((y + 1) * width + (x )) * 4;
|
|
|
|
COPYSAMPLE(sf, line3); line3 += 8;
|
|
|
|
outbyte = out + (y * width + x) * 4;
|
|
|
|
for ( ; x < width - 1; x += 2)
|
|
{
|
|
COPYSAMPLE(sd, line2); line2 += 8;
|
|
COPYSAMPLE(sg, line3); line3 += 8;
|
|
COPYSAMPLE(si, line4); line4 += 8;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
*outbyte++ = (sf[i] + sg[i] + sd[i] + si[i]) >> 2;
|
|
}
|
|
|
|
outbyte += 4;
|
|
|
|
COPYSAMPLE(sf, sg);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void ExpandHalfTextureToGrid( byte *data, int width, int height)
|
|
{
|
|
int x, y;
|
|
|
|
for (y = height / 2; y > 0; y--)
|
|
{
|
|
byte *outbyte = data + ((y * 2 - 1) * (width) - 2) * 4;
|
|
byte *inbyte = data + (y * (width / 2) - 1) * 4;
|
|
|
|
for (x = width / 2; x > 0; x--)
|
|
{
|
|
COPYSAMPLE(outbyte, inbyte);
|
|
|
|
outbyte -= 8;
|
|
inbyte -= 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void FillInNormalizedZ(const byte *in, byte *out, int width, int height)
|
|
{
|
|
int x, y;
|
|
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
const byte *inbyte = in + y * width * 4;
|
|
byte *outbyte = out + y * width * 4;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
byte nx, ny, nz, h;
|
|
float fnx, fny, fll, fnz;
|
|
|
|
nx = *inbyte++;
|
|
ny = *inbyte++;
|
|
inbyte++;
|
|
h = *inbyte++;
|
|
|
|
fnx = OffsetByteToFloat(nx);
|
|
fny = OffsetByteToFloat(ny);
|
|
fll = 1.0f - fnx * fnx - fny * fny;
|
|
if (fll >= 0.0f)
|
|
fnz = (float)sqrt(fll);
|
|
else
|
|
fnz = 0.0f;
|
|
|
|
nz = FloatToOffsetByte(fnz);
|
|
|
|
*outbyte++ = nx;
|
|
*outbyte++ = ny;
|
|
*outbyte++ = nz;
|
|
*outbyte++ = h;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// size must be even
|
|
#define WORKBLOCK_SIZE 128
|
|
#define WORKBLOCK_BORDER 4
|
|
#define WORKBLOCK_REALSIZE (WORKBLOCK_SIZE + WORKBLOCK_BORDER * 2)
|
|
|
|
// assumes that data has already been expanded into a 2x2 grid
|
|
static void FCBIByBlock(byte *data, int width, int height, qboolean clampToEdge, qboolean normalized)
|
|
{
|
|
byte workdata[WORKBLOCK_REALSIZE * WORKBLOCK_REALSIZE * 4];
|
|
byte outdata[WORKBLOCK_REALSIZE * WORKBLOCK_REALSIZE * 4];
|
|
byte *inbyte, *outbyte;
|
|
int x, y;
|
|
int srcx, srcy;
|
|
|
|
ExpandHalfTextureToGrid(data, width, height);
|
|
|
|
for (y = 0; y < height; y += WORKBLOCK_SIZE)
|
|
{
|
|
for (x = 0; x < width; x += WORKBLOCK_SIZE)
|
|
{
|
|
int x2, y2;
|
|
int workwidth, workheight, fullworkwidth, fullworkheight;
|
|
|
|
workwidth = MIN(WORKBLOCK_SIZE, width - x);
|
|
workheight = MIN(WORKBLOCK_SIZE, height - y);
|
|
|
|
fullworkwidth = workwidth + WORKBLOCK_BORDER * 2;
|
|
fullworkheight = workheight + WORKBLOCK_BORDER * 2;
|
|
|
|
//memset(workdata, 0, WORKBLOCK_REALSIZE * WORKBLOCK_REALSIZE * 4);
|
|
|
|
// fill in work block
|
|
for (y2 = 0; y2 < fullworkheight; y2 += 2)
|
|
{
|
|
srcy = y + y2 - WORKBLOCK_BORDER;
|
|
|
|
if (clampToEdge)
|
|
{
|
|
srcy = CLAMP(srcy, 0, height - 2);
|
|
}
|
|
else
|
|
{
|
|
srcy = (srcy + height) % height;
|
|
}
|
|
|
|
outbyte = workdata + y2 * fullworkwidth * 4;
|
|
inbyte = data + srcy * width * 4;
|
|
|
|
for (x2 = 0; x2 < fullworkwidth; x2 += 2)
|
|
{
|
|
srcx = x + x2 - WORKBLOCK_BORDER;
|
|
|
|
if (clampToEdge)
|
|
{
|
|
srcx = CLAMP(srcx, 0, width - 2);
|
|
}
|
|
else
|
|
{
|
|
srcx = (srcx + width) % width;
|
|
}
|
|
|
|
COPYSAMPLE(outbyte, inbyte + srcx * 4);
|
|
outbyte += 8;
|
|
}
|
|
}
|
|
|
|
// submit work block
|
|
DoLinear(workdata, outdata, fullworkwidth, fullworkheight);
|
|
|
|
if (!normalized)
|
|
{
|
|
switch (r_imageUpsampleType->integer)
|
|
{
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
DoFCBIQuick(workdata, outdata, fullworkwidth, fullworkheight, 0);
|
|
break;
|
|
case 2:
|
|
default:
|
|
DoFCBI(workdata, outdata, fullworkwidth, fullworkheight, 0);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (r_imageUpsampleType->integer)
|
|
{
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
DoFCBIQuick(workdata, outdata, fullworkwidth, fullworkheight, 0);
|
|
DoFCBIQuick(workdata, outdata, fullworkwidth, fullworkheight, 1);
|
|
break;
|
|
case 2:
|
|
default:
|
|
DoFCBI(workdata, outdata, fullworkwidth, fullworkheight, 0);
|
|
DoFCBI(workdata, outdata, fullworkwidth, fullworkheight, 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// copy back work block
|
|
for (y2 = 0; y2 < workheight; y2++)
|
|
{
|
|
inbyte = outdata + ((y2 + WORKBLOCK_BORDER) * fullworkwidth + WORKBLOCK_BORDER) * 4;
|
|
outbyte = data + ((y + y2) * width + x) * 4;
|
|
for (x2 = 0; x2 < workwidth; x2++)
|
|
{
|
|
COPYSAMPLE(outbyte, inbyte);
|
|
outbyte += 4;
|
|
inbyte += 4;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#undef COPYSAMPLE
|
|
|
|
/*
|
|
================
|
|
R_LightScaleTexture
|
|
|
|
Scale up the pixel values in a texture to increase the
|
|
lighting range
|
|
================
|
|
*/
|
|
void R_LightScaleTexture (byte *in, int inwidth, int inheight, qboolean only_gamma )
|
|
{
|
|
if ( only_gamma )
|
|
{
|
|
if ( !glConfig.deviceSupportsGamma )
|
|
{
|
|
int i, c;
|
|
byte *p;
|
|
|
|
p = in;
|
|
|
|
c = inwidth*inheight;
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_gammatable[p[0]];
|
|
p[1] = s_gammatable[p[1]];
|
|
p[2] = s_gammatable[p[2]];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int i, c;
|
|
byte *p;
|
|
|
|
p = in;
|
|
|
|
c = inwidth*inheight;
|
|
|
|
if ( glConfig.deviceSupportsGamma )
|
|
{
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_intensitytable[p[0]];
|
|
p[1] = s_intensitytable[p[1]];
|
|
p[2] = s_intensitytable[p[2]];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_gammatable[s_intensitytable[p[0]]];
|
|
p[1] = s_gammatable[s_intensitytable[p[1]]];
|
|
p[2] = s_gammatable[s_intensitytable[p[2]]];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_MipMap2
|
|
|
|
Operates in place, quartering the size of the texture
|
|
Proper linear filter
|
|
================
|
|
*/
|
|
static void R_MipMap2( byte *in, int inWidth, int inHeight ) {
|
|
int i, j, k;
|
|
byte *outpix;
|
|
int inWidthMask, inHeightMask;
|
|
int total;
|
|
int outWidth, outHeight;
|
|
unsigned *temp;
|
|
|
|
outWidth = inWidth >> 1;
|
|
outHeight = inHeight >> 1;
|
|
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
|
|
|
|
inWidthMask = inWidth - 1;
|
|
inHeightMask = inHeight - 1;
|
|
|
|
for ( i = 0 ; i < outHeight ; i++ ) {
|
|
for ( j = 0 ; j < outWidth ; j++ ) {
|
|
outpix = (byte *) ( temp + i * outWidth + j );
|
|
for ( k = 0 ; k < 4 ; k++ ) {
|
|
total =
|
|
1 * (&in[ 4*(((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask)) ])[k] +
|
|
2 * (&in[ 4*(((i*2-1)&inHeightMask)*inWidth + ((j*2 )&inWidthMask)) ])[k] +
|
|
2 * (&in[ 4*(((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask)) ])[k] +
|
|
1 * (&in[ 4*(((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask)) ])[k] +
|
|
|
|
2 * (&in[ 4*(((i*2 )&inHeightMask)*inWidth + ((j*2-1)&inWidthMask)) ])[k] +
|
|
4 * (&in[ 4*(((i*2 )&inHeightMask)*inWidth + ((j*2 )&inWidthMask)) ])[k] +
|
|
4 * (&in[ 4*(((i*2 )&inHeightMask)*inWidth + ((j*2+1)&inWidthMask)) ])[k] +
|
|
2 * (&in[ 4*(((i*2 )&inHeightMask)*inWidth + ((j*2+2)&inWidthMask)) ])[k] +
|
|
|
|
2 * (&in[ 4*(((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask)) ])[k] +
|
|
4 * (&in[ 4*(((i*2+1)&inHeightMask)*inWidth + ((j*2 )&inWidthMask)) ])[k] +
|
|
4 * (&in[ 4*(((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask)) ])[k] +
|
|
2 * (&in[ 4*(((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask)) ])[k] +
|
|
|
|
1 * (&in[ 4*(((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask)) ])[k] +
|
|
2 * (&in[ 4*(((i*2+2)&inHeightMask)*inWidth + ((j*2 )&inWidthMask)) ])[k] +
|
|
2 * (&in[ 4*(((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask)) ])[k] +
|
|
1 * (&in[ 4*(((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask)) ])[k];
|
|
outpix[k] = total / 36;
|
|
}
|
|
}
|
|
}
|
|
|
|
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
|
|
ri.Hunk_FreeTempMemory( temp );
|
|
}
|
|
|
|
|
|
static void R_MipMapsRGB( byte *in, int inWidth, int inHeight)
|
|
{
|
|
int i, j, k;
|
|
int outWidth, outHeight;
|
|
byte *temp;
|
|
|
|
outWidth = inWidth >> 1;
|
|
outHeight = inHeight >> 1;
|
|
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
|
|
|
|
for ( i = 0 ; i < outHeight ; i++ ) {
|
|
byte *outbyte = temp + ( i * outWidth ) * 4;
|
|
byte *inbyte1 = in + ( i * 2 * inWidth ) * 4;
|
|
byte *inbyte2 = in + ( (i * 2 + 1) * inWidth ) * 4;
|
|
for ( j = 0 ; j < outWidth ; j++ ) {
|
|
for ( k = 0 ; k < 3 ; k++ ) {
|
|
float total, current;
|
|
|
|
current = ByteToFloat(inbyte1[0]); total = sRGBtoRGB(current);
|
|
current = ByteToFloat(inbyte1[4]); total += sRGBtoRGB(current);
|
|
current = ByteToFloat(inbyte2[0]); total += sRGBtoRGB(current);
|
|
current = ByteToFloat(inbyte2[4]); total += sRGBtoRGB(current);
|
|
|
|
total *= 0.25f;
|
|
|
|
inbyte1++;
|
|
inbyte2++;
|
|
|
|
current = RGBtosRGB(total);
|
|
*outbyte++ = FloatToByte(current);
|
|
}
|
|
*outbyte++ = (inbyte1[0] + inbyte1[4] + inbyte2[0] + inbyte2[4]) >> 2;
|
|
inbyte1 += 5;
|
|
inbyte2 += 5;
|
|
}
|
|
}
|
|
|
|
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
|
|
ri.Hunk_FreeTempMemory( temp );
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_MipMap
|
|
|
|
Operates in place, quartering the size of the texture
|
|
================
|
|
*/
|
|
static void R_MipMap (byte *in, int width, int height) {
|
|
int i, j;
|
|
byte *out;
|
|
int row;
|
|
|
|
if ( !r_simpleMipMaps->integer ) {
|
|
R_MipMap2( in, width, height );
|
|
return;
|
|
}
|
|
|
|
if ( width == 1 && height == 1 ) {
|
|
return;
|
|
}
|
|
|
|
row = width * 4;
|
|
out = in;
|
|
width >>= 1;
|
|
height >>= 1;
|
|
|
|
if ( width == 0 || height == 0 ) {
|
|
width += height; // get largest
|
|
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
|
|
out[0] = ( in[0] + in[4] )>>1;
|
|
out[1] = ( in[1] + in[5] )>>1;
|
|
out[2] = ( in[2] + in[6] )>>1;
|
|
out[3] = ( in[3] + in[7] )>>1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (i=0 ; i<height ; i++, in+=row) {
|
|
for (j=0 ; j<width ; j++, out+=4, in+=8) {
|
|
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
|
|
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
|
|
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
|
|
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void R_MipMapLuminanceAlpha (const byte *in, byte *out, int width, int height)
|
|
{
|
|
int i, j, row;
|
|
|
|
if ( width == 1 && height == 1 ) {
|
|
return;
|
|
}
|
|
|
|
row = width * 4;
|
|
width >>= 1;
|
|
height >>= 1;
|
|
|
|
if ( width == 0 || height == 0 ) {
|
|
width += height; // get largest
|
|
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
|
|
out[0] =
|
|
out[1] =
|
|
out[2] = (in[0] + in[4]) >> 1;
|
|
out[3] = (in[3] + in[7]) >> 1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (i=0 ; i<height ; i++, in+=row) {
|
|
for (j=0 ; j<width ; j++, out+=4, in+=8) {
|
|
out[0] =
|
|
out[1] =
|
|
out[2] = (in[0] + in[4] + in[row ] + in[row+4]) >> 2;
|
|
out[3] = (in[3] + in[7] + in[row+3] + in[row+7]) >> 2;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
static void R_MipMapNormalHeight (const byte *in, byte *out, int width, int height, qboolean swizzle)
|
|
{
|
|
int i, j;
|
|
int row;
|
|
int sx = swizzle ? 3 : 0;
|
|
int sa = swizzle ? 0 : 3;
|
|
|
|
if ( width == 1 && height == 1 ) {
|
|
return;
|
|
}
|
|
|
|
row = width * 4;
|
|
width >>= 1;
|
|
height >>= 1;
|
|
|
|
for (i=0 ; i<height ; i++, in+=row) {
|
|
for (j=0 ; j<width ; j++, out+=4, in+=8) {
|
|
vec3_t v;
|
|
|
|
v[0] = OffsetByteToFloat(in[sx ]);
|
|
v[1] = OffsetByteToFloat(in[ 1]);
|
|
v[2] = OffsetByteToFloat(in[ 2]);
|
|
|
|
v[0] += OffsetByteToFloat(in[sx +4]);
|
|
v[1] += OffsetByteToFloat(in[ 5]);
|
|
v[2] += OffsetByteToFloat(in[ 6]);
|
|
|
|
v[0] += OffsetByteToFloat(in[sx+row ]);
|
|
v[1] += OffsetByteToFloat(in[ row+1]);
|
|
v[2] += OffsetByteToFloat(in[ row+2]);
|
|
|
|
v[0] += OffsetByteToFloat(in[sx+row+4]);
|
|
v[1] += OffsetByteToFloat(in[ row+5]);
|
|
v[2] += OffsetByteToFloat(in[ row+6]);
|
|
|
|
VectorNormalizeFast(v);
|
|
|
|
//v[0] *= 0.25f;
|
|
//v[1] *= 0.25f;
|
|
//v[2] = 1.0f - v[0] * v[0] - v[1] * v[1];
|
|
//v[2] = sqrt(MAX(v[2], 0.0f));
|
|
|
|
out[sx] = FloatToOffsetByte(v[0]);
|
|
out[1 ] = FloatToOffsetByte(v[1]);
|
|
out[2 ] = FloatToOffsetByte(v[2]);
|
|
out[sa] = MAX(MAX(in[sa], in[sa+4]), MAX(in[sa+row], in[sa+row+4]));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
R_BlendOverTexture
|
|
|
|
Apply a color blend over a set of pixels
|
|
==================
|
|
*/
|
|
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
|
|
int i;
|
|
int inverseAlpha;
|
|
int premult[3];
|
|
|
|
inverseAlpha = 255 - blend[3];
|
|
premult[0] = blend[0] * blend[3];
|
|
premult[1] = blend[1] * blend[3];
|
|
premult[2] = blend[2] * blend[3];
|
|
|
|
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
|
|
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
|
|
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
|
|
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
|
|
}
|
|
}
|
|
|
|
byte mipBlendColors[16][4] = {
|
|
{0,0,0,0},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
};
|
|
|
|
static void RawImage_SwizzleRA( byte *data, int width, int height )
|
|
{
|
|
int i;
|
|
byte *ptr = data, swap;
|
|
|
|
for (i=0; i<width*height; i++, ptr+=4)
|
|
{
|
|
// swap red and alpha
|
|
swap = ptr[0];
|
|
ptr[0] = ptr[3];
|
|
ptr[3] = swap;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
RawImage_ScaleToPower2
|
|
|
|
===============
|
|
*/
|
|
static void RawImage_ScaleToPower2( byte **data, int *inout_width, int *inout_height, int *inout_scaled_width, int *inout_scaled_height, imgType_t type, imgFlags_t flags, byte **resampledBuffer)
|
|
{
|
|
int width = *inout_width;
|
|
int height = *inout_height;
|
|
int scaled_width = *inout_scaled_width;
|
|
int scaled_height = *inout_scaled_height;
|
|
qboolean picmip = flags & IMGFLAG_PICMIP;
|
|
qboolean mipmap = flags & IMGFLAG_MIPMAP;
|
|
qboolean clampToEdge = flags & IMGFLAG_CLAMPTOEDGE;
|
|
|
|
//
|
|
// convert to exact power of 2 sizes
|
|
//
|
|
if (glRefConfig.textureNonPowerOfTwo && !mipmap)
|
|
{
|
|
scaled_width = width;
|
|
scaled_height = height;
|
|
}
|
|
else
|
|
{
|
|
scaled_width = NextPowerOfTwo(width);
|
|
scaled_height = NextPowerOfTwo(height);
|
|
}
|
|
|
|
if ( r_roundImagesDown->integer && scaled_width > width )
|
|
scaled_width >>= 1;
|
|
if ( r_roundImagesDown->integer && scaled_height > height )
|
|
scaled_height >>= 1;
|
|
|
|
if ( picmip && data && resampledBuffer && r_imageUpsample->integer &&
|
|
scaled_width < r_imageUpsampleMaxSize->integer && scaled_height < r_imageUpsampleMaxSize->integer)
|
|
{
|
|
int finalwidth, finalheight;
|
|
//int startTime, endTime;
|
|
|
|
//startTime = ri.Milliseconds();
|
|
|
|
finalwidth = scaled_width << r_imageUpsample->integer;
|
|
finalheight = scaled_height << r_imageUpsample->integer;
|
|
|
|
while ( finalwidth > r_imageUpsampleMaxSize->integer
|
|
|| finalheight > r_imageUpsampleMaxSize->integer ) {
|
|
finalwidth >>= 1;
|
|
finalheight >>= 1;
|
|
}
|
|
|
|
while ( finalwidth > glConfig.maxTextureSize
|
|
|| finalheight > glConfig.maxTextureSize ) {
|
|
finalwidth >>= 1;
|
|
finalheight >>= 1;
|
|
}
|
|
|
|
*resampledBuffer = ri.Hunk_AllocateTempMemory( finalwidth * finalheight * 4 );
|
|
|
|
if (scaled_width != width || scaled_height != height)
|
|
{
|
|
ResampleTexture (*data, width, height, *resampledBuffer, scaled_width, scaled_height);
|
|
}
|
|
else
|
|
{
|
|
byte *inbyte, *outbyte;
|
|
int i;
|
|
|
|
inbyte = *data;
|
|
outbyte = *resampledBuffer;
|
|
|
|
for (i = width * height * 4; i > 0; i--)
|
|
{
|
|
*outbyte++ = *inbyte++;
|
|
}
|
|
}
|
|
|
|
if (type == IMGTYPE_COLORALPHA)
|
|
RGBAtoYCoCgA(*resampledBuffer, *resampledBuffer, scaled_width, scaled_height);
|
|
|
|
while (scaled_width < finalwidth || scaled_height < finalheight)
|
|
{
|
|
scaled_width <<= 1;
|
|
scaled_height <<= 1;
|
|
|
|
FCBIByBlock(*resampledBuffer, scaled_width, scaled_height, clampToEdge, (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT));
|
|
}
|
|
|
|
if (type == IMGTYPE_COLORALPHA)
|
|
{
|
|
YCoCgAtoRGBA(*resampledBuffer, *resampledBuffer, scaled_width, scaled_height);
|
|
}
|
|
else if (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT)
|
|
{
|
|
FillInNormalizedZ(*resampledBuffer, *resampledBuffer, scaled_width, scaled_height);
|
|
}
|
|
|
|
|
|
//endTime = ri.Milliseconds();
|
|
|
|
//ri.Printf(PRINT_ALL, "upsampled %dx%d to %dx%d in %dms\n", width, height, scaled_width, scaled_height, endTime - startTime);
|
|
|
|
*data = *resampledBuffer;
|
|
width = scaled_width;
|
|
height = scaled_height;
|
|
}
|
|
else if ( scaled_width != width || scaled_height != height ) {
|
|
if (data && resampledBuffer)
|
|
{
|
|
*resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
|
|
ResampleTexture (*data, width, height, *resampledBuffer, scaled_width, scaled_height);
|
|
*data = *resampledBuffer;
|
|
}
|
|
width = scaled_width;
|
|
height = scaled_height;
|
|
}
|
|
|
|
//
|
|
// perform optional picmip operation
|
|
//
|
|
if ( picmip ) {
|
|
scaled_width >>= r_picmip->integer;
|
|
scaled_height >>= r_picmip->integer;
|
|
}
|
|
|
|
//
|
|
// clamp to minimum size
|
|
//
|
|
if (scaled_width < 1) {
|
|
scaled_width = 1;
|
|
}
|
|
if (scaled_height < 1) {
|
|
scaled_height = 1;
|
|
}
|
|
|
|
//
|
|
// clamp to the current upper OpenGL limit
|
|
// scale both axis down equally so we don't have to
|
|
// deal with a half mip resampling
|
|
//
|
|
while ( scaled_width > glConfig.maxTextureSize
|
|
|| scaled_height > glConfig.maxTextureSize ) {
|
|
scaled_width >>= 1;
|
|
scaled_height >>= 1;
|
|
}
|
|
|
|
*inout_width = width;
|
|
*inout_height = height;
|
|
*inout_scaled_width = scaled_width;
|
|
*inout_scaled_height = scaled_height;
|
|
}
|
|
|
|
|
|
static qboolean RawImage_HasAlpha(const byte *scan, int numPixels)
|
|
{
|
|
int i;
|
|
|
|
if (!scan)
|
|
return qtrue;
|
|
|
|
for ( i = 0; i < numPixels; i++ )
|
|
{
|
|
if ( scan[i*4 + 3] != 255 )
|
|
{
|
|
return qtrue;
|
|
}
|
|
}
|
|
|
|
return qfalse;
|
|
}
|
|
|
|
static GLenum RawImage_GetFormat(const byte *data, int numPixels, qboolean lightMap, imgType_t type, imgFlags_t flags)
|
|
{
|
|
int samples = 3;
|
|
GLenum internalFormat = GL_RGB;
|
|
qboolean forceNoCompression = (flags & IMGFLAG_NO_COMPRESSION);
|
|
qboolean normalmap = (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT);
|
|
|
|
if(normalmap)
|
|
{
|
|
if ((!RawImage_HasAlpha(data, numPixels) || (type == IMGTYPE_NORMAL)) && !forceNoCompression && (glRefConfig.textureCompression & TCR_LATC))
|
|
{
|
|
internalFormat = GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT;
|
|
}
|
|
else
|
|
{
|
|
if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC_ARB )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
internalFormat = GL_RGBA4;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
internalFormat = GL_RGBA8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGBA;
|
|
}
|
|
}
|
|
}
|
|
else if(lightMap)
|
|
{
|
|
samples = 4;
|
|
if(r_greyscale->integer)
|
|
internalFormat = GL_LUMINANCE;
|
|
else
|
|
internalFormat = GL_RGBA;
|
|
}
|
|
else
|
|
{
|
|
if (RawImage_HasAlpha(data, numPixels))
|
|
{
|
|
samples = 4;
|
|
}
|
|
|
|
// select proper internal format
|
|
if ( samples == 3 )
|
|
{
|
|
if(r_greyscale->integer)
|
|
{
|
|
if(r_texturebits->integer == 16)
|
|
internalFormat = GL_LUMINANCE8;
|
|
else if(r_texturebits->integer == 32)
|
|
internalFormat = GL_LUMINANCE16;
|
|
else
|
|
internalFormat = GL_LUMINANCE;
|
|
}
|
|
else
|
|
{
|
|
if ( !forceNoCompression && (glRefConfig.textureCompression & TCR_BPTC) )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_BPTC_UNORM_ARB;
|
|
}
|
|
else if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC_ARB )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
|
|
}
|
|
else if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC )
|
|
{
|
|
internalFormat = GL_RGB4_S3TC;
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
internalFormat = GL_RGB5;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
internalFormat = GL_RGB8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGB;
|
|
}
|
|
}
|
|
}
|
|
else if ( samples == 4 )
|
|
{
|
|
if(r_greyscale->integer)
|
|
{
|
|
if(r_texturebits->integer == 16)
|
|
internalFormat = GL_LUMINANCE8_ALPHA8;
|
|
else if(r_texturebits->integer == 32)
|
|
internalFormat = GL_LUMINANCE16_ALPHA16;
|
|
else
|
|
internalFormat = GL_LUMINANCE_ALPHA;
|
|
}
|
|
else
|
|
{
|
|
if ( !forceNoCompression && (glRefConfig.textureCompression & TCR_BPTC) )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_BPTC_UNORM_ARB;
|
|
}
|
|
else if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC_ARB )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
internalFormat = GL_RGBA4;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
internalFormat = GL_RGBA8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGBA;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (glRefConfig.texture_srgb && (flags & IMGFLAG_SRGB))
|
|
{
|
|
switch(internalFormat)
|
|
{
|
|
case GL_RGB:
|
|
internalFormat = GL_SRGB_EXT;
|
|
break;
|
|
|
|
case GL_RGB4:
|
|
case GL_RGB5:
|
|
case GL_RGB8:
|
|
internalFormat = GL_SRGB8_EXT;
|
|
break;
|
|
|
|
case GL_RGBA:
|
|
internalFormat = GL_SRGB_ALPHA_EXT;
|
|
break;
|
|
|
|
case GL_RGBA4:
|
|
case GL_RGBA8:
|
|
internalFormat = GL_SRGB8_ALPHA8_EXT;
|
|
break;
|
|
|
|
case GL_LUMINANCE:
|
|
internalFormat = GL_SLUMINANCE_EXT;
|
|
break;
|
|
|
|
case GL_LUMINANCE8:
|
|
case GL_LUMINANCE16:
|
|
internalFormat = GL_SLUMINANCE8_EXT;
|
|
break;
|
|
|
|
case GL_LUMINANCE_ALPHA:
|
|
internalFormat = GL_SLUMINANCE_ALPHA_EXT;
|
|
break;
|
|
|
|
case GL_LUMINANCE8_ALPHA8:
|
|
case GL_LUMINANCE16_ALPHA16:
|
|
internalFormat = GL_SLUMINANCE8_ALPHA8_EXT;
|
|
break;
|
|
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
|
|
internalFormat = GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT;
|
|
break;
|
|
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
|
|
internalFormat = GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT;
|
|
break;
|
|
|
|
case GL_COMPRESSED_RGBA_BPTC_UNORM_ARB:
|
|
internalFormat = GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return internalFormat;
|
|
}
|
|
|
|
|
|
static void RawImage_UploadTexture( byte *data, int x, int y, int width, int height, GLenum internalFormat, imgType_t type, imgFlags_t flags, qboolean subtexture )
|
|
{
|
|
int dataFormat, dataType;
|
|
|
|
switch(internalFormat)
|
|
{
|
|
case GL_DEPTH_COMPONENT:
|
|
case GL_DEPTH_COMPONENT16_ARB:
|
|
case GL_DEPTH_COMPONENT24_ARB:
|
|
case GL_DEPTH_COMPONENT32_ARB:
|
|
dataFormat = GL_DEPTH_COMPONENT;
|
|
dataType = GL_UNSIGNED_BYTE;
|
|
break;
|
|
case GL_RGBA16F_ARB:
|
|
dataFormat = GL_RGBA;
|
|
dataType = GL_HALF_FLOAT_ARB;
|
|
break;
|
|
default:
|
|
dataFormat = GL_RGBA;
|
|
dataType = GL_UNSIGNED_BYTE;
|
|
break;
|
|
}
|
|
|
|
if ( subtexture )
|
|
qglTexSubImage2D( GL_TEXTURE_2D, 0, x, y, width, height, dataFormat, dataType, data );
|
|
else
|
|
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, width, height, 0, dataFormat, dataType, data );
|
|
|
|
if (flags & IMGFLAG_MIPMAP)
|
|
{
|
|
int miplevel;
|
|
|
|
miplevel = 0;
|
|
while (width > 1 || height > 1)
|
|
{
|
|
if (data)
|
|
{
|
|
if (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT)
|
|
{
|
|
if (internalFormat == GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT)
|
|
{
|
|
R_MipMapLuminanceAlpha( data, data, width, height );
|
|
}
|
|
else
|
|
{
|
|
R_MipMapNormalHeight( data, data, width, height, qtrue);
|
|
}
|
|
}
|
|
else if (flags & IMGFLAG_SRGB)
|
|
{
|
|
R_MipMapsRGB( data, width, height );
|
|
}
|
|
else
|
|
{
|
|
R_MipMap( data, width, height );
|
|
}
|
|
}
|
|
|
|
width >>= 1;
|
|
height >>= 1;
|
|
if (width < 1)
|
|
width = 1;
|
|
if (height < 1)
|
|
height = 1;
|
|
miplevel++;
|
|
|
|
if ( data && r_colorMipLevels->integer )
|
|
R_BlendOverTexture( (byte *)data, width * height, mipBlendColors[miplevel] );
|
|
|
|
if ( subtexture )
|
|
{
|
|
x >>= 1;
|
|
y >>= 1;
|
|
qglTexSubImage2D( GL_TEXTURE_2D, miplevel, x, y, width, height, dataFormat, dataType, data );
|
|
}
|
|
else
|
|
{
|
|
qglTexImage2D (GL_TEXTURE_2D, miplevel, internalFormat, width, height, 0, dataFormat, dataType, data );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
Upload32
|
|
|
|
===============
|
|
*/
|
|
extern qboolean charSet;
|
|
static void Upload32( byte *data, int width, int height, imgType_t type, imgFlags_t flags,
|
|
qboolean lightMap, GLenum internalFormat, int *pUploadWidth, int *pUploadHeight)
|
|
{
|
|
byte *scaledBuffer = NULL;
|
|
byte *resampledBuffer = NULL;
|
|
int scaled_width, scaled_height;
|
|
int i, c;
|
|
byte *scan;
|
|
|
|
RawImage_ScaleToPower2(&data, &width, &height, &scaled_width, &scaled_height, type, flags, &resampledBuffer);
|
|
|
|
scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
|
|
|
|
//
|
|
// scan the texture for each channel's max values
|
|
// and verify if the alpha channel is being used or not
|
|
//
|
|
c = width*height;
|
|
scan = data;
|
|
|
|
if( r_greyscale->integer )
|
|
{
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
byte luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
|
scan[i*4] = luma;
|
|
scan[i*4 + 1] = luma;
|
|
scan[i*4 + 2] = luma;
|
|
}
|
|
}
|
|
else if( r_greyscale->value )
|
|
{
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
float luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
|
scan[i*4] = LERP(scan[i*4], luma, r_greyscale->value);
|
|
scan[i*4 + 1] = LERP(scan[i*4 + 1], luma, r_greyscale->value);
|
|
scan[i*4 + 2] = LERP(scan[i*4 + 2], luma, r_greyscale->value);
|
|
}
|
|
}
|
|
|
|
// normals are always swizzled
|
|
if (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT)
|
|
{
|
|
RawImage_SwizzleRA(data, width, height);
|
|
}
|
|
|
|
// LATC2 is only used for normals
|
|
if (internalFormat == GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT)
|
|
{
|
|
byte *in = data;
|
|
int c = width * height;
|
|
while (c--)
|
|
{
|
|
in[0] = in[1];
|
|
in[2] = in[1];
|
|
in += 4;
|
|
}
|
|
}
|
|
|
|
// copy or resample data as appropriate for first MIP level
|
|
if ( ( scaled_width == width ) &&
|
|
( scaled_height == height ) ) {
|
|
if (!(flags & IMGFLAG_MIPMAP))
|
|
{
|
|
RawImage_UploadTexture( data, 0, 0, scaled_width, scaled_height, internalFormat, type, flags, qfalse );
|
|
//qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
|
|
*pUploadWidth = scaled_width;
|
|
*pUploadHeight = scaled_height;
|
|
|
|
goto done;
|
|
}
|
|
Com_Memcpy (scaledBuffer, data, width*height*4);
|
|
}
|
|
else
|
|
{
|
|
// use the normal mip-mapping function to go down from here
|
|
while ( width > scaled_width || height > scaled_height ) {
|
|
|
|
if (flags & IMGFLAG_SRGB)
|
|
{
|
|
R_MipMapsRGB( (byte *)data, width, height );
|
|
}
|
|
else
|
|
{
|
|
R_MipMap( (byte *)data, width, height );
|
|
}
|
|
|
|
width >>= 1;
|
|
height >>= 1;
|
|
if ( width < 1 ) {
|
|
width = 1;
|
|
}
|
|
if ( height < 1 ) {
|
|
height = 1;
|
|
}
|
|
}
|
|
Com_Memcpy( scaledBuffer, data, width * height * 4 );
|
|
}
|
|
|
|
if (!(flags & IMGFLAG_NOLIGHTSCALE))
|
|
R_LightScaleTexture (scaledBuffer, scaled_width, scaled_height, !(flags & IMGFLAG_MIPMAP) );
|
|
|
|
*pUploadWidth = scaled_width;
|
|
*pUploadHeight = scaled_height;
|
|
|
|
RawImage_UploadTexture(scaledBuffer, 0, 0, scaled_width, scaled_height, internalFormat, type, flags, qfalse);
|
|
|
|
done:
|
|
|
|
if (flags & IMGFLAG_MIPMAP)
|
|
{
|
|
if ( textureFilterAnisotropic )
|
|
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
|
|
(GLint)Com_Clamp( 1, maxAnisotropy, r_ext_max_anisotropy->integer ) );
|
|
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
}
|
|
else
|
|
{
|
|
if ( textureFilterAnisotropic )
|
|
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
|
|
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
|
}
|
|
|
|
GL_CheckErrors();
|
|
|
|
if ( scaledBuffer != 0 )
|
|
ri.Hunk_FreeTempMemory( scaledBuffer );
|
|
if ( resampledBuffer != 0 )
|
|
ri.Hunk_FreeTempMemory( resampledBuffer );
|
|
}
|
|
|
|
|
|
static void EmptyTexture( int width, int height, imgType_t type, imgFlags_t flags,
|
|
qboolean lightMap, GLenum internalFormat, int *pUploadWidth, int *pUploadHeight )
|
|
{
|
|
int scaled_width, scaled_height;
|
|
|
|
RawImage_ScaleToPower2(NULL, &width, &height, &scaled_width, &scaled_height, type, flags, NULL);
|
|
|
|
*pUploadWidth = scaled_width;
|
|
*pUploadHeight = scaled_height;
|
|
|
|
RawImage_UploadTexture(NULL, 0, 0, scaled_width, scaled_height, internalFormat, type, flags, qfalse);
|
|
|
|
if (flags & IMGFLAG_MIPMAP)
|
|
{
|
|
if ( textureFilterAnisotropic )
|
|
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
|
|
(GLint)Com_Clamp( 1, maxAnisotropy, r_ext_max_anisotropy->integer ) );
|
|
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
}
|
|
else
|
|
{
|
|
if ( textureFilterAnisotropic )
|
|
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
|
|
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
|
}
|
|
|
|
// Fix for sampling depth buffer on old nVidia cards
|
|
// from http://www.idevgames.com/forums/thread-4141-post-34844.html#pid34844
|
|
switch(internalFormat)
|
|
{
|
|
case GL_DEPTH_COMPONENT:
|
|
case GL_DEPTH_COMPONENT16_ARB:
|
|
case GL_DEPTH_COMPONENT24_ARB:
|
|
case GL_DEPTH_COMPONENT32_ARB:
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE, GL_LUMINANCE );
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
GL_CheckErrors();
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateImage
|
|
|
|
This is the only way any image_t are created
|
|
================
|
|
*/
|
|
image_t *R_CreateImage( const char *name, byte *pic, int width, int height, imgType_t type, imgFlags_t flags, int internalFormat ) {
|
|
image_t *image;
|
|
qboolean isLightmap = qfalse;
|
|
long hash;
|
|
int glWrapClampMode;
|
|
|
|
if (strlen(name) >= MAX_QPATH ) {
|
|
ri.Error (ERR_DROP, "R_CreateImage: \"%s\" is too long", name);
|
|
}
|
|
if ( !strncmp( name, "*lightmap", 9 ) ) {
|
|
isLightmap = qtrue;
|
|
}
|
|
|
|
if ( tr.numImages == MAX_DRAWIMAGES ) {
|
|
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit");
|
|
}
|
|
|
|
image = tr.images[tr.numImages] = ri.Hunk_Alloc( sizeof( image_t ), h_low );
|
|
image->texnum = 1024 + tr.numImages;
|
|
tr.numImages++;
|
|
|
|
image->type = type;
|
|
image->flags = flags;
|
|
|
|
strcpy (image->imgName, name);
|
|
|
|
image->width = width;
|
|
image->height = height;
|
|
if (flags & IMGFLAG_CLAMPTOEDGE)
|
|
glWrapClampMode = GL_CLAMP_TO_EDGE;
|
|
else
|
|
glWrapClampMode = GL_REPEAT;
|
|
|
|
if (!internalFormat)
|
|
{
|
|
if (image->flags & IMGFLAG_CUBEMAP)
|
|
internalFormat = GL_RGBA8;
|
|
else
|
|
internalFormat = RawImage_GetFormat(pic, width * height, isLightmap, image->type, image->flags);
|
|
}
|
|
|
|
image->internalFormat = internalFormat;
|
|
|
|
|
|
// lightmaps are always allocated on TMU 1
|
|
if ( qglActiveTextureARB && isLightmap ) {
|
|
image->TMU = 1;
|
|
} else {
|
|
image->TMU = 0;
|
|
}
|
|
|
|
if ( qglActiveTextureARB ) {
|
|
GL_SelectTexture( image->TMU );
|
|
}
|
|
|
|
if (image->flags & IMGFLAG_CUBEMAP)
|
|
{
|
|
GL_BindCubemap(image);
|
|
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
|
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
|
|
qglTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
|
|
qglTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
|
|
qglTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
|
|
qglTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
|
|
qglTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
|
|
qglTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
|
|
|
|
image->uploadWidth = width;
|
|
image->uploadHeight = height;
|
|
}
|
|
else
|
|
{
|
|
GL_Bind(image);
|
|
|
|
if (pic)
|
|
{
|
|
Upload32( pic, image->width, image->height, image->type, image->flags,
|
|
isLightmap, image->internalFormat, &image->uploadWidth,
|
|
&image->uploadHeight );
|
|
}
|
|
else
|
|
{
|
|
EmptyTexture(image->width, image->height, image->type, image->flags,
|
|
isLightmap, image->internalFormat, &image->uploadWidth,
|
|
&image->uploadHeight );
|
|
}
|
|
|
|
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode );
|
|
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode );
|
|
}
|
|
|
|
GL_SelectTexture( 0 );
|
|
|
|
hash = generateHashValue(name);
|
|
image->next = hashTable[hash];
|
|
hashTable[hash] = image;
|
|
|
|
return image;
|
|
}
|
|
|
|
void R_UpdateSubImage( image_t *image, byte *pic, int x, int y, int width, int height )
|
|
{
|
|
byte *scaledBuffer = NULL;
|
|
byte *resampledBuffer = NULL;
|
|
int scaled_width, scaled_height, scaled_x, scaled_y;
|
|
byte *data = pic;
|
|
|
|
// normals are always swizzled
|
|
if (image->type == IMGTYPE_NORMAL || image->type == IMGTYPE_NORMALHEIGHT)
|
|
{
|
|
RawImage_SwizzleRA(pic, width, height);
|
|
}
|
|
|
|
// LATC2 is only used for normals
|
|
if (image->internalFormat == GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT)
|
|
{
|
|
byte *in = data;
|
|
int c = width * height;
|
|
while (c--)
|
|
{
|
|
in[0] = in[1];
|
|
in[2] = in[1];
|
|
in += 4;
|
|
}
|
|
}
|
|
|
|
|
|
RawImage_ScaleToPower2(&pic, &width, &height, &scaled_width, &scaled_height, image->type, image->flags, &resampledBuffer);
|
|
|
|
scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
|
|
|
|
if ( qglActiveTextureARB ) {
|
|
GL_SelectTexture( image->TMU );
|
|
}
|
|
|
|
GL_Bind(image);
|
|
|
|
// copy or resample data as appropriate for first MIP level
|
|
if ( ( scaled_width == width ) &&
|
|
( scaled_height == height ) ) {
|
|
if (!(image->flags & IMGFLAG_MIPMAP))
|
|
{
|
|
scaled_x = x * scaled_width / width;
|
|
scaled_y = y * scaled_height / height;
|
|
RawImage_UploadTexture( data, scaled_x, scaled_y, scaled_width, scaled_height, image->internalFormat, image->type, image->flags, qtrue );
|
|
//qglTexSubImage2D( GL_TEXTURE_2D, 0, scaled_x, scaled_y, scaled_width, scaled_height, GL_RGBA, GL_UNSIGNED_BYTE, data );
|
|
|
|
GL_CheckErrors();
|
|
goto done;
|
|
}
|
|
Com_Memcpy (scaledBuffer, data, width*height*4);
|
|
}
|
|
else
|
|
{
|
|
// use the normal mip-mapping function to go down from here
|
|
while ( width > scaled_width || height > scaled_height ) {
|
|
|
|
if (image->flags & IMGFLAG_SRGB)
|
|
{
|
|
R_MipMapsRGB( (byte *)data, width, height );
|
|
}
|
|
else
|
|
{
|
|
R_MipMap( (byte *)data, width, height );
|
|
}
|
|
|
|
width >>= 1;
|
|
height >>= 1;
|
|
x >>= 1;
|
|
y >>= 1;
|
|
if ( width < 1 ) {
|
|
width = 1;
|
|
}
|
|
if ( height < 1 ) {
|
|
height = 1;
|
|
}
|
|
}
|
|
Com_Memcpy( scaledBuffer, data, width * height * 4 );
|
|
}
|
|
|
|
if (!(image->flags & IMGFLAG_NOLIGHTSCALE))
|
|
R_LightScaleTexture (scaledBuffer, scaled_width, scaled_height, !(image->flags & IMGFLAG_MIPMAP) );
|
|
|
|
scaled_x = x * scaled_width / width;
|
|
scaled_y = y * scaled_height / height;
|
|
RawImage_UploadTexture( (byte *)data, scaled_x, scaled_y, scaled_width, scaled_height, image->internalFormat, image->type, image->flags, qtrue );
|
|
|
|
done:
|
|
|
|
GL_SelectTexture( 0 );
|
|
|
|
GL_CheckErrors();
|
|
|
|
if ( scaledBuffer != 0 )
|
|
ri.Hunk_FreeTempMemory( scaledBuffer );
|
|
if ( resampledBuffer != 0 )
|
|
ri.Hunk_FreeTempMemory( resampledBuffer );
|
|
}
|
|
|
|
//===================================================================
|
|
|
|
typedef struct
|
|
{
|
|
char *ext;
|
|
void (*ImageLoader)( const char *, unsigned char **, int *, int * );
|
|
} imageExtToLoaderMap_t;
|
|
|
|
// Note that the ordering indicates the order of preference used
|
|
// when there are multiple images of different formats available
|
|
static imageExtToLoaderMap_t imageLoaders[ ] =
|
|
{
|
|
{ "tga", R_LoadTGA },
|
|
{ "jpg", R_LoadJPG },
|
|
{ "jpeg", R_LoadJPG },
|
|
{ "png", R_LoadPNG },
|
|
{ "pcx", R_LoadPCX },
|
|
{ "bmp", R_LoadBMP }
|
|
};
|
|
|
|
static int numImageLoaders = ARRAY_LEN( imageLoaders );
|
|
|
|
/*
|
|
=================
|
|
R_LoadImage
|
|
|
|
Loads any of the supported image types into a cannonical
|
|
32 bit format.
|
|
=================
|
|
*/
|
|
void R_LoadImage( const char *name, byte **pic, int *width, int *height )
|
|
{
|
|
qboolean orgNameFailed = qfalse;
|
|
int orgLoader = -1;
|
|
int i;
|
|
char localName[ MAX_QPATH ];
|
|
const char *ext;
|
|
char *altName;
|
|
|
|
*pic = NULL;
|
|
*width = 0;
|
|
*height = 0;
|
|
|
|
Q_strncpyz( localName, name, MAX_QPATH );
|
|
|
|
ext = COM_GetExtension( localName );
|
|
|
|
if( *ext )
|
|
{
|
|
// Look for the correct loader and use it
|
|
for( i = 0; i < numImageLoaders; i++ )
|
|
{
|
|
if( !Q_stricmp( ext, imageLoaders[ i ].ext ) )
|
|
{
|
|
// Load
|
|
imageLoaders[ i ].ImageLoader( localName, pic, width, height );
|
|
break;
|
|
}
|
|
}
|
|
|
|
// A loader was found
|
|
if( i < numImageLoaders )
|
|
{
|
|
if( *pic == NULL )
|
|
{
|
|
// Loader failed, most likely because the file isn't there;
|
|
// try again without the extension
|
|
orgNameFailed = qtrue;
|
|
orgLoader = i;
|
|
COM_StripExtension( name, localName, MAX_QPATH );
|
|
}
|
|
else
|
|
{
|
|
// Something loaded
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try and find a suitable match using all
|
|
// the image formats supported
|
|
for( i = 0; i < numImageLoaders; i++ )
|
|
{
|
|
if (i == orgLoader)
|
|
continue;
|
|
|
|
altName = va( "%s.%s", localName, imageLoaders[ i ].ext );
|
|
|
|
// Load
|
|
imageLoaders[ i ].ImageLoader( altName, pic, width, height );
|
|
|
|
if( *pic )
|
|
{
|
|
if( orgNameFailed )
|
|
{
|
|
ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n",
|
|
name, altName );
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_FindImageFile
|
|
|
|
Finds or loads the given image.
|
|
Returns NULL if it fails, not a default image.
|
|
==============
|
|
*/
|
|
image_t *R_FindImageFile( const char *name, imgType_t type, imgFlags_t flags )
|
|
{
|
|
image_t *image;
|
|
int width, height;
|
|
byte *pic;
|
|
long hash;
|
|
|
|
if (!name) {
|
|
return NULL;
|
|
}
|
|
|
|
hash = generateHashValue(name);
|
|
|
|
//
|
|
// see if the image is already loaded
|
|
//
|
|
for (image=hashTable[hash]; image; image=image->next) {
|
|
if ( !strcmp( name, image->imgName ) ) {
|
|
// the white image can be used with any set of parms, but other mismatches are errors
|
|
if ( strcmp( name, "*white" ) ) {
|
|
if ( image->flags != flags ) {
|
|
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed flags (%i vs %i)\n", name, image->flags, flags );
|
|
}
|
|
}
|
|
return image;
|
|
}
|
|
}
|
|
|
|
//
|
|
// load the pic from disk
|
|
//
|
|
R_LoadImage( name, &pic, &width, &height );
|
|
if ( pic == NULL ) {
|
|
return NULL;
|
|
}
|
|
|
|
if (r_normalMapping->integer && !(type == IMGTYPE_NORMAL) && (flags & IMGFLAG_PICMIP) && (flags & IMGFLAG_MIPMAP) && (flags & IMGFLAG_GENNORMALMAP))
|
|
{
|
|
char normalName[MAX_QPATH];
|
|
image_t *normalImage;
|
|
int normalWidth, normalHeight;
|
|
imgFlags_t normalFlags;
|
|
|
|
normalFlags = (flags & ~(IMGFLAG_GENNORMALMAP | IMGFLAG_SRGB)) | IMGFLAG_NOLIGHTSCALE;
|
|
|
|
COM_StripExtension(name, normalName, MAX_QPATH);
|
|
Q_strcat(normalName, MAX_QPATH, "_n");
|
|
|
|
// find normalmap in case it's there
|
|
normalImage = R_FindImageFile(normalName, IMGTYPE_NORMAL, normalFlags);
|
|
|
|
// if not, generate it
|
|
if (normalImage == NULL)
|
|
{
|
|
byte *normalPic;
|
|
int x, y;
|
|
|
|
normalWidth = width;
|
|
normalHeight = height;
|
|
normalPic = ri.Malloc(width * height * 4);
|
|
RGBAtoNormal(pic, normalPic, width, height, flags & IMGFLAG_CLAMPTOEDGE);
|
|
|
|
// Brighten up the original image to work with the normal map
|
|
RGBAtoYCoCgA(pic, pic, width, height);
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
byte *picbyte = pic + y * width * 4;
|
|
byte *normbyte = normalPic + y * width * 4;
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
int div = MAX(normbyte[2] - 127, 16);
|
|
picbyte[0] = CLAMP(picbyte[0] * 128 / div, 0, 255);
|
|
picbyte += 4;
|
|
normbyte += 4;
|
|
}
|
|
}
|
|
YCoCgAtoRGBA(pic, pic, width, height);
|
|
|
|
R_CreateImage( normalName, normalPic, normalWidth, normalHeight, IMGTYPE_NORMAL, normalFlags, 0 );
|
|
ri.Free( normalPic );
|
|
}
|
|
}
|
|
|
|
image = R_CreateImage( ( char * ) name, pic, width, height, type, flags, 0 );
|
|
ri.Free( pic );
|
|
return image;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateDlightImage
|
|
================
|
|
*/
|
|
#define DLIGHT_SIZE 16
|
|
static void R_CreateDlightImage( void ) {
|
|
int x,y;
|
|
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
|
|
int b;
|
|
|
|
// make a centered inverse-square falloff blob for dynamic lighting
|
|
for (x=0 ; x<DLIGHT_SIZE ; x++) {
|
|
for (y=0 ; y<DLIGHT_SIZE ; y++) {
|
|
float d;
|
|
|
|
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
|
|
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
|
|
b = 4000 / d;
|
|
if (b > 255) {
|
|
b = 255;
|
|
} else if ( b < 75 ) {
|
|
b = 0;
|
|
}
|
|
data[y][x][0] =
|
|
data[y][x][1] =
|
|
data[y][x][2] = b;
|
|
data[y][x][3] = 255;
|
|
}
|
|
}
|
|
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
R_InitFogTable
|
|
=================
|
|
*/
|
|
void R_InitFogTable( void ) {
|
|
int i;
|
|
float d;
|
|
float exp;
|
|
|
|
exp = 0.5;
|
|
|
|
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
|
|
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
|
|
|
|
tr.fogTable[i] = d;
|
|
}
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_FogFactor
|
|
|
|
Returns a 0.0 to 1.0 fog density value
|
|
This is called for each texel of the fog texture on startup
|
|
and for each vertex of transparent shaders in fog dynamically
|
|
================
|
|
*/
|
|
float R_FogFactor( float s, float t ) {
|
|
float d;
|
|
|
|
s -= 1.0/512;
|
|
if ( s < 0 ) {
|
|
return 0;
|
|
}
|
|
if ( t < 1.0/32 ) {
|
|
return 0;
|
|
}
|
|
if ( t < 31.0/32 ) {
|
|
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
|
|
}
|
|
|
|
// we need to leave a lot of clamp range
|
|
s *= 8;
|
|
|
|
if ( s > 1.0 ) {
|
|
s = 1.0;
|
|
}
|
|
|
|
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
|
|
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_CreateFogImage
|
|
================
|
|
*/
|
|
#define FOG_S 256
|
|
#define FOG_T 32
|
|
static void R_CreateFogImage( void ) {
|
|
int x,y;
|
|
byte *data;
|
|
float d;
|
|
float borderColor[4];
|
|
|
|
data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
|
|
|
|
// S is distance, T is depth
|
|
for (x=0 ; x<FOG_S ; x++) {
|
|
for (y=0 ; y<FOG_T ; y++) {
|
|
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
|
|
|
|
data[(y*FOG_S+x)*4+0] =
|
|
data[(y*FOG_S+x)*4+1] =
|
|
data[(y*FOG_S+x)*4+2] = 255;
|
|
data[(y*FOG_S+x)*4+3] = 255*d;
|
|
}
|
|
}
|
|
// standard openGL clamping doesn't really do what we want -- it includes
|
|
// the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does
|
|
// what we want.
|
|
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
|
|
ri.Hunk_FreeTempMemory( data );
|
|
|
|
borderColor[0] = 1.0;
|
|
borderColor[1] = 1.0;
|
|
borderColor[2] = 1.0;
|
|
borderColor[3] = 1;
|
|
|
|
qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor );
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_CreateDefaultImage
|
|
==================
|
|
*/
|
|
#define DEFAULT_SIZE 16
|
|
static void R_CreateDefaultImage( void ) {
|
|
int x;
|
|
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
|
|
|
// the default image will be a box, to allow you to see the mapping coordinates
|
|
Com_Memset( data, 32, sizeof( data ) );
|
|
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
|
|
data[0][x][0] =
|
|
data[0][x][1] =
|
|
data[0][x][2] =
|
|
data[0][x][3] = 255;
|
|
|
|
data[x][0][0] =
|
|
data[x][0][1] =
|
|
data[x][0][2] =
|
|
data[x][0][3] = 255;
|
|
|
|
data[DEFAULT_SIZE-1][x][0] =
|
|
data[DEFAULT_SIZE-1][x][1] =
|
|
data[DEFAULT_SIZE-1][x][2] =
|
|
data[DEFAULT_SIZE-1][x][3] = 255;
|
|
|
|
data[x][DEFAULT_SIZE-1][0] =
|
|
data[x][DEFAULT_SIZE-1][1] =
|
|
data[x][DEFAULT_SIZE-1][2] =
|
|
data[x][DEFAULT_SIZE-1][3] = 255;
|
|
}
|
|
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_MIPMAP, 0);
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_CreateBuiltinImages
|
|
==================
|
|
*/
|
|
void R_CreateBuiltinImages( void ) {
|
|
int x,y;
|
|
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
|
|
|
R_CreateDefaultImage();
|
|
|
|
// we use a solid white image instead of disabling texturing
|
|
Com_Memset( data, 255, sizeof( data ) );
|
|
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
|
|
|
|
if (r_dlightMode->integer >= 2)
|
|
{
|
|
for( x = 0; x < MAX_DLIGHTS; x++)
|
|
{
|
|
tr.shadowCubemaps[x] = R_CreateImage(va("*shadowcubemap%i", x), (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE | IMGFLAG_CUBEMAP, 0);
|
|
}
|
|
}
|
|
|
|
// with overbright bits active, we need an image which is some fraction of full color,
|
|
// for default lightmaps, etc
|
|
for (x=0 ; x<DEFAULT_SIZE ; x++) {
|
|
for (y=0 ; y<DEFAULT_SIZE ; y++) {
|
|
data[y][x][0] =
|
|
data[y][x][1] =
|
|
data[y][x][2] = tr.identityLightByte;
|
|
data[y][x][3] = 255;
|
|
}
|
|
}
|
|
|
|
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
|
|
|
|
|
|
for(x=0;x<32;x++) {
|
|
// scratchimage is usually used for cinematic drawing
|
|
tr.scratchImage[x] = R_CreateImage("*scratch", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_PICMIP | IMGFLAG_CLAMPTOEDGE, 0);
|
|
}
|
|
|
|
R_CreateDlightImage();
|
|
R_CreateFogImage();
|
|
|
|
if (glRefConfig.framebufferObject)
|
|
{
|
|
int width, height, hdrFormat;
|
|
|
|
if(glRefConfig.textureNonPowerOfTwo)
|
|
{
|
|
width = glConfig.vidWidth;
|
|
height = glConfig.vidHeight;
|
|
}
|
|
else
|
|
{
|
|
width = NextPowerOfTwo(glConfig.vidWidth);
|
|
height = NextPowerOfTwo(glConfig.vidHeight);
|
|
}
|
|
|
|
hdrFormat = GL_RGBA8;
|
|
if (r_hdr->integer && glRefConfig.framebufferObject && glRefConfig.textureFloat)
|
|
hdrFormat = GL_RGB16F_ARB;
|
|
|
|
tr.renderImage = R_CreateImage("_render", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
|
|
#ifdef REACTION
|
|
tr.godRaysImage = R_CreateImage("*godRays", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
#endif
|
|
|
|
if (r_softOverbright->integer)
|
|
{
|
|
int format;
|
|
|
|
if (glRefConfig.texture_srgb && glRefConfig.framebuffer_srgb)
|
|
format = GL_SRGB8_ALPHA8_EXT;
|
|
else
|
|
format = GL_RGBA8;
|
|
|
|
tr.screenScratchImage = R_CreateImage("*screenScratch", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, format);
|
|
}
|
|
|
|
if (glRefConfig.framebufferObject)
|
|
{
|
|
tr.renderDepthImage = R_CreateImage("*renderdepth", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_DEPTH_COMPONENT24_ARB);
|
|
tr.textureDepthImage = R_CreateImage("*texturedepth", NULL, PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_DEPTH_COMPONENT24_ARB);
|
|
}
|
|
|
|
{
|
|
unsigned short sdata[4];
|
|
void *p;
|
|
|
|
if (hdrFormat == GL_RGB16F_ARB)
|
|
{
|
|
sdata[0] = FloatToHalf(0.0f);
|
|
sdata[1] = FloatToHalf(0.45f);
|
|
sdata[2] = FloatToHalf(1.0f);
|
|
sdata[3] = FloatToHalf(1.0f);
|
|
p = &sdata[0];
|
|
}
|
|
else
|
|
{
|
|
data[0][0][0] = 0;
|
|
data[0][0][1] = 0.45f * 255;
|
|
data[0][0][2] = 255;
|
|
data[0][0][3] = 255;
|
|
p = data;
|
|
}
|
|
|
|
tr.calcLevelsImage = R_CreateImage("*calcLevels", p, 1, 1, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
|
|
tr.targetLevelsImage = R_CreateImage("*targetLevels", p, 1, 1, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
|
|
tr.fixedLevelsImage = R_CreateImage("*fixedLevels", p, 1, 1, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
|
|
}
|
|
|
|
for (x = 0; x < 2; x++)
|
|
{
|
|
tr.textureScratchImage[x] = R_CreateImage(va("*textureScratch%d", x), NULL, 256, 256, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
}
|
|
for (x = 0; x < 2; x++)
|
|
{
|
|
tr.quarterImage[x] = R_CreateImage(va("*quarter%d", x), NULL, width / 2, height / 2, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
}
|
|
|
|
tr.screenShadowImage = R_CreateImage("*screenShadow", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
|
|
if (r_ssao->integer)
|
|
{
|
|
tr.screenSsaoImage = R_CreateImage("*screenSsao", NULL, width / 2, height / 2, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
tr.hdrDepthImage = R_CreateImage("*hdrDepth", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_INTENSITY32F_ARB);
|
|
}
|
|
|
|
for( x = 0; x < MAX_DRAWN_PSHADOWS; x++)
|
|
{
|
|
tr.pshadowMaps[x] = R_CreateImage(va("*shadowmap%i", x), NULL, PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
}
|
|
|
|
for ( x = 0; x < 3; x++)
|
|
{
|
|
tr.sunShadowDepthImage[x] = R_CreateImage(va("*sunshadowdepth%i", x), NULL, r_shadowMapSize->integer, r_shadowMapSize->integer, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_DEPTH_COMPONENT24_ARB);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_SetColorMappings
|
|
===============
|
|
*/
|
|
void R_SetColorMappings( void ) {
|
|
int i, j;
|
|
float g;
|
|
int inf;
|
|
int shift;
|
|
|
|
// setup the overbright lighting
|
|
tr.overbrightBits = r_overBrightBits->integer;
|
|
if ( !glConfig.deviceSupportsGamma ) {
|
|
tr.overbrightBits = 0; // need hardware gamma for overbright
|
|
}
|
|
|
|
// never overbright in windowed mode without soft overbright
|
|
if ( !glConfig.isFullscreen && !r_softOverbright->integer )
|
|
{
|
|
tr.overbrightBits = 0;
|
|
}
|
|
|
|
// never overbright with tonemapping
|
|
if ( r_toneMap->integer && r_hdr->integer )
|
|
{
|
|
tr.overbrightBits = 0;
|
|
}
|
|
|
|
// allow 2 overbright bits in 24 bit, but only 1 in 16 bit
|
|
if ( glConfig.colorBits > 16 ) {
|
|
if ( tr.overbrightBits > 2 ) {
|
|
tr.overbrightBits = 2;
|
|
}
|
|
} else {
|
|
if ( tr.overbrightBits > 1 ) {
|
|
tr.overbrightBits = 1;
|
|
}
|
|
}
|
|
if ( tr.overbrightBits < 0 ) {
|
|
tr.overbrightBits = 0;
|
|
}
|
|
|
|
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
|
|
tr.identityLightByte = 255 * tr.identityLight;
|
|
|
|
|
|
if ( r_intensity->value <= 1 ) {
|
|
ri.Cvar_Set( "r_intensity", "1" );
|
|
}
|
|
|
|
if ( r_gamma->value < 0.5f ) {
|
|
ri.Cvar_Set( "r_gamma", "0.5" );
|
|
} else if ( r_gamma->value > 3.0f ) {
|
|
ri.Cvar_Set( "r_gamma", "3.0" );
|
|
}
|
|
|
|
g = r_gamma->value;
|
|
|
|
shift = tr.overbrightBits;
|
|
|
|
// no shift with soft overbright
|
|
if (r_softOverbright->integer)
|
|
{
|
|
shift = 0;
|
|
}
|
|
|
|
for ( i = 0; i < 256; i++ ) {
|
|
if ( g == 1 ) {
|
|
inf = i;
|
|
} else {
|
|
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
|
|
}
|
|
inf <<= shift;
|
|
if (inf < 0) {
|
|
inf = 0;
|
|
}
|
|
if (inf > 255) {
|
|
inf = 255;
|
|
}
|
|
s_gammatable[i] = inf;
|
|
}
|
|
|
|
for (i=0 ; i<256 ; i++) {
|
|
j = i * r_intensity->value;
|
|
if (j > 255) {
|
|
j = 255;
|
|
}
|
|
s_intensitytable[i] = j;
|
|
}
|
|
|
|
if ( glConfig.deviceSupportsGamma )
|
|
{
|
|
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_InitImages
|
|
===============
|
|
*/
|
|
void R_InitImages( void ) {
|
|
Com_Memset(hashTable, 0, sizeof(hashTable));
|
|
// build brightness translation tables
|
|
R_SetColorMappings();
|
|
|
|
// create default texture and white texture
|
|
R_CreateBuiltinImages();
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_DeleteTextures
|
|
===============
|
|
*/
|
|
void R_DeleteTextures( void ) {
|
|
int i;
|
|
|
|
for ( i=0; i<tr.numImages ; i++ ) {
|
|
qglDeleteTextures( 1, &tr.images[i]->texnum );
|
|
}
|
|
Com_Memset( tr.images, 0, sizeof( tr.images ) );
|
|
|
|
tr.numImages = 0;
|
|
|
|
Com_Memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
|
|
if ( qglActiveTextureARB ) {
|
|
GL_SelectTexture( 1 );
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
GL_SelectTexture( 0 );
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
} else {
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
}
|
|
}
|
|
|
|
/*
|
|
============================================================================
|
|
|
|
SKINS
|
|
|
|
============================================================================
|
|
*/
|
|
|
|
/*
|
|
==================
|
|
CommaParse
|
|
|
|
This is unfortunate, but the skin files aren't
|
|
compatable with our normal parsing rules.
|
|
==================
|
|
*/
|
|
static char *CommaParse( char **data_p ) {
|
|
int c = 0, len;
|
|
char *data;
|
|
static char com_token[MAX_TOKEN_CHARS];
|
|
|
|
data = *data_p;
|
|
len = 0;
|
|
com_token[0] = 0;
|
|
|
|
// make sure incoming data is valid
|
|
if ( !data ) {
|
|
*data_p = NULL;
|
|
return com_token;
|
|
}
|
|
|
|
while ( 1 ) {
|
|
// skip whitespace
|
|
while( (c = *data) <= ' ') {
|
|
if( !c ) {
|
|
break;
|
|
}
|
|
data++;
|
|
}
|
|
|
|
|
|
c = *data;
|
|
|
|
// skip double slash comments
|
|
if ( c == '/' && data[1] == '/' )
|
|
{
|
|
while (*data && *data != '\n')
|
|
data++;
|
|
}
|
|
// skip /* */ comments
|
|
else if ( c=='/' && data[1] == '*' )
|
|
{
|
|
while ( *data && ( *data != '*' || data[1] != '/' ) )
|
|
{
|
|
data++;
|
|
}
|
|
if ( *data )
|
|
{
|
|
data += 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( c == 0 ) {
|
|
return "";
|
|
}
|
|
|
|
// handle quoted strings
|
|
if (c == '\"')
|
|
{
|
|
data++;
|
|
while (1)
|
|
{
|
|
c = *data++;
|
|
if (c=='\"' || !c)
|
|
{
|
|
com_token[len] = 0;
|
|
*data_p = ( char * ) data;
|
|
return com_token;
|
|
}
|
|
if (len < MAX_TOKEN_CHARS)
|
|
{
|
|
com_token[len] = c;
|
|
len++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// parse a regular word
|
|
do
|
|
{
|
|
if (len < MAX_TOKEN_CHARS)
|
|
{
|
|
com_token[len] = c;
|
|
len++;
|
|
}
|
|
data++;
|
|
c = *data;
|
|
} while (c>32 && c != ',' );
|
|
|
|
if (len == MAX_TOKEN_CHARS)
|
|
{
|
|
// ri.Printf (PRINT_DEVELOPER, "Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS);
|
|
len = 0;
|
|
}
|
|
com_token[len] = 0;
|
|
|
|
*data_p = ( char * ) data;
|
|
return com_token;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
RE_RegisterSkin
|
|
|
|
===============
|
|
*/
|
|
qhandle_t RE_RegisterSkin( const char *name ) {
|
|
qhandle_t hSkin;
|
|
skin_t *skin;
|
|
skinSurface_t *surf;
|
|
union {
|
|
char *c;
|
|
void *v;
|
|
} text;
|
|
char *text_p;
|
|
char *token;
|
|
char surfName[MAX_QPATH];
|
|
|
|
if ( !name || !name[0] ) {
|
|
ri.Printf( PRINT_DEVELOPER, "Empty name passed to RE_RegisterSkin\n" );
|
|
return 0;
|
|
}
|
|
|
|
if ( strlen( name ) >= MAX_QPATH ) {
|
|
ri.Printf( PRINT_DEVELOPER, "Skin name exceeds MAX_QPATH\n" );
|
|
return 0;
|
|
}
|
|
|
|
|
|
// see if the skin is already loaded
|
|
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
|
|
skin = tr.skins[hSkin];
|
|
if ( !Q_stricmp( skin->name, name ) ) {
|
|
if( skin->numSurfaces == 0 ) {
|
|
return 0; // default skin
|
|
}
|
|
return hSkin;
|
|
}
|
|
}
|
|
|
|
// allocate a new skin
|
|
if ( tr.numSkins == MAX_SKINS ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
|
|
return 0;
|
|
}
|
|
tr.numSkins++;
|
|
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
|
|
tr.skins[hSkin] = skin;
|
|
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
|
|
skin->numSurfaces = 0;
|
|
|
|
// make sure the render thread is stopped
|
|
R_SyncRenderThread();
|
|
|
|
// If not a .skin file, load as a single shader
|
|
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
|
|
skin->numSurfaces = 1;
|
|
skin->surfaces[0] = ri.Hunk_Alloc( sizeof(skin->surfaces[0]), h_low );
|
|
skin->surfaces[0]->shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
|
|
return hSkin;
|
|
}
|
|
|
|
// load and parse the skin file
|
|
ri.FS_ReadFile( name, &text.v );
|
|
if ( !text.c ) {
|
|
return 0;
|
|
}
|
|
|
|
text_p = text.c;
|
|
while ( text_p && *text_p ) {
|
|
// get surface name
|
|
token = CommaParse( &text_p );
|
|
Q_strncpyz( surfName, token, sizeof( surfName ) );
|
|
|
|
if ( !token[0] ) {
|
|
break;
|
|
}
|
|
// lowercase the surface name so skin compares are faster
|
|
Q_strlwr( surfName );
|
|
|
|
if ( *text_p == ',' ) {
|
|
text_p++;
|
|
}
|
|
|
|
if ( strstr( token, "tag_" ) ) {
|
|
continue;
|
|
}
|
|
|
|
// parse the shader name
|
|
token = CommaParse( &text_p );
|
|
|
|
surf = skin->surfaces[ skin->numSurfaces ] = ri.Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
|
|
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
|
|
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
|
|
skin->numSurfaces++;
|
|
}
|
|
|
|
ri.FS_FreeFile( text.v );
|
|
|
|
|
|
// never let a skin have 0 shaders
|
|
if ( skin->numSurfaces == 0 ) {
|
|
return 0; // use default skin
|
|
}
|
|
|
|
return hSkin;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_InitSkins
|
|
===============
|
|
*/
|
|
void R_InitSkins( void ) {
|
|
skin_t *skin;
|
|
|
|
tr.numSkins = 1;
|
|
|
|
// make the default skin have all default shaders
|
|
skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
|
|
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
|
|
skin->numSurfaces = 1;
|
|
skin->surfaces[0] = ri.Hunk_Alloc( sizeof( *skin->surfaces ), h_low );
|
|
skin->surfaces[0]->shader = tr.defaultShader;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_GetSkinByHandle
|
|
===============
|
|
*/
|
|
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
|
|
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
|
|
return tr.skins[0];
|
|
}
|
|
return tr.skins[ hSkin ];
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_SkinList_f
|
|
===============
|
|
*/
|
|
void R_SkinList_f( void ) {
|
|
int i, j;
|
|
skin_t *skin;
|
|
|
|
ri.Printf (PRINT_ALL, "------------------\n");
|
|
|
|
for ( i = 0 ; i < tr.numSkins ; i++ ) {
|
|
skin = tr.skins[i];
|
|
|
|
ri.Printf( PRINT_ALL, "%3i:%s\n", i, skin->name );
|
|
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
|
|
ri.Printf( PRINT_ALL, " %s = %s\n",
|
|
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
|
|
}
|
|
}
|
|
ri.Printf (PRINT_ALL, "------------------\n");
|
|
}
|
|
|
|
|