mirror of
https://github.com/Q3Rally-Team/q3rally.git
synced 2024-11-29 15:12:07 +00:00
0d5fb492cd
Fix GCC 6 misleading-indentation warning add SECURITY.md OpenGL2: Restore adding fixed ambient light when HDR is enabled Few LCC memory fixes. fix a few potential buffer overwrite in Game VM Enable compiler optimization on all macOS architectures Don't allow qagame module to create "botlib.log" at ANY filesystem location Make FS_BuildOSPath for botlib.log consistent with typical usage tiny readme thing Remove extra plus sign from Huff_Compress() Fix VMs being able to change CVAR_PROTECTED cvars Don't register fs_game cvar everywhere just to get the value Don't let VMs change engine latch cvars immediately Fix fs_game '..' reading outside of home and base path Fix VMs forcing engine latch cvar to update to latched value Revert my recent cvar latch changes Revert "Don't let VMs change engine latch cvars immediately" Partially revert "Fix fs_game '..' reading outside of home and base path" Revert "Fix VMs forcing engine latch cvar to update to latched value" Fix exploit to bypass filename restrictions on Windows Changes to systemd q3a.service Fix Q_vsnprintf for mingw-w64 Fix timelimit causing an infinite map ending loop Fix invalid access to cluster 0 in AAS_AreaRouteToGoalArea() Fix negative frag/capturelimit causing an infinite map end loop OpenGL2: Fix dark lightmap on shader in mpteam6 Make FS_InvalidGameDir() consider subdirectories invalid [qcommon] Remove dead serialization code [qcommon] Make several zone variables and functions static. Fix MAC_OS_X_VERSION_MIN_REQUIRED for macOS 10.10 and later Increase q3_ui .arena filename list buffer size to 4096 bytes OpenGL2: Fix crash when BSP has deluxe maps and vertex lit surfaces Support Unicode characters greater than 0xFF in cl_consoleKeys Fix macOS app bundle with space in name OpenGL1: Use glGenTextures instead of hardcoded values Remove CON_FlushIn function and where STDIN needs flushing, use tcflush POSIX function Update libogg from 1.3.2 to 1.3.3 Rename (already updated) libogg-1.3.2 to libogg-1.3.3 Update libvorbis from 1.3.5 to 1.3.6 * Fix CVE-2018-5146 - out-of-bounds write on codebook decoding. * Fix CVE-2017-14632 - free() on unitialized data * Fix CVE-2017-14633 - out-of-bounds read Rename (already updated) libvorbis-1.3.5 to libvorbis-1.3.6 Update opus from 1.1.4 to 1.2.1 Rename (already updated) opus-1.1.4 to opus-1.2.1 Update opusfile from 0.8 to 0.9 Rename (already updated) opusfile-0.8 to opusfile-0.9 First swing at a CONTRIBUTING.md Allow loading system OpenAL library on macOS again Remove duplicate setting of FREETYPE_CFLAGS in Makefile Fix exploit to reset player by sending wrong serverId Fix "Going to CS_ZOMBIE for [clientname]" developer message Fix MSG_Read*String*() functions not being able to read last byte from message
1679 lines
37 KiB
C
1679 lines
37 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Quake III Arena source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
// tr_image.c
|
|
#include "tr_local.h"
|
|
|
|
static byte s_intensitytable[256];
|
|
static unsigned char s_gammatable[256];
|
|
|
|
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
|
|
int gl_filter_max = GL_LINEAR;
|
|
|
|
#define FILE_HASH_SIZE 1024
|
|
static image_t* hashTable[FILE_HASH_SIZE];
|
|
|
|
/*
|
|
** R_GammaCorrect
|
|
*/
|
|
void R_GammaCorrect( byte *buffer, int bufSize ) {
|
|
int i;
|
|
|
|
for ( i = 0; i < bufSize; i++ ) {
|
|
buffer[i] = s_gammatable[buffer[i]];
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
char *name;
|
|
int minimize, maximize;
|
|
} textureMode_t;
|
|
|
|
textureMode_t modes[] = {
|
|
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
|
|
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
|
|
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
|
|
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
|
|
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
|
|
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
|
|
};
|
|
|
|
/*
|
|
================
|
|
return a hash value for the filename
|
|
================
|
|
*/
|
|
static long generateHashValue( const char *fname ) {
|
|
int i;
|
|
long hash;
|
|
char letter;
|
|
|
|
hash = 0;
|
|
i = 0;
|
|
while (fname[i] != '\0') {
|
|
letter = tolower(fname[i]);
|
|
if (letter =='.') break; // don't include extension
|
|
if (letter =='\\') letter = '/'; // damn path names
|
|
hash+=(long)(letter)*(i+119);
|
|
i++;
|
|
}
|
|
hash &= (FILE_HASH_SIZE-1);
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
GL_TextureMode
|
|
===============
|
|
*/
|
|
void GL_TextureMode( const char *string ) {
|
|
int i;
|
|
image_t *glt;
|
|
|
|
for ( i=0 ; i< 6 ; i++ ) {
|
|
if ( !Q_stricmp( modes[i].name, string ) ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// hack to prevent trilinear from being set on voodoo,
|
|
// because their driver freaks...
|
|
if ( i == 5 && glConfig.hardwareType == GLHW_3DFX_2D3D ) {
|
|
ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" );
|
|
i = 3;
|
|
}
|
|
|
|
|
|
if ( i == 6 ) {
|
|
ri.Printf (PRINT_ALL, "bad filter name\n");
|
|
return;
|
|
}
|
|
|
|
gl_filter_min = modes[i].minimize;
|
|
gl_filter_max = modes[i].maximize;
|
|
|
|
// change all the existing mipmap texture objects
|
|
for ( i = 0 ; i < tr.numImages ; i++ ) {
|
|
glt = tr.images[ i ];
|
|
if ( glt->flags & IMGFLAG_MIPMAP ) {
|
|
GL_Bind (glt);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_SumOfUsedImages
|
|
===============
|
|
*/
|
|
int R_SumOfUsedImages( void ) {
|
|
int total;
|
|
int i;
|
|
|
|
total = 0;
|
|
for ( i = 0; i < tr.numImages; i++ ) {
|
|
if ( tr.images[i]->frameUsed == tr.frameCount ) {
|
|
total += tr.images[i]->uploadWidth * tr.images[i]->uploadHeight;
|
|
}
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_ImageList_f
|
|
===============
|
|
*/
|
|
void R_ImageList_f( void ) {
|
|
int i;
|
|
int estTotalSize = 0;
|
|
|
|
ri.Printf(PRINT_ALL, "\n -w-- -h-- type -size- --name-------\n");
|
|
|
|
for ( i = 0 ; i < tr.numImages ; i++ )
|
|
{
|
|
image_t *image = tr.images[i];
|
|
char *format = "???? ";
|
|
char *sizeSuffix;
|
|
int estSize;
|
|
int displaySize;
|
|
|
|
estSize = image->uploadHeight * image->uploadWidth;
|
|
|
|
switch(image->internalFormat)
|
|
{
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT:
|
|
format = "sDXT1";
|
|
// 64 bits per 16 pixels, so 4 bits per pixel
|
|
estSize /= 2;
|
|
break;
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT:
|
|
format = "sDXT5";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB:
|
|
format = "sBPTC";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT:
|
|
format = "LATC ";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
|
|
format = "DXT1 ";
|
|
// 64 bits per 16 pixels, so 4 bits per pixel
|
|
estSize /= 2;
|
|
break;
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
|
|
format = "DXT5 ";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_RGBA_BPTC_UNORM_ARB:
|
|
format = "BPTC ";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_RGB4_S3TC:
|
|
format = "S3TC ";
|
|
// same as DXT1?
|
|
estSize /= 2;
|
|
break;
|
|
case GL_RGBA4:
|
|
case GL_RGBA8:
|
|
case GL_RGBA:
|
|
format = "RGBA ";
|
|
// 4 bytes per pixel
|
|
estSize *= 4;
|
|
break;
|
|
case GL_LUMINANCE8:
|
|
case GL_LUMINANCE16:
|
|
case GL_LUMINANCE:
|
|
format = "L ";
|
|
// 1 byte per pixel?
|
|
break;
|
|
case GL_RGB5:
|
|
case GL_RGB8:
|
|
case GL_RGB:
|
|
format = "RGB ";
|
|
// 3 bytes per pixel?
|
|
estSize *= 3;
|
|
break;
|
|
case GL_LUMINANCE8_ALPHA8:
|
|
case GL_LUMINANCE16_ALPHA16:
|
|
case GL_LUMINANCE_ALPHA:
|
|
format = "LA ";
|
|
// 2 bytes per pixel?
|
|
estSize *= 2;
|
|
break;
|
|
case GL_SRGB_EXT:
|
|
case GL_SRGB8_EXT:
|
|
format = "sRGB ";
|
|
// 3 bytes per pixel?
|
|
estSize *= 3;
|
|
break;
|
|
case GL_SRGB_ALPHA_EXT:
|
|
case GL_SRGB8_ALPHA8_EXT:
|
|
format = "sRGBA";
|
|
// 4 bytes per pixel?
|
|
estSize *= 4;
|
|
break;
|
|
case GL_SLUMINANCE_EXT:
|
|
case GL_SLUMINANCE8_EXT:
|
|
format = "sL ";
|
|
// 1 byte per pixel?
|
|
break;
|
|
case GL_SLUMINANCE_ALPHA_EXT:
|
|
case GL_SLUMINANCE8_ALPHA8_EXT:
|
|
format = "sLA ";
|
|
// 2 byte per pixel?
|
|
estSize *= 2;
|
|
break;
|
|
}
|
|
|
|
// mipmap adds about 50%
|
|
if (image->flags & IMGFLAG_MIPMAP)
|
|
estSize += estSize / 2;
|
|
|
|
sizeSuffix = "b ";
|
|
displaySize = estSize;
|
|
|
|
if (displaySize > 1024)
|
|
{
|
|
displaySize /= 1024;
|
|
sizeSuffix = "kb";
|
|
}
|
|
|
|
if (displaySize > 1024)
|
|
{
|
|
displaySize /= 1024;
|
|
sizeSuffix = "Mb";
|
|
}
|
|
|
|
if (displaySize > 1024)
|
|
{
|
|
displaySize /= 1024;
|
|
sizeSuffix = "Gb";
|
|
}
|
|
|
|
ri.Printf(PRINT_ALL, "%4i: %4ix%4i %s %4i%s %s\n", i, image->uploadWidth, image->uploadHeight, format, displaySize, sizeSuffix, image->imgName);
|
|
estTotalSize += estSize;
|
|
}
|
|
|
|
ri.Printf (PRINT_ALL, " ---------\n");
|
|
ri.Printf (PRINT_ALL, " approx %i bytes\n", estTotalSize);
|
|
ri.Printf (PRINT_ALL, " %i total images\n\n", tr.numImages );
|
|
}
|
|
|
|
//=======================================================================
|
|
|
|
/*
|
|
================
|
|
ResampleTexture
|
|
|
|
Used to resample images in a more general than quartering fashion.
|
|
|
|
This will only be filtered properly if the resampled size
|
|
is greater than half the original size.
|
|
|
|
If a larger shrinking is needed, use the mipmap function
|
|
before or after.
|
|
================
|
|
*/
|
|
static void ResampleTexture( unsigned *in, int inwidth, int inheight, unsigned *out,
|
|
int outwidth, int outheight ) {
|
|
int i, j;
|
|
unsigned *inrow, *inrow2;
|
|
unsigned frac, fracstep;
|
|
unsigned p1[2048], p2[2048];
|
|
byte *pix1, *pix2, *pix3, *pix4;
|
|
|
|
if (outwidth>2048)
|
|
ri.Error(ERR_DROP, "ResampleTexture: max width");
|
|
|
|
fracstep = inwidth*0x10000/outwidth;
|
|
|
|
frac = fracstep>>2;
|
|
for ( i=0 ; i<outwidth ; i++ ) {
|
|
p1[i] = 4*(frac>>16);
|
|
frac += fracstep;
|
|
}
|
|
frac = 3*(fracstep>>2);
|
|
for ( i=0 ; i<outwidth ; i++ ) {
|
|
p2[i] = 4*(frac>>16);
|
|
frac += fracstep;
|
|
}
|
|
|
|
for (i=0 ; i<outheight ; i++, out += outwidth) {
|
|
inrow = in + inwidth*(int)((i+0.25)*inheight/outheight);
|
|
inrow2 = in + inwidth*(int)((i+0.75)*inheight/outheight);
|
|
for (j=0 ; j<outwidth ; j++) {
|
|
pix1 = (byte *)inrow + p1[j];
|
|
pix2 = (byte *)inrow + p2[j];
|
|
pix3 = (byte *)inrow2 + p1[j];
|
|
pix4 = (byte *)inrow2 + p2[j];
|
|
((byte *)(out+j))[0] = (pix1[0] + pix2[0] + pix3[0] + pix4[0])>>2;
|
|
((byte *)(out+j))[1] = (pix1[1] + pix2[1] + pix3[1] + pix4[1])>>2;
|
|
((byte *)(out+j))[2] = (pix1[2] + pix2[2] + pix3[2] + pix4[2])>>2;
|
|
((byte *)(out+j))[3] = (pix1[3] + pix2[3] + pix3[3] + pix4[3])>>2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_LightScaleTexture
|
|
|
|
Scale up the pixel values in a texture to increase the
|
|
lighting range
|
|
================
|
|
*/
|
|
void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma )
|
|
{
|
|
if ( only_gamma )
|
|
{
|
|
if ( !glConfig.deviceSupportsGamma )
|
|
{
|
|
int i, c;
|
|
byte *p;
|
|
|
|
p = (byte *)in;
|
|
|
|
c = inwidth*inheight;
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_gammatable[p[0]];
|
|
p[1] = s_gammatable[p[1]];
|
|
p[2] = s_gammatable[p[2]];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int i, c;
|
|
byte *p;
|
|
|
|
p = (byte *)in;
|
|
|
|
c = inwidth*inheight;
|
|
|
|
if ( glConfig.deviceSupportsGamma )
|
|
{
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_intensitytable[p[0]];
|
|
p[1] = s_intensitytable[p[1]];
|
|
p[2] = s_intensitytable[p[2]];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_gammatable[s_intensitytable[p[0]]];
|
|
p[1] = s_gammatable[s_intensitytable[p[1]]];
|
|
p[2] = s_gammatable[s_intensitytable[p[2]]];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_MipMap2
|
|
|
|
Operates in place, quartering the size of the texture
|
|
Proper linear filter
|
|
================
|
|
*/
|
|
static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) {
|
|
int i, j, k;
|
|
byte *outpix;
|
|
int inWidthMask, inHeightMask;
|
|
int total;
|
|
int outWidth, outHeight;
|
|
unsigned *temp;
|
|
|
|
outWidth = inWidth >> 1;
|
|
outHeight = inHeight >> 1;
|
|
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
|
|
|
|
inWidthMask = inWidth - 1;
|
|
inHeightMask = inHeight - 1;
|
|
|
|
for ( i = 0 ; i < outHeight ; i++ ) {
|
|
for ( j = 0 ; j < outWidth ; j++ ) {
|
|
outpix = (byte *) ( temp + i * outWidth + j );
|
|
for ( k = 0 ; k < 4 ; k++ ) {
|
|
total =
|
|
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
|
|
|
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
|
|
|
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
|
|
|
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k];
|
|
outpix[k] = total / 36;
|
|
}
|
|
}
|
|
}
|
|
|
|
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
|
|
ri.Hunk_FreeTempMemory( temp );
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_MipMap
|
|
|
|
Operates in place, quartering the size of the texture
|
|
================
|
|
*/
|
|
static void R_MipMap (byte *in, int width, int height) {
|
|
int i, j;
|
|
byte *out;
|
|
int row;
|
|
|
|
if ( !r_simpleMipMaps->integer ) {
|
|
R_MipMap2( (unsigned *)in, width, height );
|
|
return;
|
|
}
|
|
|
|
if ( width == 1 && height == 1 ) {
|
|
return;
|
|
}
|
|
|
|
row = width * 4;
|
|
out = in;
|
|
width >>= 1;
|
|
height >>= 1;
|
|
|
|
if ( width == 0 || height == 0 ) {
|
|
width += height; // get largest
|
|
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
|
|
out[0] = ( in[0] + in[4] )>>1;
|
|
out[1] = ( in[1] + in[5] )>>1;
|
|
out[2] = ( in[2] + in[6] )>>1;
|
|
out[3] = ( in[3] + in[7] )>>1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (i=0 ; i<height ; i++, in+=row) {
|
|
for (j=0 ; j<width ; j++, out+=4, in+=8) {
|
|
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
|
|
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
|
|
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
|
|
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
R_BlendOverTexture
|
|
|
|
Apply a color blend over a set of pixels
|
|
==================
|
|
*/
|
|
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
|
|
int i;
|
|
int inverseAlpha;
|
|
int premult[3];
|
|
|
|
inverseAlpha = 255 - blend[3];
|
|
premult[0] = blend[0] * blend[3];
|
|
premult[1] = blend[1] * blend[3];
|
|
premult[2] = blend[2] * blend[3];
|
|
|
|
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
|
|
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
|
|
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
|
|
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
|
|
}
|
|
}
|
|
|
|
byte mipBlendColors[16][4] = {
|
|
{0,0,0,0},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
};
|
|
|
|
|
|
/*
|
|
===============
|
|
Upload32
|
|
|
|
===============
|
|
*/
|
|
static void Upload32( unsigned *data,
|
|
int width, int height,
|
|
qboolean mipmap,
|
|
qboolean picmip,
|
|
qboolean lightMap,
|
|
qboolean allowCompression,
|
|
int *format,
|
|
int *pUploadWidth, int *pUploadHeight )
|
|
{
|
|
int samples;
|
|
unsigned *scaledBuffer = NULL;
|
|
unsigned *resampledBuffer = NULL;
|
|
int scaled_width, scaled_height;
|
|
int i, c;
|
|
byte *scan;
|
|
GLenum internalFormat = GL_RGB;
|
|
float rMax = 0, gMax = 0, bMax = 0;
|
|
|
|
//
|
|
// convert to exact power of 2 sizes
|
|
//
|
|
for (scaled_width = 1 ; scaled_width < width ; scaled_width<<=1)
|
|
;
|
|
for (scaled_height = 1 ; scaled_height < height ; scaled_height<<=1)
|
|
;
|
|
if ( r_roundImagesDown->integer && scaled_width > width )
|
|
scaled_width >>= 1;
|
|
if ( r_roundImagesDown->integer && scaled_height > height )
|
|
scaled_height >>= 1;
|
|
|
|
if ( scaled_width != width || scaled_height != height ) {
|
|
resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
|
|
ResampleTexture (data, width, height, resampledBuffer, scaled_width, scaled_height);
|
|
data = resampledBuffer;
|
|
width = scaled_width;
|
|
height = scaled_height;
|
|
}
|
|
|
|
//
|
|
// perform optional picmip operation
|
|
//
|
|
if ( picmip ) {
|
|
scaled_width >>= r_picmip->integer;
|
|
scaled_height >>= r_picmip->integer;
|
|
}
|
|
|
|
//
|
|
// clamp to minimum size
|
|
//
|
|
if (scaled_width < 1) {
|
|
scaled_width = 1;
|
|
}
|
|
if (scaled_height < 1) {
|
|
scaled_height = 1;
|
|
}
|
|
|
|
//
|
|
// clamp to the current upper OpenGL limit
|
|
// scale both axis down equally so we don't have to
|
|
// deal with a half mip resampling
|
|
//
|
|
while ( scaled_width > glConfig.maxTextureSize
|
|
|| scaled_height > glConfig.maxTextureSize ) {
|
|
scaled_width >>= 1;
|
|
scaled_height >>= 1;
|
|
}
|
|
|
|
scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
|
|
|
|
//
|
|
// scan the texture for each channel's max values
|
|
// and verify if the alpha channel is being used or not
|
|
//
|
|
c = width*height;
|
|
scan = ((byte *)data);
|
|
samples = 3;
|
|
|
|
if( r_greyscale->integer )
|
|
{
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
byte luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
|
scan[i*4] = luma;
|
|
scan[i*4 + 1] = luma;
|
|
scan[i*4 + 2] = luma;
|
|
}
|
|
}
|
|
else if( r_greyscale->value )
|
|
{
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
float luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
|
scan[i*4] = LERP(scan[i*4], luma, r_greyscale->value);
|
|
scan[i*4 + 1] = LERP(scan[i*4 + 1], luma, r_greyscale->value);
|
|
scan[i*4 + 2] = LERP(scan[i*4 + 2], luma, r_greyscale->value);
|
|
}
|
|
}
|
|
|
|
if(lightMap)
|
|
{
|
|
if(r_greyscale->integer)
|
|
internalFormat = GL_LUMINANCE;
|
|
else
|
|
internalFormat = GL_RGB;
|
|
}
|
|
else
|
|
{
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
if ( scan[i*4+0] > rMax )
|
|
{
|
|
rMax = scan[i*4+0];
|
|
}
|
|
if ( scan[i*4+1] > gMax )
|
|
{
|
|
gMax = scan[i*4+1];
|
|
}
|
|
if ( scan[i*4+2] > bMax )
|
|
{
|
|
bMax = scan[i*4+2];
|
|
}
|
|
if ( scan[i*4 + 3] != 255 )
|
|
{
|
|
samples = 4;
|
|
break;
|
|
}
|
|
}
|
|
// select proper internal format
|
|
if ( samples == 3 )
|
|
{
|
|
if(r_greyscale->integer)
|
|
{
|
|
if(r_texturebits->integer == 16)
|
|
internalFormat = GL_LUMINANCE8;
|
|
else if(r_texturebits->integer == 32)
|
|
internalFormat = GL_LUMINANCE16;
|
|
else
|
|
internalFormat = GL_LUMINANCE;
|
|
}
|
|
else
|
|
{
|
|
if ( allowCompression && glConfig.textureCompression == TC_S3TC_ARB )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
|
|
}
|
|
else if ( allowCompression && glConfig.textureCompression == TC_S3TC )
|
|
{
|
|
internalFormat = GL_RGB4_S3TC;
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
internalFormat = GL_RGB5;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
internalFormat = GL_RGB8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGB;
|
|
}
|
|
}
|
|
}
|
|
else if ( samples == 4 )
|
|
{
|
|
if(r_greyscale->integer)
|
|
{
|
|
if(r_texturebits->integer == 16)
|
|
internalFormat = GL_LUMINANCE8_ALPHA8;
|
|
else if(r_texturebits->integer == 32)
|
|
internalFormat = GL_LUMINANCE16_ALPHA16;
|
|
else
|
|
internalFormat = GL_LUMINANCE_ALPHA;
|
|
}
|
|
else
|
|
{
|
|
if ( r_texturebits->integer == 16 )
|
|
{
|
|
internalFormat = GL_RGBA4;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
internalFormat = GL_RGBA8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGBA;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy or resample data as appropriate for first MIP level
|
|
if ( ( scaled_width == width ) &&
|
|
( scaled_height == height ) ) {
|
|
if (!mipmap)
|
|
{
|
|
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
|
|
*pUploadWidth = scaled_width;
|
|
*pUploadHeight = scaled_height;
|
|
*format = internalFormat;
|
|
|
|
goto done;
|
|
}
|
|
Com_Memcpy (scaledBuffer, data, width*height*4);
|
|
}
|
|
else
|
|
{
|
|
// use the normal mip-mapping function to go down from here
|
|
while ( width > scaled_width || height > scaled_height ) {
|
|
R_MipMap( (byte *)data, width, height );
|
|
width >>= 1;
|
|
height >>= 1;
|
|
if ( width < 1 ) {
|
|
width = 1;
|
|
}
|
|
if ( height < 1 ) {
|
|
height = 1;
|
|
}
|
|
}
|
|
Com_Memcpy( scaledBuffer, data, width * height * 4 );
|
|
}
|
|
|
|
R_LightScaleTexture (scaledBuffer, scaled_width, scaled_height, !mipmap );
|
|
|
|
*pUploadWidth = scaled_width;
|
|
*pUploadHeight = scaled_height;
|
|
*format = internalFormat;
|
|
|
|
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer );
|
|
|
|
if (mipmap)
|
|
{
|
|
int miplevel;
|
|
|
|
miplevel = 0;
|
|
while (scaled_width > 1 || scaled_height > 1)
|
|
{
|
|
R_MipMap( (byte *)scaledBuffer, scaled_width, scaled_height );
|
|
scaled_width >>= 1;
|
|
scaled_height >>= 1;
|
|
if (scaled_width < 1)
|
|
scaled_width = 1;
|
|
if (scaled_height < 1)
|
|
scaled_height = 1;
|
|
miplevel++;
|
|
|
|
if ( r_colorMipLevels->integer ) {
|
|
R_BlendOverTexture( (byte *)scaledBuffer, scaled_width * scaled_height, mipBlendColors[miplevel] );
|
|
}
|
|
|
|
qglTexImage2D (GL_TEXTURE_2D, miplevel, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer );
|
|
}
|
|
}
|
|
done:
|
|
|
|
if (mipmap)
|
|
{
|
|
if ( textureFilterAnisotropic )
|
|
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
|
|
(GLint)Com_Clamp( 1, maxAnisotropy, r_ext_max_anisotropy->integer ) );
|
|
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
}
|
|
else
|
|
{
|
|
if ( textureFilterAnisotropic )
|
|
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
|
|
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
|
}
|
|
|
|
GL_CheckErrors();
|
|
|
|
if ( scaledBuffer != 0 )
|
|
ri.Hunk_FreeTempMemory( scaledBuffer );
|
|
if ( resampledBuffer != 0 )
|
|
ri.Hunk_FreeTempMemory( resampledBuffer );
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateImage
|
|
|
|
This is the only way any image_t are created
|
|
================
|
|
*/
|
|
image_t *R_CreateImage( const char *name, byte *pic, int width, int height,
|
|
imgType_t type, imgFlags_t flags, int internalFormat ) {
|
|
image_t *image;
|
|
qboolean isLightmap = qfalse;
|
|
long hash;
|
|
int glWrapClampMode;
|
|
|
|
if (strlen(name) >= MAX_QPATH ) {
|
|
ri.Error (ERR_DROP, "R_CreateImage: \"%s\" is too long", name);
|
|
}
|
|
if ( !strncmp( name, "*lightmap", 9 ) ) {
|
|
isLightmap = qtrue;
|
|
}
|
|
|
|
if ( tr.numImages == MAX_DRAWIMAGES ) {
|
|
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit");
|
|
}
|
|
|
|
image = tr.images[tr.numImages] = ri.Hunk_Alloc( sizeof( image_t ), h_low );
|
|
qglGenTextures(1, &image->texnum);
|
|
tr.numImages++;
|
|
|
|
image->type = type;
|
|
image->flags = flags;
|
|
|
|
strcpy (image->imgName, name);
|
|
|
|
image->width = width;
|
|
image->height = height;
|
|
if (flags & IMGFLAG_CLAMPTOEDGE)
|
|
glWrapClampMode = GL_CLAMP_TO_EDGE;
|
|
else
|
|
glWrapClampMode = GL_REPEAT;
|
|
|
|
// lightmaps are always allocated on TMU 1
|
|
if ( qglActiveTextureARB && isLightmap ) {
|
|
image->TMU = 1;
|
|
} else {
|
|
image->TMU = 0;
|
|
}
|
|
|
|
if ( qglActiveTextureARB ) {
|
|
GL_SelectTexture( image->TMU );
|
|
}
|
|
|
|
GL_Bind(image);
|
|
|
|
Upload32( (unsigned *)pic, image->width, image->height,
|
|
image->flags & IMGFLAG_MIPMAP,
|
|
image->flags & IMGFLAG_PICMIP,
|
|
isLightmap,
|
|
!(image->flags & IMGFLAG_NO_COMPRESSION),
|
|
&image->internalFormat,
|
|
&image->uploadWidth,
|
|
&image->uploadHeight );
|
|
|
|
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode );
|
|
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode );
|
|
|
|
glState.currenttextures[glState.currenttmu] = 0;
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
|
|
if ( image->TMU == 1 ) {
|
|
GL_SelectTexture( 0 );
|
|
}
|
|
|
|
hash = generateHashValue(name);
|
|
image->next = hashTable[hash];
|
|
hashTable[hash] = image;
|
|
|
|
return image;
|
|
}
|
|
|
|
//===================================================================
|
|
|
|
typedef struct
|
|
{
|
|
char *ext;
|
|
void (*ImageLoader)( const char *, unsigned char **, int *, int * );
|
|
} imageExtToLoaderMap_t;
|
|
|
|
// Note that the ordering indicates the order of preference used
|
|
// when there are multiple images of different formats available
|
|
static imageExtToLoaderMap_t imageLoaders[ ] =
|
|
{
|
|
{ "tga", R_LoadTGA },
|
|
{ "jpg", R_LoadJPG },
|
|
{ "jpeg", R_LoadJPG },
|
|
{ "png", R_LoadPNG },
|
|
{ "pcx", R_LoadPCX },
|
|
{ "bmp", R_LoadBMP }
|
|
};
|
|
|
|
static int numImageLoaders = ARRAY_LEN( imageLoaders );
|
|
|
|
/*
|
|
=================
|
|
R_LoadImage
|
|
|
|
Loads any of the supported image types into a canonical
|
|
32 bit format.
|
|
=================
|
|
*/
|
|
void R_LoadImage( const char *name, byte **pic, int *width, int *height )
|
|
{
|
|
qboolean orgNameFailed = qfalse;
|
|
int orgLoader = -1;
|
|
int i;
|
|
char localName[ MAX_QPATH ];
|
|
const char *ext;
|
|
char *altName;
|
|
|
|
*pic = NULL;
|
|
*width = 0;
|
|
*height = 0;
|
|
|
|
Q_strncpyz( localName, name, MAX_QPATH );
|
|
|
|
ext = COM_GetExtension( localName );
|
|
|
|
if( *ext )
|
|
{
|
|
// Look for the correct loader and use it
|
|
for( i = 0; i < numImageLoaders; i++ )
|
|
{
|
|
if( !Q_stricmp( ext, imageLoaders[ i ].ext ) )
|
|
{
|
|
// Load
|
|
imageLoaders[ i ].ImageLoader( localName, pic, width, height );
|
|
break;
|
|
}
|
|
}
|
|
|
|
// A loader was found
|
|
if( i < numImageLoaders )
|
|
{
|
|
if( *pic == NULL )
|
|
{
|
|
// Loader failed, most likely because the file isn't there;
|
|
// try again without the extension
|
|
orgNameFailed = qtrue;
|
|
orgLoader = i;
|
|
COM_StripExtension( name, localName, MAX_QPATH );
|
|
}
|
|
else
|
|
{
|
|
// Something loaded
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try and find a suitable match using all
|
|
// the image formats supported
|
|
for( i = 0; i < numImageLoaders; i++ )
|
|
{
|
|
if (i == orgLoader)
|
|
continue;
|
|
|
|
altName = va( "%s.%s", localName, imageLoaders[ i ].ext );
|
|
|
|
// Load
|
|
imageLoaders[ i ].ImageLoader( altName, pic, width, height );
|
|
|
|
if( *pic )
|
|
{
|
|
if( orgNameFailed )
|
|
{
|
|
ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n",
|
|
name, altName );
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_FindImageFile
|
|
|
|
Finds or loads the given image.
|
|
Returns NULL if it fails, not a default image.
|
|
==============
|
|
*/
|
|
image_t *R_FindImageFile( const char *name, imgType_t type, imgFlags_t flags )
|
|
{
|
|
image_t *image;
|
|
int width, height;
|
|
byte *pic;
|
|
long hash;
|
|
|
|
if (!name) {
|
|
return NULL;
|
|
}
|
|
|
|
hash = generateHashValue(name);
|
|
|
|
//
|
|
// see if the image is already loaded
|
|
//
|
|
for (image=hashTable[hash]; image; image=image->next) {
|
|
if ( !strcmp( name, image->imgName ) ) {
|
|
// the white image can be used with any set of parms, but other mismatches are errors
|
|
if ( strcmp( name, "*white" ) ) {
|
|
if ( image->flags != flags ) {
|
|
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed flags (%i vs %i)\n", name, image->flags, flags );
|
|
}
|
|
}
|
|
return image;
|
|
}
|
|
}
|
|
|
|
//
|
|
// load the pic from disk
|
|
//
|
|
R_LoadImage( name, &pic, &width, &height );
|
|
if ( pic == NULL ) {
|
|
return NULL;
|
|
}
|
|
|
|
image = R_CreateImage( ( char * ) name, pic, width, height, type, flags, 0 );
|
|
ri.Free( pic );
|
|
return image;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateDlightImage
|
|
================
|
|
*/
|
|
#define DLIGHT_SIZE 16
|
|
static void R_CreateDlightImage( void ) {
|
|
int x,y;
|
|
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
|
|
int b;
|
|
|
|
// make a centered inverse-square falloff blob for dynamic lighting
|
|
for (x=0 ; x<DLIGHT_SIZE ; x++) {
|
|
for (y=0 ; y<DLIGHT_SIZE ; y++) {
|
|
float d;
|
|
|
|
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
|
|
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
|
|
b = 4000 / d;
|
|
if (b > 255) {
|
|
b = 255;
|
|
} else if ( b < 75 ) {
|
|
b = 0;
|
|
}
|
|
data[y][x][0] =
|
|
data[y][x][1] =
|
|
data[y][x][2] = b;
|
|
data[y][x][3] = 255;
|
|
}
|
|
}
|
|
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
R_InitFogTable
|
|
=================
|
|
*/
|
|
void R_InitFogTable( void ) {
|
|
int i;
|
|
float d;
|
|
float exp;
|
|
|
|
exp = 0.5;
|
|
|
|
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
|
|
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
|
|
|
|
tr.fogTable[i] = d;
|
|
}
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_FogFactor
|
|
|
|
Returns a 0.0 to 1.0 fog density value
|
|
This is called for each texel of the fog texture on startup
|
|
and for each vertex of transparent shaders in fog dynamically
|
|
================
|
|
*/
|
|
float R_FogFactor( float s, float t ) {
|
|
float d;
|
|
|
|
s -= 1.0/512;
|
|
if ( s < 0 ) {
|
|
return 0;
|
|
}
|
|
if ( t < 1.0/32 ) {
|
|
return 0;
|
|
}
|
|
if ( t < 31.0/32 ) {
|
|
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
|
|
}
|
|
|
|
// we need to leave a lot of clamp range
|
|
s *= 8;
|
|
|
|
if ( s > 1.0 ) {
|
|
s = 1.0;
|
|
}
|
|
|
|
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
|
|
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_CreateFogImage
|
|
================
|
|
*/
|
|
#define FOG_S 256
|
|
#define FOG_T 32
|
|
static void R_CreateFogImage( void ) {
|
|
int x,y;
|
|
byte *data;
|
|
float d;
|
|
|
|
data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
|
|
|
|
// S is distance, T is depth
|
|
for (x=0 ; x<FOG_S ; x++) {
|
|
for (y=0 ; y<FOG_T ; y++) {
|
|
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
|
|
|
|
data[(y*FOG_S+x)*4+0] =
|
|
data[(y*FOG_S+x)*4+1] =
|
|
data[(y*FOG_S+x)*4+2] = 255;
|
|
data[(y*FOG_S+x)*4+3] = 255*d;
|
|
}
|
|
}
|
|
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
|
|
ri.Hunk_FreeTempMemory( data );
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_CreateDefaultImage
|
|
==================
|
|
*/
|
|
#define DEFAULT_SIZE 16
|
|
static void R_CreateDefaultImage( void ) {
|
|
int x;
|
|
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
|
|
|
// the default image will be a box, to allow you to see the mapping coordinates
|
|
Com_Memset( data, 32, sizeof( data ) );
|
|
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
|
|
data[0][x][0] =
|
|
data[0][x][1] =
|
|
data[0][x][2] =
|
|
data[0][x][3] = 255;
|
|
|
|
data[x][0][0] =
|
|
data[x][0][1] =
|
|
data[x][0][2] =
|
|
data[x][0][3] = 255;
|
|
|
|
data[DEFAULT_SIZE-1][x][0] =
|
|
data[DEFAULT_SIZE-1][x][1] =
|
|
data[DEFAULT_SIZE-1][x][2] =
|
|
data[DEFAULT_SIZE-1][x][3] = 255;
|
|
|
|
data[x][DEFAULT_SIZE-1][0] =
|
|
data[x][DEFAULT_SIZE-1][1] =
|
|
data[x][DEFAULT_SIZE-1][2] =
|
|
data[x][DEFAULT_SIZE-1][3] = 255;
|
|
}
|
|
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_MIPMAP, 0);
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_CreateBuiltinImages
|
|
==================
|
|
*/
|
|
void R_CreateBuiltinImages( void ) {
|
|
int x,y;
|
|
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
|
|
|
R_CreateDefaultImage();
|
|
|
|
// we use a solid white image instead of disabling texturing
|
|
Com_Memset( data, 255, sizeof( data ) );
|
|
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
|
|
|
|
// with overbright bits active, we need an image which is some fraction of full color,
|
|
// for default lightmaps, etc
|
|
for (x=0 ; x<DEFAULT_SIZE ; x++) {
|
|
for (y=0 ; y<DEFAULT_SIZE ; y++) {
|
|
data[y][x][0] =
|
|
data[y][x][1] =
|
|
data[y][x][2] = tr.identityLightByte;
|
|
data[y][x][3] = 255;
|
|
}
|
|
}
|
|
|
|
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
|
|
|
|
|
|
for(x=0;x<32;x++) {
|
|
// scratchimage is usually used for cinematic drawing
|
|
tr.scratchImage[x] = R_CreateImage("*scratch", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_PICMIP | IMGFLAG_CLAMPTOEDGE, 0);
|
|
}
|
|
|
|
R_CreateDlightImage();
|
|
R_CreateFogImage();
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_SetColorMappings
|
|
===============
|
|
*/
|
|
void R_SetColorMappings( void ) {
|
|
int i, j;
|
|
float g;
|
|
int inf;
|
|
int shift;
|
|
|
|
// setup the overbright lighting
|
|
tr.overbrightBits = r_overBrightBits->integer;
|
|
if ( !glConfig.deviceSupportsGamma ) {
|
|
tr.overbrightBits = 0; // need hardware gamma for overbright
|
|
}
|
|
|
|
// never overbright in windowed mode
|
|
if ( !glConfig.isFullscreen )
|
|
{
|
|
tr.overbrightBits = 0;
|
|
}
|
|
|
|
// allow 2 overbright bits in 24 bit, but only 1 in 16 bit
|
|
if ( glConfig.colorBits > 16 ) {
|
|
if ( tr.overbrightBits > 2 ) {
|
|
tr.overbrightBits = 2;
|
|
}
|
|
} else {
|
|
if ( tr.overbrightBits > 1 ) {
|
|
tr.overbrightBits = 1;
|
|
}
|
|
}
|
|
if ( tr.overbrightBits < 0 ) {
|
|
tr.overbrightBits = 0;
|
|
}
|
|
|
|
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
|
|
tr.identityLightByte = 255 * tr.identityLight;
|
|
|
|
|
|
if ( r_intensity->value <= 1 ) {
|
|
ri.Cvar_Set( "r_intensity", "1" );
|
|
}
|
|
|
|
if ( r_gamma->value < 0.5f ) {
|
|
ri.Cvar_Set( "r_gamma", "0.5" );
|
|
} else if ( r_gamma->value > 3.0f ) {
|
|
ri.Cvar_Set( "r_gamma", "3.0" );
|
|
}
|
|
|
|
g = r_gamma->value;
|
|
|
|
shift = tr.overbrightBits;
|
|
|
|
for ( i = 0; i < 256; i++ ) {
|
|
if ( g == 1 ) {
|
|
inf = i;
|
|
} else {
|
|
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
|
|
}
|
|
inf <<= shift;
|
|
if (inf < 0) {
|
|
inf = 0;
|
|
}
|
|
if (inf > 255) {
|
|
inf = 255;
|
|
}
|
|
s_gammatable[i] = inf;
|
|
}
|
|
|
|
for (i=0 ; i<256 ; i++) {
|
|
j = i * r_intensity->value;
|
|
if (j > 255) {
|
|
j = 255;
|
|
}
|
|
s_intensitytable[i] = j;
|
|
}
|
|
|
|
if ( glConfig.deviceSupportsGamma )
|
|
{
|
|
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_InitImages
|
|
===============
|
|
*/
|
|
void R_InitImages( void ) {
|
|
Com_Memset(hashTable, 0, sizeof(hashTable));
|
|
// build brightness translation tables
|
|
R_SetColorMappings();
|
|
|
|
// create default texture and white texture
|
|
R_CreateBuiltinImages();
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_DeleteTextures
|
|
===============
|
|
*/
|
|
void R_DeleteTextures( void ) {
|
|
int i;
|
|
|
|
for ( i=0; i<tr.numImages ; i++ ) {
|
|
qglDeleteTextures( 1, &tr.images[i]->texnum );
|
|
}
|
|
Com_Memset( tr.images, 0, sizeof( tr.images ) );
|
|
|
|
tr.numImages = 0;
|
|
|
|
Com_Memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
|
|
if ( qglActiveTextureARB ) {
|
|
GL_SelectTexture( 1 );
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
GL_SelectTexture( 0 );
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
} else {
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
}
|
|
}
|
|
|
|
/*
|
|
============================================================================
|
|
|
|
SKINS
|
|
|
|
============================================================================
|
|
*/
|
|
|
|
/*
|
|
==================
|
|
CommaParse
|
|
|
|
This is unfortunate, but the skin files aren't
|
|
compatible with our normal parsing rules.
|
|
==================
|
|
*/
|
|
static char *CommaParse( char **data_p ) {
|
|
int c = 0, len;
|
|
char *data;
|
|
static char com_token[MAX_TOKEN_CHARS];
|
|
|
|
data = *data_p;
|
|
len = 0;
|
|
com_token[0] = 0;
|
|
|
|
// make sure incoming data is valid
|
|
if ( !data ) {
|
|
*data_p = NULL;
|
|
return com_token;
|
|
}
|
|
|
|
while ( 1 ) {
|
|
// skip whitespace
|
|
while( (c = *data) <= ' ') {
|
|
if( !c ) {
|
|
break;
|
|
}
|
|
data++;
|
|
}
|
|
|
|
|
|
c = *data;
|
|
|
|
// skip double slash comments
|
|
if ( c == '/' && data[1] == '/' )
|
|
{
|
|
data += 2;
|
|
while (*data && *data != '\n') {
|
|
data++;
|
|
}
|
|
}
|
|
// skip /* */ comments
|
|
else if ( c=='/' && data[1] == '*' )
|
|
{
|
|
data += 2;
|
|
while ( *data && ( *data != '*' || data[1] != '/' ) )
|
|
{
|
|
data++;
|
|
}
|
|
if ( *data )
|
|
{
|
|
data += 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( c == 0 ) {
|
|
return "";
|
|
}
|
|
|
|
// handle quoted strings
|
|
if (c == '\"')
|
|
{
|
|
data++;
|
|
while (1)
|
|
{
|
|
c = *data++;
|
|
if (c=='\"' || !c)
|
|
{
|
|
com_token[len] = 0;
|
|
*data_p = ( char * ) data;
|
|
return com_token;
|
|
}
|
|
if (len < MAX_TOKEN_CHARS - 1)
|
|
{
|
|
com_token[len] = c;
|
|
len++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// parse a regular word
|
|
do
|
|
{
|
|
if (len < MAX_TOKEN_CHARS - 1)
|
|
{
|
|
com_token[len] = c;
|
|
len++;
|
|
}
|
|
data++;
|
|
c = *data;
|
|
} while (c>32 && c != ',' );
|
|
|
|
com_token[len] = 0;
|
|
|
|
*data_p = ( char * ) data;
|
|
return com_token;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
RE_RegisterSkin
|
|
|
|
===============
|
|
*/
|
|
qhandle_t RE_RegisterSkin( const char *name ) {
|
|
skinSurface_t parseSurfaces[MAX_SKIN_SURFACES];
|
|
qhandle_t hSkin;
|
|
skin_t *skin;
|
|
skinSurface_t *surf;
|
|
union {
|
|
char *c;
|
|
void *v;
|
|
} text;
|
|
char *text_p;
|
|
char *token;
|
|
char surfName[MAX_QPATH];
|
|
int totalSurfaces;
|
|
|
|
if ( !name || !name[0] ) {
|
|
ri.Printf( PRINT_DEVELOPER, "Empty name passed to RE_RegisterSkin\n" );
|
|
return 0;
|
|
}
|
|
|
|
if ( strlen( name ) >= MAX_QPATH ) {
|
|
ri.Printf( PRINT_DEVELOPER, "Skin name exceeds MAX_QPATH\n" );
|
|
return 0;
|
|
}
|
|
|
|
|
|
// see if the skin is already loaded
|
|
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
|
|
skin = tr.skins[hSkin];
|
|
if ( !Q_stricmp( skin->name, name ) ) {
|
|
if( skin->numSurfaces == 0 ) {
|
|
return 0; // default skin
|
|
}
|
|
return hSkin;
|
|
}
|
|
}
|
|
|
|
// allocate a new skin
|
|
if ( tr.numSkins == MAX_SKINS ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
|
|
return 0;
|
|
}
|
|
tr.numSkins++;
|
|
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
|
|
tr.skins[hSkin] = skin;
|
|
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
|
|
skin->numSurfaces = 0;
|
|
|
|
R_IssuePendingRenderCommands();
|
|
|
|
// If not a .skin file, load as a single shader
|
|
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
|
|
skin->numSurfaces = 1;
|
|
skin->surfaces = ri.Hunk_Alloc( sizeof( skinSurface_t ), h_low );
|
|
skin->surfaces[0].shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
|
|
return hSkin;
|
|
}
|
|
|
|
// load and parse the skin file
|
|
ri.FS_ReadFile( name, &text.v );
|
|
if ( !text.c ) {
|
|
return 0;
|
|
}
|
|
|
|
totalSurfaces = 0;
|
|
text_p = text.c;
|
|
while ( text_p && *text_p ) {
|
|
// get surface name
|
|
token = CommaParse( &text_p );
|
|
Q_strncpyz( surfName, token, sizeof( surfName ) );
|
|
|
|
if ( !token[0] ) {
|
|
break;
|
|
}
|
|
// lowercase the surface name so skin compares are faster
|
|
Q_strlwr( surfName );
|
|
|
|
if ( *text_p == ',' ) {
|
|
text_p++;
|
|
}
|
|
|
|
if ( strstr( token, "tag_" ) ) {
|
|
continue;
|
|
}
|
|
|
|
// parse the shader name
|
|
token = CommaParse( &text_p );
|
|
|
|
if ( skin->numSurfaces < MAX_SKIN_SURFACES ) {
|
|
surf = &parseSurfaces[skin->numSurfaces];
|
|
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
|
|
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
|
|
skin->numSurfaces++;
|
|
}
|
|
|
|
totalSurfaces++;
|
|
}
|
|
|
|
ri.FS_FreeFile( text.v );
|
|
|
|
if ( totalSurfaces > MAX_SKIN_SURFACES ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: Ignoring excess surfaces (found %d, max is %d) in skin '%s'!\n",
|
|
totalSurfaces, MAX_SKIN_SURFACES, name );
|
|
}
|
|
|
|
// never let a skin have 0 shaders
|
|
if ( skin->numSurfaces == 0 ) {
|
|
return 0; // use default skin
|
|
}
|
|
|
|
// copy surfaces to skin
|
|
skin->surfaces = ri.Hunk_Alloc( skin->numSurfaces * sizeof( skinSurface_t ), h_low );
|
|
memcpy( skin->surfaces, parseSurfaces, skin->numSurfaces * sizeof( skinSurface_t ) );
|
|
|
|
return hSkin;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_InitSkins
|
|
===============
|
|
*/
|
|
void R_InitSkins( void ) {
|
|
skin_t *skin;
|
|
|
|
tr.numSkins = 1;
|
|
|
|
// make the default skin have all default shaders
|
|
skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
|
|
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
|
|
skin->numSurfaces = 1;
|
|
skin->surfaces = ri.Hunk_Alloc( sizeof( skinSurface_t ), h_low );
|
|
skin->surfaces[0].shader = tr.defaultShader;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_GetSkinByHandle
|
|
===============
|
|
*/
|
|
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
|
|
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
|
|
return tr.skins[0];
|
|
}
|
|
return tr.skins[ hSkin ];
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_SkinList_f
|
|
===============
|
|
*/
|
|
void R_SkinList_f( void ) {
|
|
int i, j;
|
|
skin_t *skin;
|
|
|
|
ri.Printf (PRINT_ALL, "------------------\n");
|
|
|
|
for ( i = 0 ; i < tr.numSkins ; i++ ) {
|
|
skin = tr.skins[i];
|
|
|
|
ri.Printf( PRINT_ALL, "%3i:%s (%d surfaces)\n", i, skin->name, skin->numSurfaces );
|
|
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
|
|
ri.Printf( PRINT_ALL, " %s = %s\n",
|
|
skin->surfaces[j].name, skin->surfaces[j].shader->name );
|
|
}
|
|
}
|
|
ri.Printf (PRINT_ALL, "------------------\n");
|
|
}
|
|
|