q3rally/engine/code/game/bg_physics.c

2389 lines
74 KiB
C
Raw Normal View History

2011-02-18 14:31:32 +00:00
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
Copyright (C) 2002-2015 Q3Rally Team (Per Thormann - q3rally@gmail.com)
2011-02-18 14:31:32 +00:00
This file is part of q3rally source code.
q3rally source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
q3rally source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with q3rally; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "../qcommon/q_shared.h"
#ifdef GAME
#include "g_local.h"
#else
#include "bg_public.h"
//#include "../cgame/cg_local.h"
#endif
#include "bg_local.h"
float CP_CURRENT_GRAVITY;
// not actually used now, use cvars instead
float CP_SPRING_STRENGTH = 110 * (CP_FRAME_MASS / 350.0f) * CP_GRAVITY; // 110
float CP_SHOCK_STRENGTH = 13 * CP_GRAVITY; // 12
float CP_SWAYBAR_STRENGTH = 21 * CP_GRAVITY; // 20 * grav
float CP_M_2_QU = CP_FT_2_QU / CP_FT_2_M; // 35.66
float CP_WR_STRENGTH = 2400.0f * CP_WHEEL_MASS;
float CP_WR_DAMP_STRENGTH = 140.0f * CP_WHEEL_MASS;
static int numTraces;
/*
================================================================================
PM_DebugDynamics
================================================================================
*/
void PM_DebugDynamics( carBody_t *body, carPoint_t *points ){
Com_Printf("\n");
Com_Printf("PM_DebugDynamics: point ORIGIN - %.3f, %.3f, %.3f\n", points[pm->pDebug-1].r[0], points[pm->pDebug-1].r[1], points[pm->pDebug-1].r[2]);
Com_Printf("PM_DebugDynamics: point VELOCITY - %.3f, %.3f, %.3f\n", points[pm->pDebug-1].v[0], points[pm->pDebug-1].v[1], points[pm->pDebug-1].v[2]);
Com_Printf("PM_DebugDynamics: point ONGROUND - %i\n", points[pm->pDebug-1].onGround);
Com_Printf("PM_DebugDynamics: point NORMAL 1- %.3f, %.3f, %.3f\n", points[pm->pDebug-1].normals[0][0], points[pm->pDebug-1].normals[0][1], points[pm->pDebug-1].normals[0][2]);
Com_Printf("PM_DebugDynamics: point NORMAL 2- %.3f, %.3f, %.3f\n", points[pm->pDebug-1].normals[1][0], points[pm->pDebug-1].normals[1][1], points[pm->pDebug-1].normals[1][2]);
Com_Printf("PM_DebugDynamics: point NORMAL 3- %.3f, %.3f, %.3f\n", points[pm->pDebug-1].normals[2][0], points[pm->pDebug-1].normals[2][1], points[pm->pDebug-1].normals[2][2]);
// Com_Printf("PM_DebugDynamics: point MASS - %.3f\n", points[pm->pDebug-1].mass);
Com_Printf("PM_DebugDynamics: body ORIGIN - %.3f, %.3f, %.3f\n", body->r[0], body->r[1], body->r[2]);
Com_Printf("PM_DebugDynamics: body VELOCITY - %.3f, %.3f, %.3f\n", body->v[0], body->v[1], body->v[2]);
Com_Printf("PM_DebugDynamics: body ANG VELOCITY - %.3f, %.3f, %.3f\n", body->w[0], body->w[1], body->w[2]);
// Com_Printf("PM_DebugDynamics: body COM - %.3f, %.3f, %.3f\n", body->CoM[0], body->CoM[1], body->CoM[2]);
// Com_Printf("PM_DebugDynamics: body MASS - %.3f\n", body->mass);
Com_Printf("Direction vectors ----------------------------------------\n");
Com_Printf("PM_DebugDynamics: body FORWARD - %.3f, %.3f, %.3f\n", body->forward[0], body->forward[1], body->forward[2]);
Com_Printf("PM_DebugDynamics: body RIGHT - %.3f, %.3f, %.3f\n", body->right[0], body->right[1], body->right[2]);
Com_Printf("PM_DebugDynamics: body UP - %.3f, %.3f, %.3f\n", body->up[0], body->up[1], body->up[2]);
Com_Printf("\n");
}
/*
================================================================================
PM_DebugForces
================================================================================
*/
void PM_DebugForces( carBody_t *body, carPoint_t *points ){
Com_Printf("\n");
Com_Printf("PM_DebugForces: point GRAVITY - %.3f, %.3f, %.3f\n", points[pm->pDebug-1].forces[GRAVITY][0], points[pm->pDebug-1].forces[GRAVITY][1], points[pm->pDebug-1].forces[GRAVITY][2]);
Com_Printf("PM_DebugForces: point NORMAL - %.3f, %.3f, %.3f\n", points[pm->pDebug-1].forces[NORMAL][0], points[pm->pDebug-1].forces[NORMAL][1], points[pm->pDebug-1].forces[NORMAL][2]);
Com_Printf("PM_DebugForces: point SHOCK - %.3f, %.3f, %.3f\n", points[pm->pDebug-1].forces[SHOCK][0], points[pm->pDebug-1].forces[SHOCK][1], points[pm->pDebug-1].forces[SHOCK][2]);
Com_Printf("PM_DebugForces: point SPRING - %.3f, %.3f, %.3f\n", points[pm->pDebug-1].forces[SPRING][0], points[pm->pDebug-1].forces[SPRING][1], points[pm->pDebug-1].forces[SPRING][2]);
Com_Printf("PM_DebugForces: point ROAD - %.3f, %.3f, %.3f\n", points[pm->pDebug-1].forces[ROAD][0], points[pm->pDebug-1].forces[ROAD][1], points[pm->pDebug-1].forces[ROAD][2]);
Com_Printf("PM_DebugForces: point INTERNAL - %.3f, %.3f, %.3f\n", points[pm->pDebug-1].forces[INTERNAL][0], points[pm->pDebug-1].forces[INTERNAL][1], points[pm->pDebug-1].forces[INTERNAL][2]);
Com_Printf("PM_DebugForces: point AIR_FRICTION - %.3f, %.3f, %.3f\n", points[pm->pDebug-1].forces[AIR_FRICTION][0], points[pm->pDebug-1].forces[AIR_FRICTION][1], points[pm->pDebug-1].forces[AIR_FRICTION][2]);
Com_Printf("PM_DebugForces: point NETFORCE - %.3f, %.3f, %.3f\n", points[pm->pDebug-1].netForce[0], points[pm->pDebug-1].netForce[1], points[pm->pDebug-1].netForce[2]);
Com_Printf("PM_DebugForces: body netForce - %.3f, %.3f, %.3f\n", body->netForce[0], body->netForce[1], body->netForce[2]);
Com_Printf("PM_DebugForces: body netMoment - %.3f, %.3f, %.3f\n", body->netMoment[0], body->netMoment[1], body->netMoment[2]);
Com_Printf("\n");
}
/*
================================================================================
PM_CopyTargetToSource
================================================================================
*/
static void PM_CopyTargetToSource( carBody_t *tBody, carBody_t *sBody, carPoint_t *tPoints, carPoint_t *sPoints){
memcpy(sBody, tBody, sizeof(carBody_t));
memcpy(sPoints, tPoints, NUM_CAR_POINTS * sizeof(carPoint_t));
}
/*
===================
PM_SetCoM
===================
*/
void PM_SetCoM( carBody_t *body, carPoint_t *points ){
vec3_t temp, origin;
//vec3_t delta;
float totalMass, length;
int i;
VectorClear(temp);
totalMass = CP_CAR_MASS;
for (i = FIRST_FRAME_POINT; i < LAST_FRAME_POINT; i++){
VectorMA(temp, points[i].mass, points[i].r, temp);
// totalMass += points[i].mass;
}
for (i = 0; i < FIRST_FRAME_POINT; i++){
// VectorSubtract( points[i+4].r, points[i].r, delta );
// length = DotProduct( body->up, delta );
length = body->curSpringLengths[i];
if ( length < CP_SPRING_MINLEN )
{
length = CP_SPRING_MINLEN;
VectorMA( points[i+4].r, length, body->up, origin );
VectorMA( temp, points[i].mass, origin, temp );
}
else if ( length > CP_SPRING_MAXLEN )
{
length = CP_SPRING_MAXLEN;
VectorMA( points[i+4].r, length, body->up, origin );
VectorMA( temp, points[i].mass, origin, temp );
}
else
VectorMA( temp, points[i].mass, points[i].r, temp );
// totalMass += points[i].mass;
}
VectorScale( temp, 1.0f / totalMass, body->CoM );
}
/*
===========================================================================================
POINT FUNCTIONS
===========================================================================================
*/
/*
================================================================================
PM_ClearCarForces
================================================================================
*/
static void PM_ClearCarForces( carBody_t *body, carPoint_t *points){
int i, j;
VectorClear( body->netForce );
VectorClear( body->netMoment);
for ( i = 0; i < NUM_CAR_POINTS; i++ ){
VectorClear( points[i].netForce );
points[i].netMoment = 0;
for ( j = 0; j < NUM_CAR_FORCES; j++ ){
VectorClear( points[i].forces[j] );
}
}
}
/*
===================
PM_CalculateNetForce
===================
*/
void PM_CalculateNetForce( carPoint_t *point, int pointIndex ){
int i;
float dot;
// vec3_t vecForce, dV;
VectorClear( point->netForce );
for (i = 0; i < NUM_CAR_FORCES; i++){
if (i == NORMAL) continue;
/*
if (VectorLength(point->forces[i]) >= 1<<23){
Com_Printf("PM_CalculateNetForce: Car point force %d is greater than %d\n", i, 1<<23);
Com_Printf("PM_CalculateNetForce: Car point force is %f\n", VectorLength(point->forces[i]));
VectorNormalize(point->forces[i]);
VectorScale(point->forces[i], 1<<23, point->forces[i]);
}
*/
if ( VectorNAN( point->forces[i] ) )
{
Com_Printf( "Force %i on point %i was NAN\n", i, pointIndex );
continue;
}
VectorAdd( point->netForce, point->forces[i], point->netForce );
}
VectorClear( point->forces[NORMAL] );
// VectorClear( vecForce );
// calculate normal force
if ( point->onGround )
{
for ( i = 0; i < 3; i++ )
{
if ( VectorLengthSquared( point->normals[i] ) < 10e-2 ) continue;
// calculate new velocity of wheel after collision
dot = DotProduct( point->normals[i], point->v );
if ( dot < -10.0f )
{
// VectorScale(point->normals[i], -(1 + point->elasticity) * dot, dV);
// VectorAdd(point->v, dV, point->v);
VectorMA( point->v, -(1.0f + point->elasticity) * dot, point->normals[i], point->v );
}
else if ( dot < 1.0f )
{
// going slow enough so just stop it so it doesnt vibrate
// VectorScale(point->normals[i], -dot, dV);
// VectorAdd(point->v, dV, point->v);
VectorMA( point->v, -dot, point->normals[i], point->v );
}
// add normal force to balance the other forces
dot = OVERCLIP * DotProduct( point->normals[i], point->netForce );
if (dot < 0)
{
// VectorScale(point->normals[i], -dot, vecForce);
// VectorAdd(point->forces[NORMAL], vecForce, point->forces[NORMAL]);
VectorMA( point->forces[NORMAL], -dot, point->normals[i], point->forces[NORMAL] );
}
}
}
/*
if (VectorLength(point->forces[NORMAL]) >= 1<<23) {
Com_Printf("PM_CalculateNetForce: Car point normal force is greater than %d\n", 1<<23);
VectorNormalize(point->forces[NORMAL]);
VectorScale(point->forces[NORMAL], 1<<23, point->forces[NORMAL]);
}
*/
VectorAdd( point->netForce, point->forces[NORMAL], point->netForce );
}
/*
===================
PM_AccelerateAndMove
===================
*/
static void PM_AccelerateAndMove( car_t *car, carPoint_t *source, carPoint_t *target, float time )
{
float alpha;
vec3_t vec, avgAccel;
// vec3_t avgVel;
// kill car if forces too high
if ( VectorNAN( source->netForce ) )
{
Com_Printf( "Blowing up car because of car point force\n" );
pm->damage.damage = 32000;
pm->damage.dflags = DAMAGE_NO_PROTECTION;
pm->damage.otherEnt = -1;
pm->damage.mod = MOD_HIGH_FORCES;
return;
}
// using const acceleration
// NOTE: this method is really not right but it works so oh well.
// target has last netForce still in it
VectorScale( source->netForce, 0.4f / source->mass, avgAccel );
VectorMA( source->v, time, avgAccel, target->v );
VectorAdd( source->v, target->v, vec );
VectorMA( source->r, time / 2, vec, target->r );
// UPDATE: use a moment of inertia different than .5*mr^2?
alpha = (source->netMoment + target->netMoment) / (0.75f * source->mass * WHEEL_RADIUS * WHEEL_RADIUS);
target->w = source->w + (time / 6.0f) * alpha;
if (source->w < 0 && target->w > 0)
{
target->w = 0;
target->netMoment = 0;
}
if (source->w > 0 && target->w < 0)
{
target->w = 0;
target->netMoment = 0;
}
// wheels are trying to turn in the wrong direction..
// FIXME: use force in opposite diretion instead of just
// stopping the wheels from turning.
// Play transmission grinding sound if the force is too big
// PHYSICS TEMP
if ( car->gear > 0 && target->w > -1.5f )
{
// Com_Printf("You're screwing up your transmission %f\n", target->w);
target->w = 0;
}
else if ( car->gear < 0 && target->w < 1.5f )
{
// Com_Printf("You're screwing up your transmission %f\n", target->w);
target->w = 0;
}
target->slipping = source->slipping;
// copy netForce and netMoment to target so we can use it during the AccelerateandMove next frame
VectorCopy( source->netForce, target->netForce );
target->netMoment = source->netMoment;
}
/*
===========================================================================================
INITIALIZATION FUNCTIONS
===========================================================================================
*/
/*
===================
PM_UpdateFrameVelocities
===================
*/
static void PM_UpdateFrameVelocities( carBody_t *body, carPoint_t *points )
{
vec3_t arm;
vec3_t cross;
int i;
for ( i = FIRST_FRAME_POINT; i < NUM_CAR_POINTS; i++ )
{
VectorSubtract( points[i].r, body->CoM, arm );
CrossProduct( body->w, arm, cross );
VectorAdd( body->v, cross, points[i].v );
}
}
/*
===================
PM_InitializeFrame
===================
*/
static void PM_InitializeFrame( carBody_t *body, carPoint_t *point, float f, float r, float u )
{
vec3_t arm;
vec3_t cross;
VectorScale( body->forward, f * WHEEL_FORWARD, arm );
VectorMA( arm, r * WHEEL_RIGHT, body->right, arm );
VectorMA( arm, -u * WHEEL_UP, body->up, arm );
VectorAdd( body->r, arm, point->r );
CrossProduct( body->w, arm, cross );
VectorAdd( body->v, cross, point->v );
VectorClear( point->normals[0] );
VectorClear( point->normals[1] );
VectorClear( point->normals[2] );
point->onGround = qfalse;
}
/*
===================
PM_InitializeWheel
===================
*/
static void PM_InitializeWheel( carBody_t *body, carPoint_t *points, int i, int f, int r )
{
vec3_t arm;
vec3_t cross;
VectorScale( body->forward, f * WHEEL_FORWARD, arm );
VectorMA( arm, r * WHEEL_RIGHT, body->right, arm );
VectorMA( arm, WHEEL_UP, body->up, arm );
VectorAdd( body->r, arm, points[i].r );
CrossProduct( body->w, arm, cross );
VectorAdd( body->v, cross, points[i].v );
VectorClear( points[i].normals[0] );
VectorClear( points[i].normals[1] );
VectorClear( points[i].normals[2] );
// UPDATE: added for client prediction, should just leave normals instead?
points[i].onGround = qfalse;
// recalculate spring length
VectorSubtract( points[i+4].r, points[i].r, arm );
body->curSpringLengths[i] = DotProduct( arm, body->up );
}
/*
===================
PM_InitializeVehicle
===================
*/
void PM_InitializeVehicle( car_t *car, vec3_t origin, vec3_t angles, vec3_t velocity ){
float m[3][3];
int i;
float halfWidth, halfLength, halfHeight;
float forwardScale, rightScale, upScale;
// UPDATE: use memset?
VectorCopy(origin, car->sBody.r);
AnglesToOrientation(angles, car->sBody.t);
// AnglesToQuaternion(angles, car->sBody.q);
OrientationToVectors(car->sBody.t, car->sBody.forward, car->sBody.right, car->sBody.up);
VectorCopy(velocity, car->sBody.v);
VectorClear(car->sBody.w);
VectorClear(car->sBody.L);
// set locations and velocities of frame points
PM_InitializeFrame(&car->sBody, &car->sPoints[FL_FRAME], 1.0f, -1.0f, 0.0f);
PM_InitializeFrame(&car->sBody, &car->sPoints[FR_FRAME], 1.0f, 1.0f, 0.0f);
PM_InitializeFrame(&car->sBody, &car->sPoints[RL_FRAME], -1.0f, -1.0f, 0.0f);
PM_InitializeFrame(&car->sBody, &car->sPoints[RR_FRAME], -1.0f, 1.0f, 0.0f);
// body collision points
forwardScale = ((CAR_LENGTH/2.0f) - BODY_RADIUS) / WHEEL_FORWARD;
rightScale = ((CAR_WIDTH/2.0f) - BODY_RADIUS) / WHEEL_RIGHT;
upScale = (3.0f) / -WHEEL_UP;
PM_InitializeFrame(&car->sBody, &car->sPoints[FL_BODY], forwardScale, -rightScale, upScale);
PM_InitializeFrame(&car->sBody, &car->sPoints[FR_BODY], forwardScale, rightScale, upScale);
PM_InitializeFrame(&car->sBody, &car->sPoints[ML_BODY], 0.0f, -rightScale, upScale);
PM_InitializeFrame(&car->sBody, &car->sPoints[MR_BODY], 0.0f, rightScale, upScale);
PM_InitializeFrame(&car->sBody, &car->sPoints[RL_BODY], -forwardScale, -rightScale, upScale);
PM_InitializeFrame(&car->sBody, &car->sPoints[RR_BODY], -forwardScale, rightScale, upScale);
PM_InitializeFrame(&car->sBody, &car->sPoints[ML_ROOF], 0.0f, -rightScale, 0.6f);
PM_InitializeFrame(&car->sBody, &car->sPoints[MR_ROOF], 0.0f, rightScale, 0.6f);
// set locations and velocities of wheel points
PM_InitializeWheel(&car->sBody, car->sPoints, FL_WHEEL, 1.0f, -1.0f);
PM_InitializeWheel(&car->sBody, car->sPoints, FR_WHEEL, 1.0f, 1.0f);
PM_InitializeWheel(&car->sBody, car->sPoints, RL_WHEEL, -1.0f, -1.0f);
PM_InitializeWheel(&car->sBody, car->sPoints, RR_WHEEL, -1.0f, 1.0f);
car->sBody.mass = 4 * CP_FRAME_MASS;
car->tBody.mass = 4 * CP_FRAME_MASS;
for (i = 0; i < FIRST_FRAME_POINT; i++){
car->sPoints[i].mass = CP_WHEEL_MASS;
car->sPoints[i].elasticity = CP_WHEEL_ELASTICITY;
car->sPoints[i].scof = CP_SCOF;
car->sPoints[i].kcof = CP_KCOF;
car->sPoints[i].slipping = qfalse;
car->sPoints[i].onGround = qfalse;
car->sPoints[i].onGroundTime = 0;
car->sPoints[i].radius = WHEEL_RADIUS;
car->tPoints[i].mass = CP_WHEEL_MASS;
car->tPoints[i].elasticity = CP_WHEEL_ELASTICITY;
car->tPoints[i].scof = CP_SCOF;
car->tPoints[i].kcof = CP_KCOF;
car->tPoints[i].slipping = qfalse;
car->tPoints[i].onGround = qfalse;
car->tPoints[i].onGroundTime = 0;
car->tPoints[i].radius = WHEEL_RADIUS;
}
for (; i < NUM_CAR_POINTS; i++){
if (i < LAST_FRAME_POINT){
if( i < 6 )
{
car->sPoints[i].mass = 0.5f * car->sBody.mass * pm->car_frontweight_dist;
car->tPoints[i].mass = 0.5f * car->sBody.mass * pm->car_frontweight_dist;
}
else
{
car->sPoints[i].mass = 0.5f * car->sBody.mass * (1.0f - pm->car_frontweight_dist);
car->tPoints[i].mass = 0.5f * car->sBody.mass * (1.0f - pm->car_frontweight_dist);
}
}
else {
car->sPoints[i].mass = 0.0f;
car->tPoints[i].mass = 0.0f;
}
car->sPoints[i].scof = CP_SCOF;
car->sPoints[i].kcof = CP_KCOF;
car->sPoints[i].elasticity = pm->car_body_elasticity;
car->sPoints[i].slipping = qfalse;
car->sPoints[i].onGround = qfalse;
car->sPoints[i].onGroundTime = 0;
car->sPoints[i].radius = BODY_RADIUS;
car->tPoints[i].scof = CP_SCOF;
car->tPoints[i].kcof = CP_KCOF;
car->tPoints[i].elasticity = pm->car_body_elasticity;
car->tPoints[i].slipping = qfalse;
car->tPoints[i].onGround = qfalse;
car->tPoints[i].onGroundTime = 0;
car->tPoints[i].radius = BODY_RADIUS;
}
car->sBody.elasticity = car->sPoints[4].elasticity;
car->tBody.elasticity = car->sPoints[4].elasticity;
PM_SetCoM(&car->sBody, car->sPoints);
halfWidth = CAR_WIDTH / 2.0f;
halfLength = CAR_LENGTH / 2.0f;
halfHeight = CAR_HEIGHT / 2.0f;
car->inverseBodyInertiaTensor[0][0] = pm->car_IT_xScale * 3.0f / (car->sBody.mass * (halfLength * halfLength + halfHeight * halfHeight));
car->inverseBodyInertiaTensor[1][1] = pm->car_IT_yScale * 3.0f / (car->sBody.mass * (halfWidth * halfWidth + halfHeight * halfHeight));
car->inverseBodyInertiaTensor[2][2] = pm->car_IT_zScale * 3.0f / (car->sBody.mass * (halfWidth * halfWidth + halfLength * halfLength));
car->springStrength = CP_SPRING_STRENGTH;
car->springMaxLength = CP_SPRING_MAXLEN;
car->springMinLength = CP_SPRING_MINLEN;
// car->shockStrength = CP_SHOCK_STRENGTH;
car->gear = 1;
car->rpm = CP_RPM_MIN;
// car->aCOF = CP_AIR_COF;
// car->dfCOF = CP_FRAC_TO_DF;
// car->ewCOF = CP_ENGINE_TIRE_COF;
MatrixMultiply(car->sBody.t, car->inverseBodyInertiaTensor, car->sBody.inverseWorldInertiaTensor);
MatrixTranspose(car->sBody.t, m);
MatrixMultiply(car->sBody.inverseWorldInertiaTensor, m, car->sBody.inverseWorldInertiaTensor);
PM_ClearCarForces(&car->sBody, car->sPoints);
PM_ClearCarForces(&car->tBody, car->tPoints);
PM_CopyTargetToSource(&car->sBody, &car->tBody, car->sPoints, car->tPoints);
}
/*
===================
PM_SetFluidDensity
===================
*/
static void PM_SetFluidDensity(carPoint_t *points, int i){
vec3_t dest;
int cont, level, type;
// check waterlevel
level = 0;
type = 0;
VectorCopy( points[i].r, dest );
dest[2] = points[i].r[2] - (points[i].radius - 0.5f);
cont = pm->pointcontents( dest, pm->ps->clientNum );
if ( cont & MASK_WATER ){ // bottom of point is in the water
level++;
type = cont;
}
dest[2] = points[i].r[2];
cont = pm->pointcontents (dest, pm->ps->clientNum );
if ( cont & MASK_WATER ){ // middle of point is in the water
level++;
type = cont;
}
dest[2] = points[i].r[2] + (points[i].radius - 0.5f);
cont = pm->pointcontents (dest, pm->ps->clientNum );
if ( cont & MASK_WATER ) { // top of point is in the water
level++;
type = cont;
}
if ( level )
{
if (type & CONTENTS_WATER){
points[i].fluidDensity = (level * CP_WATER_DENSITY + (3.0f - level) * CP_AIR_DENSITY) / 3.0f;
}
else if (type & CONTENTS_LAVA){
points[i].fluidDensity = (level * CP_LAVA_DENSITY + (3.0f - level) * CP_AIR_DENSITY) / 3.0f;
}
else if (type & CONTENTS_SLIME){
points[i].fluidDensity = (level * CP_SLIME_DENSITY + (3.0f - level) * CP_AIR_DENSITY) / 3.0f;
}
else{
points[i].fluidDensity = CP_AIR_DENSITY;
}
// Com_Printf("PM_SetFluidDensity: level %i, density %.3f\n", level, points[i].fluidDensity);
}
else
{
points[i].fluidDensity = CP_AIR_DENSITY;
}
}
/*
===================
PM_CheckSurfaceFlags
===================
*/
static void PM_CheckSurfaceFlags( trace_t *trace, carPoint_t *point ){
// TODO: include rolling friction... harder to roll tires in sand or mud
if( pm->frictionFunc( point, &point->scof, &point->kcof ) )
{
point->kcof *= pm->car_friction_scale;
point->scof *= pm->car_friction_scale;
return;
}
else if (trace->surfaceFlags & SURF_SLICK){
point->kcof = CP_ICE_KCOF;
point->scof = CP_ICE_SCOF;
}
else if (trace->surfaceFlags & SURF_ICE) {
point->kcof = CP_ICE_KCOF;
point->scof = CP_ICE_SCOF;
}
else if (trace->surfaceFlags & SURF_GRASS){
point->kcof = CP_GRASS_KCOF;
point->scof = CP_GRASS_SCOF;
}
else if (trace->surfaceFlags & SURF_DUST){
point->kcof = CP_DIRT_KCOF;
point->scof = CP_DIRT_SCOF;
}
else if (trace->surfaceFlags & SURF_SNOW){
point->kcof = CP_SNOW_KCOF;
point->scof = CP_SNOW_SCOF;
}
else if (trace->surfaceFlags & SURF_GRAVEL) {
point->kcof = CP_GRAVEL_KCOF;
point->scof = CP_GRAVEL_SCOF;
}
else if (trace->surfaceFlags & SURF_DIRT) {
point->kcof = CP_DIRT_KCOF;
point->scof = CP_DIRT_SCOF;
}
else {
point->kcof = CP_KCOF;
point->scof = CP_SCOF;
}
if (trace->surfaceFlags & SURF_WET){
point->kcof *= CP_WET_SCALE;
point->scof *= CP_WET_SCALE;
}
point->kcof *= pm->car_friction_scale;
point->scof *= pm->car_friction_scale;
}
/*
================================================================================
PM_ApplyForce
This function is largely based on the physics articles and
source from Chris Hecker: http://www.d6.com/users/checker/dynamics.htm
================================================================================
*/
void PM_ApplyForce( carBody_t *body, vec3_t force, vec3_t at ){
vec3_t arm, moment;
VectorSubtract( at, body->CoM, arm );
VectorAdd( body->netForce, force, body->netForce );
CrossProduct( arm, force, moment);
VectorAdd( body->netMoment, moment, body->netMoment );
}
/*
================================================================================
PM_ApplyCollision
Rigid body <-> world collision function.
This function is largely based on the physics articles and
source from Chris Hecker: http://www.d6.com/users/checker/dynamics.htm
Given: rigid body, impact origin, impact normal, and elasticity
Find: the new linear and angular velocities as a result of the impact.
================================================================================
*/
static float PM_ApplyCollision( carBody_t *body, carPoint_t *points, vec3_t at, vec3_t normal, float elasticity ){
vec3_t arm;
vec3_t vP1;
vec3_t impulse, impulseMoment;
vec3_t delta, cross, cross2;
float impulseNum, oppositeImpulseNum, impulseDen, dot;
int i;
VectorSubtract(at, body->CoM, arm);
// VectorSubtract(at, body->r, arm);
if (pm->pDebug){
Com_Printf("PM_ApplyCollision: arm %0.3f, %0.3f, %0.3f\n", arm[0], arm[1], arm[2]);
Com_Printf("PM_ApplyCollision: normal %0.3f, %0.3f, %0.3f\n", normal[0], normal[1], normal[2]);
}
CrossProduct(body->w, arm, cross);
VectorAdd(body->v, cross, vP1);
// added from collision
VectorClear(impulse);
dot = DotProduct(normal, vP1);
if ( dot < 0 ){
impulseNum = -(1.0f + elasticity) * dot;
oppositeImpulseNum = -(1.0f - elasticity) * dot;
CrossProduct(arm, normal, cross);
VectorRotate(cross, body->inverseWorldInertiaTensor, cross2);
CrossProduct(cross2, arm, cross);
// Com_Printf( "oneOverMass %f, cross.normal %f\n", 1.0f / body->mass, DotProduct(cross, normal) );
impulseDen = 1.0f / body->mass + DotProduct(cross, normal);
VectorScale(normal, impulseNum / impulseDen, impulse);
}
else {
// not hitting surface
// Com_Printf( "PM_ApplyCollision: not hitting surface, %f\n", dot );
return 0.0f;
}
// apply impulse to primary quantities
CrossProduct(arm, impulse, impulseMoment);
VectorScale( impulse, 1.0 / body->mass, impulse );
VectorAdd(body->v, impulse, body->v);
VectorAdd(body->L, impulseMoment, body->L);
// compute affected auxiliary quantities
VectorRotate(body->L, body->inverseWorldInertiaTensor, body->w);
// temp to help wheel movement when hitting walls
// FIXME: is this still needed?
VectorMA(impulse, -DotProduct(impulse, body->up), body->up, delta);
for (i = 0; i < FIRST_FRAME_POINT; i++){
VectorAdd(points[i].v, delta, points[i].v);
}
PM_UpdateFrameVelocities(body, points);
if ( fabs(oppositeImpulseNum / impulseDen) > 5000.0f )
return fabs(oppositeImpulseNum / impulseDen);
else
return 0;
}
#if 0
/*
================================================================================
PM_ApplyBodyBodyCollision
This function is a hacked up version of PM_ApplyCollision to try to simulate
the collision between two cars.
Given: 2 rigid bodies, impact origin, impact normal, and elasticity
Find: the new linear and angular velocities of the two objects as a result of the impact.
================================================================================
*/
static float PM_ApplyBodyBodyCollision( carBody_t *body1, carPoint_t *points1, carBody_t *body2, carPoint_t *points2, vec3_t at, vec3_t normal, float elasticity ){
//vec3_t arm1, arm2;
vec3_t vP1, vP2;
//vec3_t impulse, impulseMoment;
//vec3_t cross, cross2;
vec3_t diff1, diff2, delta;
//float impulseNum, oppositeImpulseNum, impulseDen;
//float totalMass;
int i;
/*
totalMass = body1->mass + body2->mass;
VectorSubtract(at, body1->CoM, arm1);
VectorSubtract(at, body2->CoM, arm2);
if (pm->pDebug){
Com_Printf("PM_ApplyBodyBodyCollision: arm1 %0.3f, %0.3f, %0.3f\n", arm1[0], arm1[1], arm1[2]);
Com_Printf("PM_ApplyBodyBodyCollision: arm2 %0.3f, %0.3f, %0.3f\n", arm2[0], arm2[1], arm2[2]);
Com_Printf("PM_ApplyBodyBodyCollision: normal %0.3f, %0.3f, %0.3f\n", normal[0], normal[1], normal[2]);
}
CrossProduct(body1->w, arm1, cross);
VectorAdd(body1->v, cross, vP1);
CrossProduct(body2->w, arm2, cross);
VectorAdd(body2->v, cross, vP2);
*/
// hacked up physics
VectorCopy( body1->v, vP1 );
VectorCopy( body1->L, vP2 );
PM_ApplyCollision( body1, points1, at, normal, elasticity / 2.0f );
// VectorMA( body1->v, body2->mass / totalMass, vP2, body1->v );
// Com_Printf( "PM_ApplyBodyBodyCollision: v before %0.3f, %0.3f, %0.3f\n", body2->v[0], body2->v[1], body2->v[2] );
VectorSubtract( vP1, body1->v, diff1 );
VectorSubtract( vP2, body1->L, diff2 );
VectorAdd( body2->v, diff1, body2->v );
VectorAdd( body2->L, diff2, body2->L );
// compute affected auxiliary quantities
VectorRotate( body2->L, body2->inverseWorldInertiaTensor, body2->w );
// temp to help wheel movement when hitting walls
// FIXME: is this still needed?
VectorMA( diff1, -DotProduct(diff1, body2->up), body2->up, delta );
for ( i = 0; i < FIRST_FRAME_POINT; i++ ){
VectorAdd( points2[i].v, delta, points2[i].v );
}
PM_UpdateFrameVelocities( body2, points2 );
// VectorInverse( normal );
// PM_ApplyCollision( body2, points2, at, normal, elasticity );
// VectorMA( body2->v, body1->mass / totalMass, vP1, body2->v );
// Com_Printf( "PM_ApplyBodyBodyCollision: v after %0.3f, %0.3f, %0.3f\n", body2->v[0], body2->v[1], body2->v[2] );
return 0;
/*
VectorSubtract(vP1, vP2, vP1);
// added from collision
VectorClear(impulse);
// if (DotProduct(normal, vP1) < 0){
// massFraction = (2.0f * body1->mass) / (body1->mass + body2->mass);
// impulseNum = massFraction * DotProduct(normal, vP1);
// massFraction = ((1.0f + elasticity) * body1->mass) / (body1->mass + body2->mass);
impulseNum = -(1 + elasticity) * DotProduct(normal, vP1);
oppositeImpulseNum = -(1.0f - elasticity) * DotProduct(normal, vP1);
// impulseDen = 1.0f / body1->mass;
impulseDen = 1.0f / body1->mass + 1.0f / body2->mass;
CrossProduct(arm1, normal, cross);
VectorRotate(cross, body1->inverseWorldInertiaTensor, cross2);
CrossProduct(cross2, arm1, cross);
//impulseDen = 1.0f / body1->mass + DotProduct(cross, normal);
impulseDen += DotProduct(cross, normal);
CrossProduct(arm2, normal, cross);
VectorRotate(cross, body2->inverseWorldInertiaTensor, cross2);
CrossProduct(cross2, arm2, cross);
impulseDen += DotProduct(cross, normal);
VectorScale(normal, impulseNum / impulseDen, impulse);
// }
// else {
// // not hitting surface
// return;
// }
// apply impulse to primary quantities
VectorMA(body1->v, 1.0 / body1->mass, impulse, body1->v);
CrossProduct(arm1, impulse, impulseMoment);
VectorAdd(body1->L, impulseMoment, body1->L);
// compute affected auxiliary quantities
VectorRotate(body1->L, body1->inverseWorldInertiaTensor, body1->w);
// apply impulse to primary quantities of second object
VectorInverse(impulse);
VectorMA(body2->v, 1.0 / body2->mass, impulse, body2->v);
CrossProduct(arm2, impulse, impulseMoment);
VectorAdd(body2->L, impulseMoment, body2->L);
// compute affected auxiliary quantities of second object
VectorRotate(body2->L, body2->inverseWorldInertiaTensor, body2->w);
// temp to help wheel movement when hitting walls
// VectorMA(impulse, -DotProduct(impulse, body->up), body->up, delta);
// for (i = 0; i < FIRST_FRAME_POINT; i++){
// VectorMA(points[i].v, 1.0 / body->mass, delta, points[i].v);
// }
PM_UpdateFrameVelocities(body1, points1);
if (fabs(oppositeImpulseNum / impulseDen) > 5000.0f)
return fabs(oppositeImpulseNum / impulseDen);
else
return 0;
*/
}
/*
================================================================================
PM_ApplyPointBodyCollision
This function is a hacked up version of PM_ApplyCollision to try to simulate
the collision between a tire and the body of a car (like when the suspension bottoms out).
Given: rigid body, impact origin, impact normal, and elasticity
Find: the new linear and angular velocities as a result of the impact.
================================================================================
*/
static void PM_ApplyPointBodyCollision( carBody_t *body, carPoint_t *points, carPoint_t *pt, vec3_t at, vec3_t normal, float elasticity ){
vec3_t arm;
vec3_t vP1;
vec3_t impulse, impulseMoment;
vec3_t cross, cross2;
float impulseNum, impulseDen;
float massFraction;
VectorSubtract(at, body->CoM, arm);
// VectorSubtract(at, body->r, arm);
if (pm->pDebug){
Com_Printf("PM_ApplyPointBodyCollision: arm %0.3f, %0.3f, %0.3f\n", arm[0], arm[1], arm[2]);
Com_Printf("PM_ApplyPointBodyCollision: normal %0.3f, %0.3f, %0.3f\n", normal[0], normal[1], normal[2]);
}
CrossProduct(body->w, arm, cross);
VectorAdd(body->v, cross, vP1);
// added from collision
VectorClear(impulse);
// if (DotProduct(normal, vP1) < 0){
massFraction = (2.0f * pt->mass) / (pt->mass + body->mass);
impulseNum = massFraction * (DotProduct(normal, pt->v) - DotProduct(normal, vP1));
CrossProduct(arm, normal, cross);
VectorRotate(cross, body->inverseWorldInertiaTensor, cross2);
CrossProduct(cross2, arm, cross);
impulseDen = 1.0 / body->mass + DotProduct(cross, normal);
VectorScale(normal, impulseNum / impulseDen, impulse);
// }
// apply impulse to primary quantities of rigid body
VectorMA(body->v, 1.0 / body->mass, impulse, body->v);
CrossProduct(arm, impulse, impulseMoment);
VectorAdd(body->L, impulseMoment, body->L);
// compute affected auxiliary quantities
VectorRotate(body->L, body->inverseWorldInertiaTensor, body->w);
VectorMA(pt->v, -1.0 / pt->mass, impulse, pt->v);
/*
// temp to help wheel movement when hitting walls
VectorMA(impulse, -DotProduct(impulse, body->up), body->up, delta);
for (i = 0; i < FIRST_FRAME_POINT; i++){
VectorMA(points[i].v, 1.0 / body->mass, delta, points[i].v);
}
*/
PM_UpdateFrameVelocities(body, points);
}
#endif
#ifdef CGAME
void CG_Sparks( const vec3_t origin, const vec3_t normal, const vec3_t direction, const float speed );
#endif
/*
================================================================================
PM_CarBodyFrictionForces
Friction forces between the car body and the world
================================================================================
*/
static void PM_CarBodyFrictionForces( car_t *car, carBody_t *body, carPoint_t *points, int i ){
vec3_t vel, force;
float normalForce;
float speed;
normalForce = DotProduct( body->netForce, points[i].normals[0] );
if ( normalForce >= 0.0f ) return;
VectorMA( body->netForce, -normalForce, points[i].normals[0], force );
VectorMA( points[i].v, -DotProduct( points[i].v, points[i].normals[0] ), points[i].normals[0], vel );
speed = VectorNormalize( vel );
if ( VectorLength(force) > fabs( 0.7f * normalForce ) || speed > 2.0f ){
// VectorNormalize(vel);
VectorScale( vel, 0.4f * normalForce, force );
}
else {
VectorInverse( force );
}
PM_ApplyForce( body, force, points[i].r );
#ifdef CGAME
if( speed > 20.0f )
{
vec3_t origin;
float r;
r = random() * 5000 / speed;
if( r < 80 )
{
VectorMA( points[i].r, -BODY_RADIUS / 1.5f, points[i].normals[0], origin );
// VectorInverse( vel );
VectorMA( vel, 0.1f, points[i].normals[0], vel );
VectorNormalize( vel );
CG_Sparks( origin, points[i].normals[0], vel, speed * 0.5f );
}
}
#endif
}
/*
================================================================================
PM_Generate_SwayBar_Forces
Simulates ARBs in the car
================================================================================
*/
static void PM_Generate_SwayBar_Forces(car_t *car, carBody_t *body, carPoint_t *points, int leftWheel, int rightWheel ){
// vec3_t lSpring, rSpring;
// vec3_t lengthDiff;
float dot, force;
// carPoint_t *lWheel;
// carPoint_t *rWheel;
// lWheel = &points[leftWheel];
// rWheel = &points[rightWheel];
if ( fabs( DotProduct( body->v, body->forward ) ) < 50.0f)
return;
// VectorSubtract(points[leftWheel+4].v, lWheel->v, lSpring);
// VectorSubtract(points[rightWheel+4].v, rWheel->v, rSpring);
// VectorSubtract(lSpring, rSpring, lengthDiff);
dot = body->curSpringLengths[leftWheel] - body->curSpringLengths[rightWheel];
// if dotproduct(lengthDiff, up) < 0, rSpring > lSpring
// else rSpring < lSpring
// dot = DotProduct(body->up, lengthDiff);
force = dot * pm->car_swaybar * CP_GRAVITY;
if (force < 0 && !points[leftWheel].onGround)
return;
else if (force > 0 && !points[rightWheel].onGround)
return;
if (force < 0 && pm->ps->viewangles[ROLL] > 0){
// Com_Printf("Sway bars shouldnt be forcing\n");
return;
}
else if (force > 0 && pm->ps->viewangles[ROLL] < 0){
// Com_Printf("Sway bars shouldnt be forcing\n");
return;
}
// Com_Printf("PM_Generate_SwayBar_Forces: force %f, roll %f\n", force, pm->ps->viewangles[ROLL]);
// VectorScale(body->up, force, lWheel->forces[SWAY_BAR]);
VectorScale(body->up, -force, points[leftWheel+4].forces[SWAY_BAR]);
// VectorScale(body->up, -force, rWheel->forces[SWAY_BAR]);
VectorScale(body->up, force, points[rightWheel+4].forces[SWAY_BAR]);
}
/*
================================================================================
PM_Generate_FrameWheel_Forces
Handles spring and damper physics for the suspension
================================================================================
*/
static int PM_Generate_FrameWheel_Forces(car_t *car, carPoint_t *points, int frameIndex, int wheelIndex ){
vec3_t delta, diff;
float compression, springVel, length;
int hitType;
carPoint_t *frame, *wheel;
hitType = HTYPE_NO_HIT;
frame = &points[frameIndex];
wheel = &points[wheelIndex];
//
// Calculate forces on the frame
//
// spring force based on length of spring (origin difference of the two points)
length = car->sBody.curSpringLengths[wheelIndex];
// shock force based on velocity difference of the two points
VectorSubtract(frame->v, wheel->v, delta);
springVel = DotProduct(car->sBody.up, delta);
if (springVel > 0){
VectorScale(car->sBody.up, -pm->car_shock_up * CP_GRAVITY * springVel, frame->forces[SHOCK]);
}
else {
VectorScale(car->sBody.up, -pm->car_shock_down * CP_GRAVITY * springVel, frame->forces[SHOCK]);
}
// compression = springVel > 0 ? 0 : springVel;
// VectorScale(car->sBody.up, -car->shockStrength * compression, frame->forces[SHOCK]);
if (length < car->springMinLength){
if (springVel < 0){
VectorScale(car->sBody.up, -springVel, diff);
VectorSubtract(wheel->v, diff, wheel->v);
if (wheel->onGround){
// suspension bottomed out and tires are on the ground so we have
// to treat this as a collision of the frame with the ground
hitType = HTYPE_BOTTOMED_OUT;
}
}
// length = car->springMinLength;
}
else if (length > car->springMaxLength){
if (springVel > 0){
// PM_ApplyPointBodyCollision(&car->sBody, &car->sPoints, car->sBody.up, 1.0);
/*
VectorScale(car->sBody.up, DotProduct(car->sBody.up, wheelVelocity), diff);
VectorSubtract(wheelVelocity, diff, delta);
VectorScale(car->sBody.up, DotProduct(car->sBody.up, frameVelocity), diff);
VectorAdd(delta, diff, wheel->v);
*/
// move wheel so its not too far out
VectorMA( wheel->r, length - car->springMaxLength, car->sBody.up, wheel->r );
car->sBody.curSpringLengths[wheelIndex] = car->springMaxLength;
}
hitType = HTYPE_MAXED_OUT;
// length = car->springMaxLength;
}
// linear
// compression = car->springMaxLength - length;
/*
if (length > car->springMaxLength)
compression = car->springMaxLength - length;
else
compression = (car->springMaxLength*2.0f - length) / 5.0f;
*/
// x^2
// compression = car->springMaxLength - length;
// compression *= compression;
// exp(x/max dist)
compression = car->springMaxLength - length;
if( compression > 0 )
compression = (car->springMaxLength - car->springMinLength) * (exp( compression / (car->springMaxLength - car->springMinLength)) - 1 ) / 1.718281828f;
if (compression < 0)
VectorScale(car->sBody.up, 3.0f * CP_SPRING_STRENGTH * compression, frame->forces[SPRING]);
else
VectorScale(car->sBody.up, car->springStrength * compression, frame->forces[SPRING]);
/*
{
float shock = VectorLength( frame->forces[SHOCK] );
if( shock > CP_MAX_SHOCK_FORCE )
{
#ifdef GAME
Com_Printf( "%i Shock Force: %f\n", (wheel - &car->sPoints[0]), shock );
#endif
VectorScale( frame->forces[SHOCK], CP_MAX_SHOCK_FORCE / shock, frame->forces[SHOCK] );
}
}
*/
//
// Calculate forces on the tire
//
VectorScale(frame->forces[SPRING], -1, wheel->forces[SPRING]);
VectorScale(frame->forces[SHOCK], -1, wheel->forces[SHOCK]);
return hitType;
}
/*
================================================================================
PM_CalculateForces
Main force calculating function for the entire car and the wheels
================================================================================
*/
static void PM_CalculateForces( car_t *car, carBody_t *body, carPoint_t *points, float sec ){
vec3_t delta, diff;
//vec3_t arm;
vec3_t force, hitOrigin, normal;
float length, k, b, springVel, dot;
int count;
int i, hitType, n;
2012-09-15 03:56:52 +00:00
//float impulseDamage;
2011-02-18 14:31:32 +00:00
VectorClear(force);
// add gravity forces
for (i = 0; i < NUM_CAR_POINTS; i++){
VectorSet(points[i].forces[GRAVITY], 0, 0, -CP_CURRENT_GRAVITY * points[i].mass);
}
VectorClear(hitOrigin);
count = 0;
PM_Generate_SwayBar_Forces(car, body, points, 0, 1);
PM_Generate_SwayBar_Forces(car, body, points, 2, 3);
// add spring forces
for (i = 0; i < FIRST_FRAME_POINT; i++)
{
// VectorSubtract(points[i+4].r, points[i].r, delta);
if ( body->curSpringLengths[i] > 20 )
{
// Com_Printf("Initialize wheel %i, frame %f,%f,%f, wheel %f,%f,%f\n", i, points[i+4].r[0], points[i+4].r[1], points[i+4].r[2], points[i].r[0], points[i].r[1], points[i].r[2]);
if (i == 0)
PM_InitializeWheel(body, points, i, 1.0f, -1.0f);
else if (i == 1)
PM_InitializeWheel(body, points, i, 1.0f, 1.0f);
else if (i == 2)
PM_InitializeWheel(body, points, i, -1.0f, -1.0f);
else if (i == 3)
PM_InitializeWheel(body, points, i, -1.0f, 1.0f);
}
hitType = PM_Generate_FrameWheel_Forces(car, points, i+4, i);
if ( VectorNAN( points[i].netForce ) )
Com_Printf("Blowing up car because of car point force on wheel %d\n", i );
if (hitType == HTYPE_BOTTOMED_OUT)
{
// add a normal to the frame point
for ( n = 0; n < 3; n++ )
{
if ( VectorLength( points[i+4].normals[n] ) ) continue;
VectorCopy( body->up, points[i+4].normals[n] );
break;
}
VectorAdd( hitOrigin, points[i+4].r, hitOrigin );
count++;
}
else if (hitType == HTYPE_MAXED_OUT)
{
// add a normal to the frame point
for ( n = 0; n < 3; n++ )
{
if ( VectorLength( points[i+4].normals[n] ) ) continue;
VectorScale( body->up, -1.0f, points[i+4].normals[n] );
break;
}
VectorAdd( points[i].forces[SPRING], points[i].forces[SHOCK], force );
dot = DotProduct( force, body->up );
if ( dot < 0.0f )
VectorMA( points[i].forces[SPRING], -dot, body->up, points[i].forces[SPRING] );
}
}
if ( count != 0 )
{
if (pm->pDebug)
Com_Printf("PM_CalculateForces: Frame-Wheel Collision with %i wheels\n", count);
VectorScale(hitOrigin, 1.0 / (float)count, hitOrigin);
2012-09-15 03:56:52 +00:00
/*impulseDamage = */PM_ApplyCollision(body, points, hitOrigin, car->sBody.up, body->elasticity);
2011-02-18 14:31:32 +00:00
// add normal force
// FIXME - change this so i can do it only once right before acceleration
// FIXME: replace with proper normal.netForce
/*
VectorSet(delta, 0, 0, -CP_CURRENT_GRAVITY * CP_CAR_MASS);
if (DotProduct(body->up, delta) < 0.0f){
VectorScale(body->up, -OVERCLIP * DotProduct(body->up, delta), body->normalForce);
PM_ApplyForce(body, body->normalForce, hitOrigin);
}
*/
// damage stuff
// FIXME: taking too much damage during normal driving
/*
impulseDamage /= (2000.0f / sec) / count;
if (impulseDamage > 0.00001f){
VectorCopy(hitOrigin, pm->damage.origin);
VectorCopy(car->sBody.up, pm->damage.dir);
pm->damage.damage += impulseDamage;
pm->damage.mod = MOD_BO_SHOCKS;
}
*/
VectorCopy( hitOrigin, pm->damage.origin );
VectorCopy( car->sBody.up, pm->damage.dir );
pm->damage.dflags = DAMAGE_NO_KNOCKBACK;
pm->damage.mod = MOD_BO_SHOCKS;
}
// UPDATE - moved lower down
// PM_Generate_SwayBar_Forces(body, points, 0, 1);
// PM_Generate_SwayBar_Forces(body, points, 2, 3);
// calculate frame hits
VectorClear(hitOrigin);
VectorClear(normal);
count = 0;
for (i = FIRST_FRAME_POINT; i < NUM_CAR_POINTS; i++){
if ( !points[i].onGround ) continue;
if ( DotProduct(points[i].v, points[i].normals[0] ) > 0.0f) continue;
VectorAdd( normal, points[i].normals[0], normal );
VectorAdd( hitOrigin, points[i].r, hitOrigin );
count++;
}
if ( count != 0 )
{
VectorScale(hitOrigin, 1.0 / (float)count, hitOrigin);
VectorNormalize(normal);
if (pm->pDebug)
Com_Printf("PM_CalculateForces: Frame hit a surface at %i spots\n", count);
2012-09-15 03:56:52 +00:00
/*impulseDamage = */PM_ApplyCollision( body, points, hitOrigin, normal, 0.0f );
2011-02-18 14:31:32 +00:00
// add normal force
// FIXME - change this so i can do it only once right before acceleration
// FIXME: replace with proper normal.netForce
/*
VectorSet(delta, 0, 0, -CP_CURRENT_GRAVITY * CP_CAR_MASS);
if (DotProduct(normal, delta) < 0.0f){
VectorScale(body->up, -OVERCLIP * DotProduct(body->up, delta), body->normalForce);
PM_ApplyForce(body, body->normalForce, hitOrigin);
}
*/
// damage stuff - FIXME: dont take damage for sitting up against walls
// divide by number of spots hit maybe?
/*
impulseDamage /= (50000.0f / sec) / count;
if (impulseDamage > 0.00001f){
VectorCopy(hitOrigin, pm->damage.origin);
VectorCopy(normal, pm->damage.dir);
pm->damage.damage += impulseDamage;
pm->damage.mod = MOD_WORLD_COLLISION;
}
*/
VectorCopy(hitOrigin, pm->damage.origin);
VectorCopy(normal, pm->damage.dir);
pm->damage.dflags = DAMAGE_NO_KNOCKBACK;
pm->damage.mod = MOD_WORLD_COLLISION;
}
// steering, acceleration, braking, etc
PM_AddRoadForces(car, body, points, sec);
for (i = 0; i < FIRST_FRAME_POINT; i++)
{
// new
// VectorMA(car->sPoints[i].r, -WHEEL_RADIUS, car->sPoints[i].normals[0], arm);
// remove component of force in body up direction
VectorCopy(points[i].forces[ROAD], force);
VectorMA(force, -DotProduct(force, car->sBody.up), car->sBody.up, force);
// apply force to axle, not tire-ground contact
PM_ApplyForce(body, force, car->sPoints[i].r);
// PM_ApplyForce(body, force, arm);
// end new
VectorScale(points[i].forces[ROAD], points[i].mass / points[i+4].mass, points[i].forces[ROAD]);
// }
// internal forces to return the wheel to perpendicular
// for (i = 0; i < FIRST_FRAME_POINT; i++)
// {
VectorSubtract( points[i+4].r, points[i].r, delta );
VectorMA( delta, -DotProduct(delta, car->sBody.up), car->sBody.up, diff );
length = VectorNormalize(diff);
if ( length > 2.0f ){
// k = 10000; // good at 90fps
k = pm->car_wheel * CP_WHEEL_MASS;
// b = 2 * sqrt(k * points[i].mass);
b = pm->car_wheel_damp * CP_WHEEL_MASS;
VectorScale(diff, -k * length, force);
VectorSubtract(points[i+4].v, points[i].v, delta);
VectorMA(delta, -DotProduct(delta, car->sBody.up), car->sBody.up, diff);
springVel = VectorNormalize(diff);
VectorMA(force, -b * springVel, diff, force);
// VectorCopy(force, points[i+4].forces[INTERNAL]);
VectorScale(force, -1, points[i].forces[INTERNAL]);
}
}
// calculate net forces
for (i = 0; i < NUM_CAR_POINTS; i++){
PM_CalculateNetForce(&points[i], i);
}
}
/*
================================================================================
PM_AccelerateAndMoveBody
This function is largely based on the physics articles and
source from Chris Hecker: http://www.d6.com/users/checker/dynamics.htm
================================================================================
*/
static void PM_AccelerateAndMoveBody( car_t *car, carBody_t *sBody, carBody_t *tBody, float time ){
float m[3][3];
float m2[3][3];
vec3_t vec;
vec3_t force;
int i, n;
float dot, impulseDamage;
float time_2 = time / 2.0f;
// FIXME: handle collisions here as well?
// FIXME: just have one normal force for the entire body instead of for each point?
for (i = FIRST_FRAME_POINT; i < NUM_CAR_POINTS; i++){
if (!car->sPoints[i].onGround) continue;
for (n = 0; n < 3; n++){
if (!VectorLength(car->sPoints[i].normals[n])) continue;
dot = DotProduct(car->sPoints[i].normals[n], sBody->netForce);
if (dot >= 0.0f) continue;
VectorScale(car->sPoints[i].normals[n], -OVERCLIP * dot, force);
PM_ApplyForce(sBody, force, car->sPoints[i].r);
}
}
// damage stuff
VectorSubtract(tBody->v, sBody->v, vec);
impulseDamage = VectorLength(vec);
if (impulseDamage > 5.0f){
// Com_Printf("impulseDamage %f\n", impulseDamage);
pm->damage.damage += impulseDamage / 25.0f;
}
// linear
// NOTE: this method is really not right but it works so oh well.
// tBody contains netForce from last frame
VectorAdd(sBody->netForce, tBody->netForce, vec);
VectorMA(sBody->v, time_2 / sBody->mass, vec, tBody->v);
VectorAdd(sBody->v, tBody->v, vec);
VectorMA(sBody->r, time_2, vec, tBody->r);
// angular
VectorAdd(sBody->netMoment, tBody->netMoment, vec);
VectorMA(sBody->L, time_2, vec, tBody->L);
VectorRotate(tBody->L, sBody->inverseWorldInertiaTensor, tBody->w);
VectorAdd(sBody->w, tBody->w, vec);
m[0][0] = 0; m[0][1] = time_2 * -vec[2]; m[0][2] = time_2 * vec[1];
m[1][0] = time_2 * vec[2]; m[1][1] = 0; m[1][2] = time_2 * -vec[0];
m[2][0] = time_2 * -vec[1]; m[2][1] = time_2 * vec[0]; m[2][2] = 0;
MatrixMultiply(m, sBody->t, m2);
MatrixAdd(sBody->t, m2, tBody->t);
OrthonormalizeOrientation(tBody->t);
// Optimization note: check if inverseWorldInertiaTensor is only really
// needed for collisions. If it is then might be best just to calculate
// it there since collisions dont usually happen every frame.
// Note: only used in collisions and converting L to w. If I can get w
// some other way then I can move it.
// MatrixMultiply(tBody->t, car->inverseBodyInertiaTensor, m);
// This should be the same as MatrixMultiply(tBody->t, car->inverseBodyInertiaTensor, m);
// without so many multiplies and adds.
m[0][0] = car->inverseBodyInertiaTensor[0][0] * tBody->t[0][0];
m[1][0] = car->inverseBodyInertiaTensor[0][0] * tBody->t[1][0];
m[2][0] = car->inverseBodyInertiaTensor[0][0] * tBody->t[2][0];
m[0][1] = car->inverseBodyInertiaTensor[1][1] * tBody->t[0][1];
m[1][1] = car->inverseBodyInertiaTensor[1][1] * tBody->t[1][1];
m[2][1] = car->inverseBodyInertiaTensor[1][1] * tBody->t[2][1];
m[0][2] = car->inverseBodyInertiaTensor[2][2] * tBody->t[0][2];
m[1][2] = car->inverseBodyInertiaTensor[2][2] * tBody->t[1][2];
m[2][2] = car->inverseBodyInertiaTensor[2][2] * tBody->t[2][2];
MatrixTranspose(tBody->t, m2);
MatrixMultiply(m, m2, tBody->inverseWorldInertiaTensor);
// generate direction vectors
OrientationToVectors(tBody->t, tBody->forward, tBody->right, tBody->up);
// copy netForce and netMoment to target so we can use it next frame
VectorCopy(sBody->netForce, tBody->netForce);
VectorCopy(sBody->netMoment, tBody->netMoment);
}
/*
================================================================================
PM_CalculateSecondaryQuantities
Used in cgame to calculate w and forward, right, up from the new known
primary values from the server
================================================================================
*/
void PM_CalculateSecondaryQuantities( car_t *car, carBody_t *body, carPoint_t *points ){
float m[3][3];
float m2[3][3];
float forwardScale, rightScale, upScale;
vec3_t diff;
int i;
// MatrixMultiply(body->t, car->inverseBodyInertiaTensor, m);
m[0][0] = car->inverseBodyInertiaTensor[0][0] * body->t[0][0];
m[1][0] = car->inverseBodyInertiaTensor[0][0] * body->t[1][0];
m[2][0] = car->inverseBodyInertiaTensor[0][0] * body->t[2][0];
m[0][1] = car->inverseBodyInertiaTensor[1][1] * body->t[0][1];
m[1][1] = car->inverseBodyInertiaTensor[1][1] * body->t[1][1];
m[2][1] = car->inverseBodyInertiaTensor[1][1] * body->t[2][1];
m[0][2] = car->inverseBodyInertiaTensor[2][2] * body->t[0][2];
m[1][2] = car->inverseBodyInertiaTensor[2][2] * body->t[1][2];
m[2][2] = car->inverseBodyInertiaTensor[2][2] * body->t[2][2];
MatrixTranspose(body->t, m2);
MatrixMultiply(m, m2, body->inverseWorldInertiaTensor);
VectorRotate(body->L, body->inverseWorldInertiaTensor, body->w);
OrientationToVectors(body->t, body->forward, body->right, body->up);
// set locations and velocities of frame points
PM_InitializeFrame(body, &points[FL_FRAME], 1.0f, -1.0f, 0.0f);
PM_InitializeFrame(body, &points[FR_FRAME], 1.0f, 1.0f, 0.0f);
PM_InitializeFrame(body, &points[RL_FRAME], -1.0f, -1.0f, 0.0f);
PM_InitializeFrame(body, &points[RR_FRAME], -1.0f, 1.0f, 0.0f);
// body collision points
forwardScale = ((CAR_LENGTH/2.0f) - BODY_RADIUS) / WHEEL_FORWARD;
rightScale = ((CAR_WIDTH/2.0f) - BODY_RADIUS) / WHEEL_RIGHT;
upScale = (0) / -WHEEL_UP;
PM_InitializeFrame(body, &points[FL_BODY], forwardScale, -rightScale, upScale);
PM_InitializeFrame(body, &points[FR_BODY], forwardScale, rightScale, upScale);
PM_InitializeFrame(body, &points[ML_BODY], 0.0f, -rightScale, upScale);
PM_InitializeFrame(body, &points[MR_BODY], 0.0f, rightScale, upScale);
PM_InitializeFrame(body, &points[RL_BODY], -forwardScale, -rightScale, upScale);
PM_InitializeFrame(body, &points[RR_BODY], -forwardScale, rightScale, upScale);
PM_InitializeFrame(body, &points[ML_ROOF], 0.0f, -rightScale, 0.6f);
PM_InitializeFrame(body, &points[MR_ROOF], 0.0f, rightScale, 0.6f);
// calculate spring lengths
for( i = 0; i < FIRST_FRAME_POINT; i++ )
{
VectorSubtract( points[i+4].r, points[i].r, diff );
body->curSpringLengths[i] = DotProduct( diff, body->up );
}
PM_SetCoM(body, points);
PM_ClearCarForces(body, points);
PM_CopyTargetToSource(&car->sBody, &car->tBody, car->sPoints, car->tPoints);
/*
VectorCopy( car->sBody.v, car->oldBodies[2].v );
VectorCopy( car->sBody.w, car->oldBodies[2].w );
VectorCopy( car->sBody.netForce, car->oldBodies[2].netForce );
VectorCopy( car->sBody.netMoment, car->oldBodies[2].netMoment );
VectorCopy( car->sBody.v, car->oldBodies[1].v );
VectorCopy( car->sBody.w, car->oldBodies[1].w );
VectorCopy( car->sBody.netForce, car->oldBodies[1].netForce );
VectorCopy( car->sBody.netMoment, car->oldBodies[1].netMoment );
VectorCopy( car->sBody.v, car->oldBodies[0].v );
VectorCopy( car->sBody.w, car->oldBodies[0].w );
VectorCopy( car->sBody.netForce, car->oldBodies[0].netForce );
VectorCopy( car->sBody.netMoment, car->oldBodies[0].netMoment );
for( i = 0; i < LAST_RW_POINT; i++ )
{
VectorCopy( car->sPoints[i].netForce, car->oldPoints[2][i].netForce );
VectorCopy( car->sPoints[i].v, car->oldPoints[2][i].v );
car->oldPoints[2][i].netMoment = car->sPoints[i].netMoment;
VectorCopy( car->sPoints[i].netForce, car->oldPoints[1][i].netForce );
VectorCopy( car->sPoints[i].v, car->oldPoints[1][i].v );
car->oldPoints[1][i].netMoment = car->sPoints[i].netMoment;
VectorCopy( car->sPoints[i].netForce, car->oldPoints[0][i].netForce );
VectorCopy( car->sPoints[i].v, car->oldPoints[0][i].v );
car->oldPoints[0][i].netMoment = car->sPoints[i].netMoment;
}
*/
}
/*
================================================================================
PM_CalculateTargetBody
Integrates the current state to find the next state.
================================================================================
*/
static void PM_CalculateTargetBody(car_t *car, carBody_t *sBody, carBody_t *tBody, carPoint_t *sPoints, carPoint_t *tPoints, float time){
int i;
float forwardScale, rightScale, upScale;
vec3_t diff;
// move body
PM_AccelerateAndMoveBody( car, sBody, tBody, time );
// move wheels
for (i = 0; i < FIRST_FRAME_POINT; i++){
PM_AccelerateAndMove( car, &sPoints[i], &tPoints[i], time );
}
// set locations and velocities of frame points
PM_InitializeFrame(tBody, &tPoints[FL_FRAME], 1.0f, -1.0f, 0.0f);
PM_InitializeFrame(tBody, &tPoints[FR_FRAME], 1.0f, 1.0f, 0.0f);
PM_InitializeFrame(tBody, &tPoints[RL_FRAME], -1.0f, -1.0f, 0.0f);
PM_InitializeFrame(tBody, &tPoints[RR_FRAME], -1.0f, 1.0f, 0.0f);
// body collision points
forwardScale = ((CAR_LENGTH/2.0f) - BODY_RADIUS) / WHEEL_FORWARD;
rightScale = ((CAR_WIDTH/2.0f) - BODY_RADIUS) / WHEEL_RIGHT;
upScale = (0) / -WHEEL_UP;
PM_InitializeFrame(tBody, &tPoints[FL_BODY], forwardScale, -rightScale, upScale);
PM_InitializeFrame(tBody, &tPoints[FR_BODY], forwardScale, rightScale, upScale);
PM_InitializeFrame(tBody, &tPoints[ML_BODY], 0.0f, -rightScale, upScale);
PM_InitializeFrame(tBody, &tPoints[MR_BODY], 0.0f, rightScale, upScale);
PM_InitializeFrame(tBody, &tPoints[RL_BODY], -forwardScale, -rightScale, upScale);
PM_InitializeFrame(tBody, &tPoints[RR_BODY], -forwardScale, rightScale, upScale);
PM_InitializeFrame(tBody, &tPoints[ML_ROOF], 0.0f, -rightScale, 0.6f);
PM_InitializeFrame(tBody, &tPoints[MR_ROOF], 0.0f, rightScale, 0.6f);
// calculate spring lengths
for( i = 0; i < FIRST_FRAME_POINT; i++ )
{
VectorSubtract( tPoints[i+4].r, tPoints[i].r, diff );
tBody->curSpringLengths[i] = DotProduct( diff, tBody->up );
}
// set the center of mass
PM_SetCoM(tBody, tPoints);
}
/*
qboolean PM_Hit_Car( trace_t trace ){
// hit another car
vec3_t f, r, u, delta;
float dotF, dotR, dotU;
qboolean lengthHitOK, widthHitOK, heightHitOK;
lengthHitOK = qfalse;
widthHitOK = qfalse;
heightHitOK = qfalse;
VectorSubtract(trace.endpos, pm->cars[trace.entityNum]->sBody.r, delta);
OrientationToVectors(pm->cars[trace.entityNum]->sBody.t, f, r, u);
// need to add radius of trace box to this check?
dotF = DotProduct(delta, f);
dotR = DotProduct(delta, r);
dotU = DotProduct(delta, u);
if (dotU < CAR_HEIGHT/2 + WHEEL_RADIUS && dotU > -CAR_HEIGHT/2 - WHEEL_RADIUS){
heightHitOK = qtrue;
}
if (dotF < CAR_LENGTH/2 + WHEEL_RADIUS && dotF > -CAR_LENGTH/2 - WHEEL_RADIUS){
lengthHitOK = qtrue;
}
if (dotR < CAR_WIDTH/2 + WHEEL_RADIUS && dotR > -CAR_WIDTH/2 - WHEEL_RADIUS){
widthHitOK = qtrue;
}
// if (heightHitOK){
#ifdef GAME
// G_LogPrintf( "%d hit %d\n", pm->ps->clientNum, trace.entityNum);
// G_LogPrintf( "trace.endpos : %f, %f, %f\n", trace.endpos[0], trace.endpos[1], trace.endpos[2]);
// G_LogPrintf( "pm->cars[trace.entityNum]->sBody.r : %f, %f, %f\n", pm->cars[trace.entityNum]->sBody.r[0], pm->cars[trace.entityNum]->sBody.r[1], pm->cars[trace.entityNum]->sBody.r[2]);
// G_LogPrintf( "delta : %f, %f, %f\n", delta[0], delta[1], delta[2]);
// G_LogPrintf( "height dist: %f, max %f\n", dotU, CAR_HEIGHT/2 + WHEEL_RADIUS);
// G_LogPrintf( "length dist: %f, max %f\n", dotF, CAR_LENGTH/2 + WHEEL_RADIUS);
// G_LogPrintf( "width dist: %f, max %f\n", dotR, CAR_WIDTH/2 + WHEEL_RADIUS);
// G_LogPrintf( "f : %f, %f, %f\n", f[0], f[1], f[2]);
// G_LogPrintf( "r : %f, %f, %f\n", r[0], r[1], r[2]);
// G_LogPrintf( "u : %f, %f, %f\n", u[0], u[1], u[2]);
#endif
// }
if (widthHitOK){
#ifdef GAME
G_LogPrintf("width is ok\n");
#endif
return qtrue;
}
if (lengthHitOK && heightHitOK && widthHitOK){
#ifdef GAME
G_LogPrintf("all dimensions are ok\n");
#endif
return qtrue;
}
return qfalse;
}
*/
/*
===================
PM_Trace_Points
Traces out the points from current state to next state to check for collisions.
Partially based on the PM_SlideMove function.
===================
*/
#define MAX_CLIP_PLANES 3
static void PM_Trace_Points( car_t *car, carPoint_t *sPoints, carPoint_t *tPoints, float time ){
vec3_t maxs, mins;
vec3_t start, dest, dir;
//vec3_t normal;
trace_t trace;
int i, j;
//float minTrace = 1.0f;
//int hitFirst, hitEnt;
carPoint_t *sPoint, *tPoint;
//int count = 0;
vec3_t hitOrigin;
// new stuff
int bumpcount, numbumps;
float d;
int numplanes;
vec3_t vel;
vec3_t clipVelocity;
int k;
//int l;
float time_left;
float into;
numbumps = 4;
// end
VectorClear(hitOrigin);
// should actually do all points
for( i = 0 ; i < NUM_CAR_POINTS ; i++ ) {
// skip collision detection of suspension points
if( i >= FIRST_FRAME_POINT && i < LAST_FRAME_POINT ) continue;
sPoint = &sPoints[i];
tPoint = &tPoints[i];
VectorSet( mins, -sPoint->radius, -sPoint->radius, -sPoint->radius );
VectorSet( maxs, sPoint->radius, sPoint->radius, sPoint->radius );
if( i >= LAST_FRAME_POINT ) {
mins[2] /= 1.5f;
maxs[2] /= 1.5f;
}
/*
VectorSubtract( car->sBody.r, sPoints[i].r, dir);
if (VectorLength(dir))
VectorScale(dir, 20.0f / VectorLength(dir), dir);
VectorCopy( sPoints[i].r, start );
VectorAdd( start, dir, start );
VectorCopy( tPoints[i].r, dest );
// trace the frame to target position
pm->trace( &trace, start, mins, maxs, dest, pm->ps->clientNum, pm->tracemask );
#ifdef GAME
if (trace.contents & CONTENTS_BODY){
// G_LogPrintf("car was hit\n");
if (trace.startsolid)
Com_Printf("start solid and hit CONTENTS_BODY\n");
if (trace.allsolid)
Com_Printf("all solid and hit CONTENTS_BODY\n");
// need to make it at least a tiny ways
if (trace.fraction != 0.0f){
if (trace.fraction < minTrace){
minTrace = trace.fraction;
VectorClear(hitOrigin);
count = 0;
}
if (trace.fraction == minTrace){
VectorAdd(hitOrigin, trace.endpos, hitOrigin);
count++;
if (g_entities[trace.entityNum].flags & FL_EXTRA_BBOX)
hitEnt = g_entities[trace.entityNum].r.ownerNum;
else
hitEnt = trace.entityNum;
// PM_CheckSurfaceFlags( &trace, &tPoints[i] );
}
// PM_SetFluidDensity(tPoints, i);
// continue;
}
if (trace.fraction == 0)
Com_Printf("fraction == 0 and hit CONTENTS_BODY\n");
// trace the frame to target position but skip other cars
pm->trace( &trace, start, mins, maxs, dest, pm->ps->clientNum, pm->tracemask & ~CONTENTS_BODY );
}
VectorClear(tPoints[i].normals[1]);
#endif
if (trace.contents & CONTENTS_BODY){
Com_Printf("hit body again?\n");
}
// if the frame is flush on the ground
if( trace.fraction == 0.0F ) {
tPoints[i].onGround = qtrue;
if( VectorLength(trace.plane.normal) > 0.0F ) {
VectorCopy( trace.plane.normal, tPoints[i].normals[0] );
}
PM_CheckSurfaceFlags( &trace, &tPoints[i] );
} else if (trace.fraction < 1.0F){
tPoints[i].onGround = qtrue;
VectorCopy( trace.plane.normal, tPoints[i].normals[0] );
PM_CheckSurfaceFlags( &trace, &tPoints[i] );
} else {
tPoints[i].onGround = qfalse;
continue;
}
*/
// move the point in towards the center of the car
// this is to try to stop the wheel bboxes from sitting directly on the surface
// and then not getting a valid trace because it is startsoild
VectorSubtract( car->sBody.r, sPoint->r, dir);
if ( VectorLengthSquared(dir) )
VectorScale( dir, 20.0f / VectorLength(dir), dir );
VectorAdd( sPoint->r, dir, start );
VectorCopy( tPoint->r, dest );
/*
numTraces++;
pm->trace( &trace, sPoints[i].r, mins, maxs, sPoints[i].r, pm->ps->clientNum, pm->tracemask );
if( trace.startsolid )
{
// if we are starting solid then offset the starting point otherwise
// we dont need to.
Com_Printf( "the start is solid!\n" );
// try adding on a non zero velocity and the previous normal vector
// if( VectorLengthSquared( sPoints[i].v ) == 0.0f )
// VectorMA( sPoints[i].lastNonZeroVelocity, -1.0f, sPoints[i].normals[0], dir );
// else
VectorMA( sPoints[i].v, -20.0f, sPoints[i].normals[0], dir );
VectorNormalize( dir );
VectorSubtract( sPoints[i].r, dir, start );
}
else
VectorCopy( sPoints[i].r, start );
VectorCopy( tPoints[i].r, dest );
*/
// OPTIMIZE: just use sPoints[i].v if not startsolid?
// VectorSubtract( dest, start, vel );
VectorSubtract( tPoint->r, start, vel );
VectorScale( vel, 1 / time, vel );
numplanes = 0;
time_left = time;
for ( bumpcount=0 ; bumpcount < numbumps ; bumpcount++ ) {
VectorMA( start, time_left, vel, dest );
// see if we can make it there
numTraces++;
pm->trace ( &trace, start, mins, maxs, dest, pm->ps->clientNum, pm->tracemask);
if ( trace.startsolid && !bumpcount ) {
VectorCopy( sPoint->r, start );
VectorSubtract( dest, start, vel );
VectorScale( vel, 1 / time, vel );
// Com_Printf("Start point %d is in a solid\n", i);
continue;
}
if (trace.allsolid) {
// entity is completely trapped in another solid
// Com_Printf("trace %d is all solid\n", i);
break;
}
if (trace.fraction > 0) {
// actually covered some distance
// VectorCopy ( trace.endpos, start );
VectorScale ( trace.endpos, 0.999f, start );
}
if ( trace.fraction == 1 ) {
if ( !bumpcount ){
tPoint->onGround = qfalse;
VectorClear(tPoint->normals[0]);
VectorClear(tPoint->normals[1]);
VectorClear(tPoint->normals[2]);
}
break; // moved the entire distance
}
time_left -= time_left * trace.fraction;
if ( numplanes >= MAX_CLIP_PLANES ) {
// this shouldn't really happen
// Com_Printf("numplanes >= MAX_CLIP_PLANES\n");
break;
}
//
// if this is the same plane we hit before, nudge velocity
// out along it, which fixes some epsilon issues with
// non-axial planes
//
for ( j = 0 ; j < numplanes; j++ ) {
if ( DotProduct( trace.plane.normal, tPoint->normals[j] ) > 0.99 ) {
VectorAdd( trace.plane.normal, vel, vel );
break;
}
}
if ( j < numplanes ) {
continue;
}
#ifdef GAME
if (trace.contents & CONTENTS_BODY){
if (g_entities[trace.entityNum].flags & FL_EXTRA_BBOX){
hitFirst = g_entities[trace.entityNum].r.ownerNum;
// Com_Printf("Hit extra bbox\n");
}
else
hitFirst = trace.entityNum;
if (g_entities[hitFirst].client){
// G_LogPrintf("car was hit\n");
// if (trace.startsolid)
// Com_Printf("start solid and hit CONTENTS_BODY\n");
// if (trace.allsolid)
// Com_Printf("all solid and hit CONTENTS_BODY\n");
// need to make it at least a tiny ways
if (trace.fraction != 0.0f)
{
if (trace.fraction < minTrace)
{
minTrace = trace.fraction;
VectorClear(hitOrigin);
count = 0;
}
if (trace.fraction == minTrace)
{
VectorAdd(hitOrigin, trace.endpos, hitOrigin);
count++;
hitEnt = hitFirst;
tPoints[i].onGround = qtrue;
// PM_CheckSurfaceFlags( &trace, &tPoints[i] );
}
// PM_SetFluidDensity(tPoints, i);
// continue;
}
else
{
2012-09-15 03:56:52 +00:00
// inside another car
2011-02-18 14:31:32 +00:00
// Com_Printf("fraction == 0 and hit CONTENTS_BODY\n");
}
// trace the frame to target position but skip other cars
// pm->trace( &trace, start, mins, maxs, dest, pm->ps->clientNum, pm->tracemask & ~CONTENTS_BODY );
pm->tracemask &= ~CONTENTS_BODY;
continue;
}
else {
// Com_Printf( "hit non player CONTENTS_BODY\n" );
PM_AddTouchEnt( trace.entityNum, trace.endpos );
pm->tracemask &= ~CONTENTS_BODY;
continue;
}
}
#endif
VectorCopy ( trace.plane.normal, tPoint->normals[numplanes] );
tPoint->onGround = qtrue;
PM_CheckSurfaceFlags( &trace, tPoint );
numplanes++;
//
// modify velocity so it parallels all of the clip planes
//
// find a plane that it enters
for ( j = 0 ; j < numplanes ; j++ ) {
into = DotProduct( vel, tPoint->normals[j] );
if ( into > 0.01f ) {
continue; // move doesn't interact with the plane
}
// see how hard we are hitting things
// if ( -into > pml.impactSpeed ) {
// pml.impactSpeed = -into;
// }
// slide along the plane
VectorMA( vel, -into * OVERCLIP, tPoint->normals[j], clipVelocity );
// PM_ClipVelocity ( vel, tPoints[i].normals[j], clipVelocity, OVERCLIP );
// see if there is a second plane that the new move enters
for ( k = 0 ; k < numplanes ; k++ ) {
if ( k == j ) {
continue;
}
into = DotProduct( clipVelocity, tPoint->normals[k] );
if ( into > 0.01f ) {
continue; // move doesn't interact with the plane
}
// try clipping the move to the plane
VectorMA( clipVelocity, -into * OVERCLIP, tPoint->normals[j], clipVelocity );
// PM_ClipVelocity( clipVelocity, tPoints[i].normals[k], clipVelocity, OVERCLIP );
// see if it goes back into the first clip plane
if ( DotProduct( clipVelocity, tPoint->normals[j] ) >= 0 ) {
continue;
}
// slide the original velocity along the crease
CrossProduct ( tPoint->normals[j], tPoint->normals[k], dir );
VectorNormalize( dir );
d = DotProduct( dir, vel );
VectorScale( dir, d, clipVelocity );
// dont do this because i never see that triple plane interaction message
// so it probably only rarely happens, if ever
/*
// see if there is a third plane the the new move enters
for ( l = 0 ; l < numplanes ; l++ ) {
if ( l == j || l == k ) {
continue;
}
if ( DotProduct( clipVelocity, tPoints[i].normals[l] ) >= 0.1 ) {
continue; // move doesn't interact with the plane
}
// stop dead at a tripple plane interaction
Com_Printf( "triple plane interaction\n" );
return;
}
*/
}
// if we have fixed all interactions, try another move
VectorCopy( clipVelocity, vel );
// VectorCopy( endClipVelocity, endVelocity );
break;
}
}
// NEW- copy final position to the point
// VectorCopy( start, tPoints[i].r );
PM_SetFluidDensity( tPoints, i );
}
#ifdef GAME
if ( count && pm->cars[hitEnt] )
{
float impulseDamage;
// G_LogPrintf( "minTrace %f\n", minTrace );
// G_LogPrintf("count = %d\n", count);
// G_LogPrintf("pml.physicsSplit = %d\n", pml.physicsSplit);
// calculate car position at collision
// G_LogPrintf( "car was hit with %f traced\n", minTrace );
VectorScale(hitOrigin, 1.0f / count, hitOrigin);
// G_LogPrintf("hitOrigin = %f, %f, %f\n", hitOrigin[0], hitOrigin[1], hitOrigin[2]);
PM_CalculateTargetBody(car, &car->sBody, &car->tBody, car->sPoints, car->tPoints, time * minTrace);
// VectorSubtract(car->tBody.r, pm->cars[hitEnt]->sBody.r, normal);
VectorSubtract(hitOrigin, pm->cars[hitEnt]->sBody.r, normal);
VectorNormalize(normal);
impulseDamage = PM_ApplyBodyBodyCollision(&car->tBody, car->tPoints, &pm->cars[hitEnt]->sBody, pm->cars[hitEnt]->sPoints, hitOrigin, normal, 0.25f);
// set normal on this car
for (i = 0; i < 3; i++){
if (!VectorLength(tPoints[hitEnt].normals[i])){
VectorScale(normal, -1.0f, tPoints[hitEnt].normals[i]);
break;
}
}
// damage stuff
VectorCopy(hitOrigin, pm->damage.origin);
VectorCopy(normal, pm->damage.dir);
pm->damage.dflags = DAMAGE_NO_KNOCKBACK;
pm->damage.mod = MOD_CAR_COLLISION;
pm->damage.otherEnt = trace.entityNum;
PM_CopyTargetToSource(&car->tBody, &car->sBody, tPoints, sPoints);
// run physics again but remove CONTENTS_BODY first so it cant collide with cars
pml.physicsSplit++;
pm->tracemask &= ~CONTENTS_BODY;
PM_DriveMove(car, time * (1.0f - minTrace), qfalse);
}
#endif
// break the frame up into parts
// fix this so it doesnt cause infinite loops
/*
if (minTrace < 1.0f){
// Check for touching multiple surfaces with different normals
// (wheel on ground and against wall)
VectorCopy( sPoints[hitFirst].r, start );
VectorCopy( tPoints[hitFirst].r, dest );
VectorSubtract(dest, start, dir);
length = VectorNormalize(dir);
VectorMA(start, (length * minTrace) - 0.05f, dir, start);
VectorClear(normal);
for (i = 0; i < 3; i++){
VectorCopy(start, dest);
dest[i] += dir[i] > 0.0f ? 0.10f : -0.10f;
pm->trace( &trace, start, mins, maxs, dest, pm->ps->clientNum, pm->tracemask );
if (trace.fraction < 1.0F){
uniqueNormal = qtrue;
for(j = 0; j < 3; j++){
if (i == j) continue;
if(VectorCompare(trace.plane.normal, tPoints[hitFirst].normals[j])){
uniqueNormal = qfalse;
break;
}
}
if (uniqueNormal && VectorLength(trace.plane.normal)){
VectorCopy(trace.plane.normal, tPoints[hitFirst].normals[i]);
}
}
}
if (pml.physicsSplit > 5){
// Com_Printf("Breaking out of physics loop\n");
}
else {
pml.physicsSplit++;
PM_CalculateTargetBody(car, &car->sBody, &car->tBody, car->sPoints, car->tPoints, time * minTrace);
PM_CopyTargetToSource(&car->tBody, &car->sBody, car->tPoints, car->sPoints);
PM_DriveMove(car, time * (1.0f - minTrace));
}
// }
}
*/
}
//int trap_Milliseconds( void );
/*
================================================================================
PM_DriveMove
The mother functioner of Q3Rally car movement. Calculates the forces and torques
2012-09-15 03:56:52 +00:00
on the car, integrates to get the next state and traces to handle collisions with
2011-02-18 14:31:32 +00:00
the world and other objects.
================================================================================
*/
void PM_DriveMove( car_t *car, float time, qboolean includeBodies )
{
int i;
//int t, t1, t2, t3, t4, t5;
if( car->initializeOnNextMove )
{
PM_InitializeVehicle( car, pm->ps->origin, pm->ps->viewangles, pm->ps->velocity );
car->initializeOnNextMove = qfalse;
}
//t = trap_Milliseconds();
numTraces = 0;
if (pml.physicsSplit > 2){
Com_Printf("forcing end of frame\n");
return;
}
if (time == 0)
return;
// if ( VectorNAN(car->sBody.r) || VectorNAN(car->sBody.v) || VectorNAN(car->sBody.L) )
if ( VectorNAN(car->sBody.r) || VectorNAN(car->sBody.v) ||
car->sBody.L[0] > 1<<25 ||
car->sBody.L[1] > 1<<25 ||
car->sBody.L[2] > 1<<25 )
{
// Com_Printf( "Blowing up car because of car body\n" );
pm->damage.damage = 32000;
pm->damage.dflags = DAMAGE_NO_PROTECTION;
pm->damage.otherEnt = -1;
pm->damage.mod = MOD_HIGH_FORCES;
return;
}
CP_CURRENT_GRAVITY = (pm->ps->gravity / 800.0f) * CP_GRAVITY;
// set spring strengths for "jump" and "crouch"
// FIXME: change this so it works in cgame and game
#if GAME
car->springStrength = pm->car_spring * (CP_FRAME_MASS / 350.0f) * CP_GRAVITY;
#else
car->springStrength = CP_SPRING_STRENGTH;
#endif
// car->shockStrength = CP_SHOCK_STRENGTH;
if (pm->cmd.upmove > 0){
car->springStrength *= 5.0f;
}
else if (pm->cmd.upmove < 0){
car->springStrength /= 5.0f;
}
pm->damage.damage = 0;
pm->damage.otherEnt = -1;
//t1 = trap_Milliseconds();
// calculate target positions etc
// -------------------------------------------------------------------------
// calculate forces
PM_CalculateForces(car, &car->sBody, car->sPoints, time);
//t2 = trap_Milliseconds();
// apply frame forces to the body
// for (i = FIRST_FRAME_POINT; i < LAST_FRAME_POINT; i++){
for (i = FIRST_FRAME_POINT; i < NUM_CAR_POINTS; i++){
PM_ApplyForce(&car->sBody, car->sPoints[i].netForce, car->sPoints[i].r);
// }
// for (i = FIRST_FRAME_POINT; i < NUM_CAR_POINTS; i++){
if (!car->sPoints[i].onGround) continue;
PM_CarBodyFrictionForces( car, &car->sBody, car->sPoints, i );
if (VectorNAN(car->sPoints[i].netForce))
Com_Printf("Blowing up car because of car point force on frame\n");
}
//t3 = trap_Milliseconds();
// print out the forces
/*
if (pm->pDebug > 0 && pm->pDebug <= 8){
if (pm->client)
Com_Printf("client sBody -----------------------------------------\n");
else
Com_Printf("server sBody -----------------------------------------\n");
PM_DebugForces(&car->sBody, car->sPoints);
PM_DebugDynamics(&car->sBody, car->sPoints);
}
*/
PM_CalculateTargetBody(car, &car->sBody, &car->tBody, car->sPoints, car->tPoints, time);
//t4 = trap_Milliseconds();
PM_Trace_Points(car, car->sPoints, car->tPoints, time);
//t5 = trap_Milliseconds();
// print out the forces
/*
if (pm->pDebug > 0 && pm->pDebug <= 8){
if (pm->client)
Com_Printf("client tBody -----------------------------------------\n");
else
Com_Printf("server tBody -----------------------------------------\n");
// PM_DebugForces(&car->tBody, car->tPoints);
PM_DebugDynamics(&car->tBody, car->tPoints);
}
*/
PM_CopyTargetToSource(&car->tBody, &car->sBody, car->tPoints, car->sPoints);
// clear forces at the end of the frame instead of at the beginning so we
// can apply forces from nearby explosions between frames
PM_ClearCarForces(&car->sBody, car->sPoints);
// #ifdef CGAME
// Com_Printf( "numTraces %i\n", numTraces );
// #endif
// Com_Printf( "t1 %d, t2 %d, t3 %d, t4 %d, t5 %d\n", t1 - t, t2 - t, t3 - t, t4 - t, t5 - t );
}