2017-07-10 01:33:41 +00:00
|
|
|
/* Copyright (c) 2007-2008 CSIRO
|
|
|
|
Copyright (c) 2007-2009 Xiph.Org Foundation
|
|
|
|
Written by Jean-Marc Valin */
|
|
|
|
/*
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions
|
|
|
|
are met:
|
|
|
|
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer in the
|
|
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
|
|
#include "config.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include "modes.h"
|
|
|
|
#include "cwrs.h"
|
|
|
|
#include "arch.h"
|
|
|
|
#include "os_support.h"
|
|
|
|
|
|
|
|
#include "entcode.h"
|
|
|
|
#include "rate.h"
|
|
|
|
|
|
|
|
static const unsigned char LOG2_FRAC_TABLE[24]={
|
|
|
|
0,
|
|
|
|
8,13,
|
|
|
|
16,19,21,23,
|
|
|
|
24,26,27,28,29,30,31,32,
|
|
|
|
32,33,34,34,35,36,36,37,37
|
|
|
|
};
|
|
|
|
|
|
|
|
#ifdef CUSTOM_MODES
|
|
|
|
|
|
|
|
/*Determines if V(N,K) fits in a 32-bit unsigned integer.
|
|
|
|
N and K are themselves limited to 15 bits.*/
|
|
|
|
static int fits_in32(int _n, int _k)
|
|
|
|
{
|
|
|
|
static const opus_int16 maxN[15] = {
|
|
|
|
32767, 32767, 32767, 1476, 283, 109, 60, 40,
|
|
|
|
29, 24, 20, 18, 16, 14, 13};
|
|
|
|
static const opus_int16 maxK[15] = {
|
|
|
|
32767, 32767, 32767, 32767, 1172, 238, 95, 53,
|
|
|
|
36, 27, 22, 18, 16, 15, 13};
|
|
|
|
if (_n>=14)
|
|
|
|
{
|
|
|
|
if (_k>=14)
|
|
|
|
return 0;
|
|
|
|
else
|
|
|
|
return _n <= maxN[_k];
|
|
|
|
} else {
|
|
|
|
return _k <= maxK[_n];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void compute_pulse_cache(CELTMode *m, int LM)
|
|
|
|
{
|
|
|
|
int C;
|
|
|
|
int i;
|
|
|
|
int j;
|
|
|
|
int curr=0;
|
|
|
|
int nbEntries=0;
|
|
|
|
int entryN[100], entryK[100], entryI[100];
|
|
|
|
const opus_int16 *eBands = m->eBands;
|
|
|
|
PulseCache *cache = &m->cache;
|
|
|
|
opus_int16 *cindex;
|
|
|
|
unsigned char *bits;
|
|
|
|
unsigned char *cap;
|
|
|
|
|
|
|
|
cindex = (opus_int16 *)opus_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2));
|
|
|
|
cache->index = cindex;
|
|
|
|
|
|
|
|
/* Scan for all unique band sizes */
|
|
|
|
for (i=0;i<=LM+1;i++)
|
|
|
|
{
|
|
|
|
for (j=0;j<m->nbEBands;j++)
|
|
|
|
{
|
|
|
|
int k;
|
|
|
|
int N = (eBands[j+1]-eBands[j])<<i>>1;
|
|
|
|
cindex[i*m->nbEBands+j] = -1;
|
|
|
|
/* Find other bands that have the same size */
|
|
|
|
for (k=0;k<=i;k++)
|
|
|
|
{
|
|
|
|
int n;
|
|
|
|
for (n=0;n<m->nbEBands && (k!=i || n<j);n++)
|
|
|
|
{
|
|
|
|
if (N == (eBands[n+1]-eBands[n])<<k>>1)
|
|
|
|
{
|
|
|
|
cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (cache->index[i*m->nbEBands+j] == -1 && N!=0)
|
|
|
|
{
|
|
|
|
int K;
|
|
|
|
entryN[nbEntries] = N;
|
|
|
|
K = 0;
|
|
|
|
while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO)
|
|
|
|
K++;
|
|
|
|
entryK[nbEntries] = K;
|
|
|
|
cindex[i*m->nbEBands+j] = curr;
|
|
|
|
entryI[nbEntries] = curr;
|
|
|
|
|
|
|
|
curr += K+1;
|
|
|
|
nbEntries++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
bits = (unsigned char *)opus_alloc(sizeof(unsigned char)*curr);
|
|
|
|
cache->bits = bits;
|
|
|
|
cache->size = curr;
|
|
|
|
/* Compute the cache for all unique sizes */
|
|
|
|
for (i=0;i<nbEntries;i++)
|
|
|
|
{
|
|
|
|
unsigned char *ptr = bits+entryI[i];
|
|
|
|
opus_int16 tmp[CELT_MAX_PULSES+1];
|
|
|
|
get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES);
|
|
|
|
for (j=1;j<=entryK[i];j++)
|
|
|
|
ptr[j] = tmp[get_pulses(j)]-1;
|
|
|
|
ptr[0] = entryK[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute the maximum rate for each band at which we'll reliably use as
|
|
|
|
many bits as we ask for. */
|
|
|
|
cache->caps = cap = (unsigned char *)opus_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands);
|
|
|
|
for (i=0;i<=LM;i++)
|
|
|
|
{
|
|
|
|
for (C=1;C<=2;C++)
|
|
|
|
{
|
|
|
|
for (j=0;j<m->nbEBands;j++)
|
|
|
|
{
|
|
|
|
int N0;
|
|
|
|
int max_bits;
|
|
|
|
N0 = m->eBands[j+1]-m->eBands[j];
|
|
|
|
/* N=1 bands only have a sign bit and fine bits. */
|
|
|
|
if (N0<<i == 1)
|
|
|
|
max_bits = C*(1+MAX_FINE_BITS)<<BITRES;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const unsigned char *pcache;
|
|
|
|
opus_int32 num;
|
|
|
|
opus_int32 den;
|
|
|
|
int LM0;
|
|
|
|
int N;
|
|
|
|
int offset;
|
|
|
|
int ndof;
|
|
|
|
int qb;
|
|
|
|
int k;
|
|
|
|
LM0 = 0;
|
|
|
|
/* Even-sized bands bigger than N=2 can be split one more time.
|
|
|
|
As of commit 44203907 all bands >1 are even, including custom modes.*/
|
|
|
|
if (N0 > 2)
|
|
|
|
{
|
|
|
|
N0>>=1;
|
|
|
|
LM0--;
|
|
|
|
}
|
|
|
|
/* N0=1 bands can't be split down to N<2. */
|
|
|
|
else if (N0 <= 1)
|
|
|
|
{
|
|
|
|
LM0=IMIN(i,1);
|
|
|
|
N0<<=LM0;
|
|
|
|
}
|
|
|
|
/* Compute the cost for the lowest-level PVQ of a fully split
|
|
|
|
band. */
|
|
|
|
pcache = bits + cindex[(LM0+1)*m->nbEBands+j];
|
|
|
|
max_bits = pcache[pcache[0]]+1;
|
|
|
|
/* Add in the cost of coding regular splits. */
|
|
|
|
N = N0;
|
|
|
|
for(k=0;k<i-LM0;k++){
|
|
|
|
max_bits <<= 1;
|
|
|
|
/* Offset the number of qtheta bits by log2(N)/2
|
|
|
|
+ QTHETA_OFFSET compared to their "fair share" of
|
|
|
|
total/N */
|
|
|
|
offset = ((m->logN[j]+((LM0+k)<<BITRES))>>1)-QTHETA_OFFSET;
|
|
|
|
/* The number of qtheta bits we'll allocate if the remainder
|
|
|
|
is to be max_bits.
|
|
|
|
The average measured cost for theta is 0.89701 times qb,
|
|
|
|
approximated here as 459/512. */
|
|
|
|
num=459*(opus_int32)((2*N-1)*offset+max_bits);
|
|
|
|
den=((opus_int32)(2*N-1)<<9)-459;
|
|
|
|
qb = IMIN((num+(den>>1))/den, 57);
|
|
|
|
celt_assert(qb >= 0);
|
|
|
|
max_bits += qb;
|
|
|
|
N <<= 1;
|
|
|
|
}
|
|
|
|
/* Add in the cost of a stereo split, if necessary. */
|
|
|
|
if (C==2)
|
|
|
|
{
|
|
|
|
max_bits <<= 1;
|
|
|
|
offset = ((m->logN[j]+(i<<BITRES))>>1)-(N==2?QTHETA_OFFSET_TWOPHASE:QTHETA_OFFSET);
|
|
|
|
ndof = 2*N-1-(N==2);
|
|
|
|
/* The average measured cost for theta with the step PDF is
|
|
|
|
0.95164 times qb, approximated here as 487/512. */
|
|
|
|
num = (N==2?512:487)*(opus_int32)(max_bits+ndof*offset);
|
|
|
|
den = ((opus_int32)ndof<<9)-(N==2?512:487);
|
|
|
|
qb = IMIN((num+(den>>1))/den, (N==2?64:61));
|
|
|
|
celt_assert(qb >= 0);
|
|
|
|
max_bits += qb;
|
|
|
|
}
|
|
|
|
/* Add the fine bits we'll use. */
|
|
|
|
/* Compensate for the extra DoF in stereo */
|
|
|
|
ndof = C*N + ((C==2 && N>2) ? 1 : 0);
|
|
|
|
/* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET
|
|
|
|
compared to their "fair share" of total/N */
|
|
|
|
offset = ((m->logN[j] + (i<<BITRES))>>1)-FINE_OFFSET;
|
|
|
|
/* N=2 is the only point that doesn't match the curve */
|
|
|
|
if (N==2)
|
|
|
|
offset += 1<<BITRES>>2;
|
|
|
|
/* The number of fine bits we'll allocate if the remainder is
|
|
|
|
to be max_bits. */
|
|
|
|
num = max_bits+ndof*offset;
|
|
|
|
den = (ndof-1)<<BITRES;
|
|
|
|
qb = IMIN((num+(den>>1))/den, MAX_FINE_BITS);
|
|
|
|
celt_assert(qb >= 0);
|
|
|
|
max_bits += C*qb<<BITRES;
|
|
|
|
}
|
|
|
|
max_bits = (4*max_bits/(C*((m->eBands[j+1]-m->eBands[j])<<i)))-64;
|
|
|
|
celt_assert(max_bits >= 0);
|
|
|
|
celt_assert(max_bits < 256);
|
|
|
|
*cap++ = (unsigned char)max_bits;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
|
|
|
|
#define ALLOC_STEPS 6
|
|
|
|
|
|
|
|
static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start,
|
|
|
|
const int *bits1, const int *bits2, const int *thresh, const int *cap, opus_int32 total, opus_int32 *_balance,
|
|
|
|
int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits,
|
|
|
|
int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
|
|
|
|
{
|
|
|
|
opus_int32 psum;
|
|
|
|
int lo, hi;
|
|
|
|
int i, j;
|
|
|
|
int logM;
|
|
|
|
int stereo;
|
|
|
|
int codedBands=-1;
|
|
|
|
int alloc_floor;
|
|
|
|
opus_int32 left, percoeff;
|
|
|
|
int done;
|
|
|
|
opus_int32 balance;
|
|
|
|
SAVE_STACK;
|
|
|
|
|
|
|
|
alloc_floor = C<<BITRES;
|
|
|
|
stereo = C>1;
|
|
|
|
|
|
|
|
logM = LM<<BITRES;
|
|
|
|
lo = 0;
|
|
|
|
hi = 1<<ALLOC_STEPS;
|
|
|
|
for (i=0;i<ALLOC_STEPS;i++)
|
|
|
|
{
|
|
|
|
int mid = (lo+hi)>>1;
|
|
|
|
psum = 0;
|
|
|
|
done = 0;
|
|
|
|
for (j=end;j-->start;)
|
|
|
|
{
|
|
|
|
int tmp = bits1[j] + (mid*(opus_int32)bits2[j]>>ALLOC_STEPS);
|
|
|
|
if (tmp >= thresh[j] || done)
|
|
|
|
{
|
|
|
|
done = 1;
|
|
|
|
/* Don't allocate more than we can actually use */
|
|
|
|
psum += IMIN(tmp, cap[j]);
|
|
|
|
} else {
|
|
|
|
if (tmp >= alloc_floor)
|
|
|
|
psum += alloc_floor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (psum > total)
|
|
|
|
hi = mid;
|
|
|
|
else
|
|
|
|
lo = mid;
|
|
|
|
}
|
|
|
|
psum = 0;
|
|
|
|
/*printf ("interp bisection gave %d\n", lo);*/
|
|
|
|
done = 0;
|
|
|
|
for (j=end;j-->start;)
|
|
|
|
{
|
|
|
|
int tmp = bits1[j] + ((opus_int32)lo*bits2[j]>>ALLOC_STEPS);
|
|
|
|
if (tmp < thresh[j] && !done)
|
|
|
|
{
|
|
|
|
if (tmp >= alloc_floor)
|
|
|
|
tmp = alloc_floor;
|
|
|
|
else
|
|
|
|
tmp = 0;
|
|
|
|
} else
|
|
|
|
done = 1;
|
|
|
|
/* Don't allocate more than we can actually use */
|
|
|
|
tmp = IMIN(tmp, cap[j]);
|
|
|
|
bits[j] = tmp;
|
|
|
|
psum += tmp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide which bands to skip, working backwards from the end. */
|
|
|
|
for (codedBands=end;;codedBands--)
|
|
|
|
{
|
|
|
|
int band_width;
|
|
|
|
int band_bits;
|
|
|
|
int rem;
|
|
|
|
j = codedBands-1;
|
|
|
|
/* Never skip the first band, nor a band that has been boosted by
|
|
|
|
dynalloc.
|
|
|
|
In the first case, we'd be coding a bit to signal we're going to waste
|
|
|
|
all the other bits.
|
|
|
|
In the second case, we'd be coding a bit to redistribute all the bits
|
|
|
|
we just signaled should be cocentrated in this band. */
|
|
|
|
if (j<=skip_start)
|
|
|
|
{
|
|
|
|
/* Give the bit we reserved to end skipping back. */
|
|
|
|
total += skip_rsv;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*Figure out how many left-over bits we would be adding to this band.
|
|
|
|
This can include bits we've stolen back from higher, skipped bands.*/
|
|
|
|
left = total-psum;
|
|
|
|
percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
|
|
|
|
left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
|
|
|
|
rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0);
|
|
|
|
band_width = m->eBands[codedBands]-m->eBands[j];
|
|
|
|
band_bits = (int)(bits[j] + percoeff*band_width + rem);
|
|
|
|
/*Only code a skip decision if we're above the threshold for this band.
|
|
|
|
Otherwise it is force-skipped.
|
|
|
|
This ensures that we have enough bits to code the skip flag.*/
|
|
|
|
if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES)))
|
|
|
|
{
|
|
|
|
if (encode)
|
|
|
|
{
|
|
|
|
/*This if() block is the only part of the allocation function that
|
|
|
|
is not a mandatory part of the bitstream: any bands we choose to
|
|
|
|
skip here must be explicitly signaled.*/
|
2018-04-07 23:02:52 +00:00
|
|
|
int depth_threshold;
|
|
|
|
/*We choose a threshold with some hysteresis to keep bands from
|
|
|
|
fluctuating in and out, but we try not to fold below a certain point. */
|
|
|
|
if (codedBands > 17)
|
|
|
|
depth_threshold = j<prev ? 7 : 9;
|
|
|
|
else
|
|
|
|
depth_threshold = 0;
|
2017-07-10 01:33:41 +00:00
|
|
|
#ifdef FUZZING
|
|
|
|
if ((rand()&0x1) == 0)
|
|
|
|
#else
|
2018-04-07 23:02:52 +00:00
|
|
|
if (codedBands<=start+2 || (band_bits > (depth_threshold*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth))
|
2017-07-10 01:33:41 +00:00
|
|
|
#endif
|
|
|
|
{
|
|
|
|
ec_enc_bit_logp(ec, 1, 1);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
ec_enc_bit_logp(ec, 0, 1);
|
|
|
|
} else if (ec_dec_bit_logp(ec, 1)) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*We used a bit to skip this band.*/
|
|
|
|
psum += 1<<BITRES;
|
|
|
|
band_bits -= 1<<BITRES;
|
|
|
|
}
|
|
|
|
/*Reclaim the bits originally allocated to this band.*/
|
|
|
|
psum -= bits[j]+intensity_rsv;
|
|
|
|
if (intensity_rsv > 0)
|
|
|
|
intensity_rsv = LOG2_FRAC_TABLE[j-start];
|
|
|
|
psum += intensity_rsv;
|
|
|
|
if (band_bits >= alloc_floor)
|
|
|
|
{
|
|
|
|
/*If we have enough for a fine energy bit per channel, use it.*/
|
|
|
|
psum += alloc_floor;
|
|
|
|
bits[j] = alloc_floor;
|
|
|
|
} else {
|
|
|
|
/*Otherwise this band gets nothing at all.*/
|
|
|
|
bits[j] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
celt_assert(codedBands > start);
|
|
|
|
/* Code the intensity and dual stereo parameters. */
|
|
|
|
if (intensity_rsv > 0)
|
|
|
|
{
|
|
|
|
if (encode)
|
|
|
|
{
|
|
|
|
*intensity = IMIN(*intensity, codedBands);
|
|
|
|
ec_enc_uint(ec, *intensity-start, codedBands+1-start);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
*intensity = start+ec_dec_uint(ec, codedBands+1-start);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
*intensity = 0;
|
|
|
|
if (*intensity <= start)
|
|
|
|
{
|
|
|
|
total += dual_stereo_rsv;
|
|
|
|
dual_stereo_rsv = 0;
|
|
|
|
}
|
|
|
|
if (dual_stereo_rsv > 0)
|
|
|
|
{
|
|
|
|
if (encode)
|
|
|
|
ec_enc_bit_logp(ec, *dual_stereo, 1);
|
|
|
|
else
|
|
|
|
*dual_stereo = ec_dec_bit_logp(ec, 1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
*dual_stereo = 0;
|
|
|
|
|
|
|
|
/* Allocate the remaining bits */
|
|
|
|
left = total-psum;
|
|
|
|
percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
|
|
|
|
left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
|
|
|
|
for (j=start;j<codedBands;j++)
|
|
|
|
bits[j] += ((int)percoeff*(m->eBands[j+1]-m->eBands[j]));
|
|
|
|
for (j=start;j<codedBands;j++)
|
|
|
|
{
|
|
|
|
int tmp = (int)IMIN(left, m->eBands[j+1]-m->eBands[j]);
|
|
|
|
bits[j] += tmp;
|
|
|
|
left -= tmp;
|
|
|
|
}
|
|
|
|
/*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/
|
|
|
|
|
|
|
|
balance = 0;
|
|
|
|
for (j=start;j<codedBands;j++)
|
|
|
|
{
|
|
|
|
int N0, N, den;
|
|
|
|
int offset;
|
|
|
|
int NClogN;
|
|
|
|
opus_int32 excess, bit;
|
|
|
|
|
|
|
|
celt_assert(bits[j] >= 0);
|
|
|
|
N0 = m->eBands[j+1]-m->eBands[j];
|
|
|
|
N=N0<<LM;
|
|
|
|
bit = (opus_int32)bits[j]+balance;
|
|
|
|
|
|
|
|
if (N>1)
|
|
|
|
{
|
|
|
|
excess = MAX32(bit-cap[j],0);
|
|
|
|
bits[j] = bit-excess;
|
|
|
|
|
|
|
|
/* Compensate for the extra DoF in stereo */
|
|
|
|
den=(C*N+ ((C==2 && N>2 && !*dual_stereo && j<*intensity) ? 1 : 0));
|
|
|
|
|
|
|
|
NClogN = den*(m->logN[j] + logM);
|
|
|
|
|
|
|
|
/* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET
|
|
|
|
compared to their "fair share" of total/N */
|
|
|
|
offset = (NClogN>>1)-den*FINE_OFFSET;
|
|
|
|
|
|
|
|
/* N=2 is the only point that doesn't match the curve */
|
|
|
|
if (N==2)
|
|
|
|
offset += den<<BITRES>>2;
|
|
|
|
|
|
|
|
/* Changing the offset for allocating the second and third
|
|
|
|
fine energy bit */
|
|
|
|
if (bits[j] + offset < den*2<<BITRES)
|
|
|
|
offset += NClogN>>2;
|
|
|
|
else if (bits[j] + offset < den*3<<BITRES)
|
|
|
|
offset += NClogN>>3;
|
|
|
|
|
|
|
|
/* Divide with rounding */
|
|
|
|
ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))));
|
|
|
|
ebits[j] = celt_udiv(ebits[j], den)>>BITRES;
|
|
|
|
|
|
|
|
/* Make sure not to bust */
|
|
|
|
if (C*ebits[j] > (bits[j]>>BITRES))
|
|
|
|
ebits[j] = bits[j] >> stereo >> BITRES;
|
|
|
|
|
|
|
|
/* More than that is useless because that's about as far as PVQ can go */
|
|
|
|
ebits[j] = IMIN(ebits[j], MAX_FINE_BITS);
|
|
|
|
|
|
|
|
/* If we rounded down or capped this band, make it a candidate for the
|
|
|
|
final fine energy pass */
|
|
|
|
fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset;
|
|
|
|
|
|
|
|
/* Remove the allocated fine bits; the rest are assigned to PVQ */
|
|
|
|
bits[j] -= C*ebits[j]<<BITRES;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
/* For N=1, all bits go to fine energy except for a single sign bit */
|
|
|
|
excess = MAX32(0,bit-(C<<BITRES));
|
|
|
|
bits[j] = bit-excess;
|
|
|
|
ebits[j] = 0;
|
|
|
|
fine_priority[j] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fine energy can't take advantage of the re-balancing in
|
|
|
|
quant_all_bands().
|
|
|
|
Instead, do the re-balancing here.*/
|
|
|
|
if(excess > 0)
|
|
|
|
{
|
|
|
|
int extra_fine;
|
|
|
|
int extra_bits;
|
|
|
|
extra_fine = IMIN(excess>>(stereo+BITRES),MAX_FINE_BITS-ebits[j]);
|
|
|
|
ebits[j] += extra_fine;
|
|
|
|
extra_bits = extra_fine*C<<BITRES;
|
|
|
|
fine_priority[j] = extra_bits >= excess-balance;
|
|
|
|
excess -= extra_bits;
|
|
|
|
}
|
|
|
|
balance = excess;
|
|
|
|
|
|
|
|
celt_assert(bits[j] >= 0);
|
|
|
|
celt_assert(ebits[j] >= 0);
|
|
|
|
}
|
|
|
|
/* Save any remaining bits over the cap for the rebalancing in
|
|
|
|
quant_all_bands(). */
|
|
|
|
*_balance = balance;
|
|
|
|
|
|
|
|
/* The skipped bands use all their bits for fine energy. */
|
|
|
|
for (;j<end;j++)
|
|
|
|
{
|
|
|
|
ebits[j] = bits[j] >> stereo >> BITRES;
|
|
|
|
celt_assert(C*ebits[j]<<BITRES == bits[j]);
|
|
|
|
bits[j] = 0;
|
|
|
|
fine_priority[j] = ebits[j]<1;
|
|
|
|
}
|
|
|
|
RESTORE_STACK;
|
|
|
|
return codedBands;
|
|
|
|
}
|
|
|
|
|
|
|
|
int compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo,
|
|
|
|
opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
|
|
|
|
{
|
|
|
|
int lo, hi, len, j;
|
|
|
|
int codedBands;
|
|
|
|
int skip_start;
|
|
|
|
int skip_rsv;
|
|
|
|
int intensity_rsv;
|
|
|
|
int dual_stereo_rsv;
|
|
|
|
VARDECL(int, bits1);
|
|
|
|
VARDECL(int, bits2);
|
|
|
|
VARDECL(int, thresh);
|
|
|
|
VARDECL(int, trim_offset);
|
|
|
|
SAVE_STACK;
|
|
|
|
|
|
|
|
total = IMAX(total, 0);
|
|
|
|
len = m->nbEBands;
|
|
|
|
skip_start = start;
|
|
|
|
/* Reserve a bit to signal the end of manually skipped bands. */
|
|
|
|
skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0;
|
|
|
|
total -= skip_rsv;
|
|
|
|
/* Reserve bits for the intensity and dual stereo parameters. */
|
|
|
|
intensity_rsv = dual_stereo_rsv = 0;
|
|
|
|
if (C==2)
|
|
|
|
{
|
|
|
|
intensity_rsv = LOG2_FRAC_TABLE[end-start];
|
|
|
|
if (intensity_rsv>total)
|
|
|
|
intensity_rsv = 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
total -= intensity_rsv;
|
|
|
|
dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0;
|
|
|
|
total -= dual_stereo_rsv;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ALLOC(bits1, len, int);
|
|
|
|
ALLOC(bits2, len, int);
|
|
|
|
ALLOC(thresh, len, int);
|
|
|
|
ALLOC(trim_offset, len, int);
|
|
|
|
|
|
|
|
for (j=start;j<end;j++)
|
|
|
|
{
|
|
|
|
/* Below this threshold, we're sure not to allocate any PVQ bits */
|
|
|
|
thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES)>>4);
|
|
|
|
/* Tilt of the allocation curve */
|
|
|
|
trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(end-j-1)
|
|
|
|
*(1<<(LM+BITRES))>>6;
|
|
|
|
/* Giving less resolution to single-coefficient bands because they get
|
|
|
|
more benefit from having one coarse value per coefficient*/
|
|
|
|
if ((m->eBands[j+1]-m->eBands[j])<<LM==1)
|
|
|
|
trim_offset[j] -= C<<BITRES;
|
|
|
|
}
|
|
|
|
lo = 1;
|
|
|
|
hi = m->nbAllocVectors - 1;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
int done = 0;
|
|
|
|
int psum = 0;
|
|
|
|
int mid = (lo+hi) >> 1;
|
|
|
|
for (j=end;j-->start;)
|
|
|
|
{
|
|
|
|
int bitsj;
|
|
|
|
int N = m->eBands[j+1]-m->eBands[j];
|
|
|
|
bitsj = C*N*m->allocVectors[mid*len+j]<<LM>>2;
|
|
|
|
if (bitsj > 0)
|
|
|
|
bitsj = IMAX(0, bitsj + trim_offset[j]);
|
|
|
|
bitsj += offsets[j];
|
|
|
|
if (bitsj >= thresh[j] || done)
|
|
|
|
{
|
|
|
|
done = 1;
|
|
|
|
/* Don't allocate more than we can actually use */
|
|
|
|
psum += IMIN(bitsj, cap[j]);
|
|
|
|
} else {
|
|
|
|
if (bitsj >= C<<BITRES)
|
|
|
|
psum += C<<BITRES;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (psum > total)
|
|
|
|
hi = mid - 1;
|
|
|
|
else
|
|
|
|
lo = mid + 1;
|
|
|
|
/*printf ("lo = %d, hi = %d\n", lo, hi);*/
|
|
|
|
}
|
|
|
|
while (lo <= hi);
|
|
|
|
hi = lo--;
|
|
|
|
/*printf ("interp between %d and %d\n", lo, hi);*/
|
|
|
|
for (j=start;j<end;j++)
|
|
|
|
{
|
|
|
|
int bits1j, bits2j;
|
|
|
|
int N = m->eBands[j+1]-m->eBands[j];
|
|
|
|
bits1j = C*N*m->allocVectors[lo*len+j]<<LM>>2;
|
|
|
|
bits2j = hi>=m->nbAllocVectors ?
|
|
|
|
cap[j] : C*N*m->allocVectors[hi*len+j]<<LM>>2;
|
|
|
|
if (bits1j > 0)
|
|
|
|
bits1j = IMAX(0, bits1j + trim_offset[j]);
|
|
|
|
if (bits2j > 0)
|
|
|
|
bits2j = IMAX(0, bits2j + trim_offset[j]);
|
|
|
|
if (lo > 0)
|
|
|
|
bits1j += offsets[j];
|
|
|
|
bits2j += offsets[j];
|
|
|
|
if (offsets[j]>0)
|
|
|
|
skip_start = j;
|
|
|
|
bits2j = IMAX(0,bits2j-bits1j);
|
|
|
|
bits1[j] = bits1j;
|
|
|
|
bits2[j] = bits2j;
|
|
|
|
}
|
|
|
|
codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh, cap,
|
|
|
|
total, balance, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv,
|
|
|
|
pulses, ebits, fine_priority, C, LM, ec, encode, prev, signalBandwidth);
|
|
|
|
RESTORE_STACK;
|
|
|
|
return codedBands;
|
|
|
|
}
|
|
|
|
|