mirror of
https://github.com/Q3Rally-Team/q3rally.git
synced 2024-11-26 13:51:42 +00:00
333 lines
7.4 KiB
C
333 lines
7.4 KiB
C
|
/* Copyright (C) 2002 Jean-Marc Valin */
|
||
|
/**
|
||
|
@file math_approx.h
|
||
|
@brief Various math approximation functions for Speex
|
||
|
*/
|
||
|
/*
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions
|
||
|
are met:
|
||
|
|
||
|
- Redistributions of source code must retain the above copyright
|
||
|
notice, this list of conditions and the following disclaimer.
|
||
|
|
||
|
- Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
|
||
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
||
|
contributors may be used to endorse or promote products derived from
|
||
|
this software without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#ifndef MATH_APPROX_H
|
||
|
#define MATH_APPROX_H
|
||
|
|
||
|
#include "arch.h"
|
||
|
|
||
|
#ifndef FIXED_POINT
|
||
|
|
||
|
#define spx_sqrt sqrt
|
||
|
#define spx_acos acos
|
||
|
#define spx_exp exp
|
||
|
#define spx_cos_norm(x) (cos((.5f*M_PI)*(x)))
|
||
|
#define spx_atan atan
|
||
|
|
||
|
/** Generate a pseudo-random number */
|
||
|
static inline spx_word16_t speex_rand(spx_word16_t std, spx_int32_t *seed)
|
||
|
{
|
||
|
const unsigned int jflone = 0x3f800000;
|
||
|
const unsigned int jflmsk = 0x007fffff;
|
||
|
union {int i; float f;} ran;
|
||
|
*seed = 1664525 * *seed + 1013904223;
|
||
|
ran.i = jflone | (jflmsk & *seed);
|
||
|
ran.f -= 1.5;
|
||
|
return 3.4642*std*ran.f;
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
static inline spx_int16_t spx_ilog2(spx_uint32_t x)
|
||
|
{
|
||
|
int r=0;
|
||
|
if (x>=(spx_int32_t)65536)
|
||
|
{
|
||
|
x >>= 16;
|
||
|
r += 16;
|
||
|
}
|
||
|
if (x>=256)
|
||
|
{
|
||
|
x >>= 8;
|
||
|
r += 8;
|
||
|
}
|
||
|
if (x>=16)
|
||
|
{
|
||
|
x >>= 4;
|
||
|
r += 4;
|
||
|
}
|
||
|
if (x>=4)
|
||
|
{
|
||
|
x >>= 2;
|
||
|
r += 2;
|
||
|
}
|
||
|
if (x>=2)
|
||
|
{
|
||
|
r += 1;
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static inline spx_int16_t spx_ilog4(spx_uint32_t x)
|
||
|
{
|
||
|
int r=0;
|
||
|
if (x>=(spx_int32_t)65536)
|
||
|
{
|
||
|
x >>= 16;
|
||
|
r += 8;
|
||
|
}
|
||
|
if (x>=256)
|
||
|
{
|
||
|
x >>= 8;
|
||
|
r += 4;
|
||
|
}
|
||
|
if (x>=16)
|
||
|
{
|
||
|
x >>= 4;
|
||
|
r += 2;
|
||
|
}
|
||
|
if (x>=4)
|
||
|
{
|
||
|
r += 1;
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
#ifdef FIXED_POINT
|
||
|
|
||
|
/** Generate a pseudo-random number */
|
||
|
static inline spx_word16_t speex_rand(spx_word16_t std, spx_int32_t *seed)
|
||
|
{
|
||
|
spx_word32_t res;
|
||
|
*seed = 1664525 * *seed + 1013904223;
|
||
|
res = MULT16_16(EXTRACT16(SHR32(*seed,16)),std);
|
||
|
return EXTRACT16(PSHR32(SUB32(res, SHR32(res, 3)),14));
|
||
|
}
|
||
|
|
||
|
/* sqrt(x) ~= 0.22178 + 1.29227*x - 0.77070*x^2 + 0.25723*x^3 (for .25 < x < 1) */
|
||
|
/*#define C0 3634
|
||
|
#define C1 21173
|
||
|
#define C2 -12627
|
||
|
#define C3 4215*/
|
||
|
|
||
|
/* sqrt(x) ~= 0.22178 + 1.29227*x - 0.77070*x^2 + 0.25659*x^3 (for .25 < x < 1) */
|
||
|
#define C0 3634
|
||
|
#define C1 21173
|
||
|
#define C2 -12627
|
||
|
#define C3 4204
|
||
|
|
||
|
static inline spx_word16_t spx_sqrt(spx_word32_t x)
|
||
|
{
|
||
|
int k;
|
||
|
spx_word32_t rt;
|
||
|
k = spx_ilog4(x)-6;
|
||
|
x = VSHR32(x, (k<<1));
|
||
|
rt = ADD16(C0, MULT16_16_Q14(x, ADD16(C1, MULT16_16_Q14(x, ADD16(C2, MULT16_16_Q14(x, (C3)))))));
|
||
|
rt = VSHR32(rt,7-k);
|
||
|
return rt;
|
||
|
}
|
||
|
|
||
|
/* log(x) ~= -2.18151 + 4.20592*x - 2.88938*x^2 + 0.86535*x^3 (for .5 < x < 1) */
|
||
|
|
||
|
|
||
|
#define A1 16469
|
||
|
#define A2 2242
|
||
|
#define A3 1486
|
||
|
|
||
|
static inline spx_word16_t spx_acos(spx_word16_t x)
|
||
|
{
|
||
|
int s=0;
|
||
|
spx_word16_t ret;
|
||
|
spx_word16_t sq;
|
||
|
if (x<0)
|
||
|
{
|
||
|
s=1;
|
||
|
x = NEG16(x);
|
||
|
}
|
||
|
x = SUB16(16384,x);
|
||
|
|
||
|
x = x >> 1;
|
||
|
sq = MULT16_16_Q13(x, ADD16(A1, MULT16_16_Q13(x, ADD16(A2, MULT16_16_Q13(x, (A3))))));
|
||
|
ret = spx_sqrt(SHL32(EXTEND32(sq),13));
|
||
|
|
||
|
/*ret = spx_sqrt(67108864*(-1.6129e-04 + 2.0104e+00*f + 2.7373e-01*f*f + 1.8136e-01*f*f*f));*/
|
||
|
if (s)
|
||
|
ret = SUB16(25736,ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
|
||
|
#define K1 8192
|
||
|
#define K2 -4096
|
||
|
#define K3 340
|
||
|
#define K4 -10
|
||
|
|
||
|
static inline spx_word16_t spx_cos(spx_word16_t x)
|
||
|
{
|
||
|
spx_word16_t x2;
|
||
|
|
||
|
if (x<12868)
|
||
|
{
|
||
|
x2 = MULT16_16_P13(x,x);
|
||
|
return ADD32(K1, MULT16_16_P13(x2, ADD32(K2, MULT16_16_P13(x2, ADD32(K3, MULT16_16_P13(K4, x2))))));
|
||
|
} else {
|
||
|
x = SUB16(25736,x);
|
||
|
x2 = MULT16_16_P13(x,x);
|
||
|
return SUB32(-K1, MULT16_16_P13(x2, ADD32(K2, MULT16_16_P13(x2, ADD32(K3, MULT16_16_P13(K4, x2))))));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define L1 32767
|
||
|
#define L2 -7651
|
||
|
#define L3 8277
|
||
|
#define L4 -626
|
||
|
|
||
|
static inline spx_word16_t _spx_cos_pi_2(spx_word16_t x)
|
||
|
{
|
||
|
spx_word16_t x2;
|
||
|
|
||
|
x2 = MULT16_16_P15(x,x);
|
||
|
return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2))))))));
|
||
|
}
|
||
|
|
||
|
static inline spx_word16_t spx_cos_norm(spx_word32_t x)
|
||
|
{
|
||
|
x = x&0x0001ffff;
|
||
|
if (x>SHL32(EXTEND32(1), 16))
|
||
|
x = SUB32(SHL32(EXTEND32(1), 17),x);
|
||
|
if (x&0x00007fff)
|
||
|
{
|
||
|
if (x<SHL32(EXTEND32(1), 15))
|
||
|
{
|
||
|
return _spx_cos_pi_2(EXTRACT16(x));
|
||
|
} else {
|
||
|
return NEG32(_spx_cos_pi_2(EXTRACT16(65536-x)));
|
||
|
}
|
||
|
} else {
|
||
|
if (x&0x0000ffff)
|
||
|
return 0;
|
||
|
else if (x&0x0001ffff)
|
||
|
return -32767;
|
||
|
else
|
||
|
return 32767;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
K0 = 1
|
||
|
K1 = log(2)
|
||
|
K2 = 3-4*log(2)
|
||
|
K3 = 3*log(2) - 2
|
||
|
*/
|
||
|
#define D0 16384
|
||
|
#define D1 11356
|
||
|
#define D2 3726
|
||
|
#define D3 1301
|
||
|
/* Input in Q11 format, output in Q16 */
|
||
|
static inline spx_word32_t spx_exp2(spx_word16_t x)
|
||
|
{
|
||
|
int integer;
|
||
|
spx_word16_t frac;
|
||
|
integer = SHR16(x,11);
|
||
|
if (integer>14)
|
||
|
return 0x7fffffff;
|
||
|
else if (integer < -15)
|
||
|
return 0;
|
||
|
frac = SHL16(x-SHL16(integer,11),3);
|
||
|
frac = ADD16(D0, MULT16_16_Q14(frac, ADD16(D1, MULT16_16_Q14(frac, ADD16(D2 , MULT16_16_Q14(D3,frac))))));
|
||
|
return VSHR32(EXTEND32(frac), -integer-2);
|
||
|
}
|
||
|
|
||
|
/* Input in Q11 format, output in Q16 */
|
||
|
static inline spx_word32_t spx_exp(spx_word16_t x)
|
||
|
{
|
||
|
if (x>21290)
|
||
|
return 0x7fffffff;
|
||
|
else if (x<-21290)
|
||
|
return 0;
|
||
|
else
|
||
|
return spx_exp2(MULT16_16_P14(23637,x));
|
||
|
}
|
||
|
#define M1 32767
|
||
|
#define M2 -21
|
||
|
#define M3 -11943
|
||
|
#define M4 4936
|
||
|
|
||
|
static inline spx_word16_t spx_atan01(spx_word16_t x)
|
||
|
{
|
||
|
return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
|
||
|
}
|
||
|
|
||
|
#undef M1
|
||
|
#undef M2
|
||
|
#undef M3
|
||
|
#undef M4
|
||
|
|
||
|
/* Input in Q15, output in Q14 */
|
||
|
static inline spx_word16_t spx_atan(spx_word32_t x)
|
||
|
{
|
||
|
if (x <= 32767)
|
||
|
{
|
||
|
return SHR16(spx_atan01(x),1);
|
||
|
} else {
|
||
|
int e = spx_ilog2(x);
|
||
|
if (e>=29)
|
||
|
return 25736;
|
||
|
x = DIV32_16(SHL32(EXTEND32(32767),29-e), EXTRACT16(SHR32(x, e-14)));
|
||
|
return SUB16(25736, SHR16(spx_atan01(x),1));
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
#ifndef M_PI
|
||
|
#define M_PI 3.14159265358979323846 /* pi */
|
||
|
#endif
|
||
|
|
||
|
#define C1 0.9999932946f
|
||
|
#define C2 -0.4999124376f
|
||
|
#define C3 0.0414877472f
|
||
|
#define C4 -0.0012712095f
|
||
|
|
||
|
|
||
|
#define SPX_PI_2 1.5707963268
|
||
|
static inline spx_word16_t spx_cos(spx_word16_t x)
|
||
|
{
|
||
|
if (x<SPX_PI_2)
|
||
|
{
|
||
|
x *= x;
|
||
|
return C1 + x*(C2+x*(C3+C4*x));
|
||
|
} else {
|
||
|
x = M_PI-x;
|
||
|
x *= x;
|
||
|
return NEG16(C1 + x*(C2+x*(C3+C4*x)));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#endif
|