vhlt/hlbsp/tjunc.cpp
2016-09-21 00:07:53 +03:00

669 lines
16 KiB
C++

#include "bsp5.h"
typedef struct wvert_s
{
vec_t t;
struct wvert_s* prev;
struct wvert_s* next;
}
wvert_t;
typedef struct wedge_s
{
struct wedge_s* next;
vec3_t dir;
vec3_t origin;
wvert_t head;
}
wedge_t;
static int numwedges;
static int numwverts;
static int tjuncs;
static int tjuncfaces;
#define MAX_WVERTS 0x40000
#define MAX_WEDGES 0x20000
static wvert_t wverts[MAX_WVERTS];
static wedge_t wedges[MAX_WEDGES];
//============================================================================
#ifdef HLBSP_HASH_FIX
#define NUM_HASH 4096
#else
#define NUM_HASH 1024
#endif
wedge_t* wedge_hash[NUM_HASH];
static vec3_t hash_min;
static vec3_t hash_scale;
#ifdef HLBSP_HASH_FIX
// It's okay if the coordinates go under hash_min, because they are hashed in a cyclic way (modulus by hash_numslots)
// So please don't change the hardcoded hash_min and scale
static int hash_numslots[3];
#define MAX_HASH_NEIGHBORS 4
#endif
static void InitHash(const vec3_t mins, const vec3_t maxs)
{
vec3_t size;
vec_t volume;
vec_t scale;
int newsize[2];
#ifdef HLBSP_HASH_FIX
// Let's ignore the parameters and make things more predictable, so there won't be strange cases such as division by 0 or extreme scaling values.
VectorFill(hash_min, -8000);
VectorFill(size, 16000);
#else
VectorCopy(mins, hash_min);
VectorSubtract(maxs, mins, size);
#endif
memset(wedge_hash, 0, sizeof(wedge_hash));
volume = size[0] * size[1];
scale = sqrt(volume / NUM_HASH);
#ifdef HLBSP_HASH_FIX
hash_numslots[0] = (int)floor (size[0] / scale);
hash_numslots[1] = (int)floor (size[1] / scale);
while (hash_numslots[0] * hash_numslots[1] > NUM_HASH)
{
Developer (DEVELOPER_LEVEL_WARNING, "hash_numslots[0] * hash_numslots[1] > NUM_HASH");
hash_numslots[0]--;
hash_numslots[1]--;
}
hash_scale[0] = hash_numslots[0] / size[0];
hash_scale[1] = hash_numslots[1] / size[1];
#else
newsize[0] = size[0] / scale;
newsize[1] = size[1] / scale;
hash_scale[0] = newsize[0] / size[0];
hash_scale[1] = newsize[1] / size[1];
hash_scale[2] = newsize[1];
#endif
}
#ifdef HLBSP_HASH_FIX
static int HashVec (const vec3_t vec, int *num_hashneighbors, int *hashneighbors)
{
int h;
int i;
int x;
int y;
int slot[2];
vec_t normalized[2];
vec_t slotdiff[2];
for (i = 0; i < 2; i++)
{
normalized[i] = hash_scale[i] * (vec[i] - hash_min[i]);
slot[i] = (int)floor (normalized[i]);
slotdiff[i] = normalized[i] - (vec_t)slot[i];
slot[i] = (slot[i] + hash_numslots[i]) % hash_numslots[i];
slot[i] = (slot[i] + hash_numslots[i]) % hash_numslots[i]; // do it twice to handle negative values
}
h = slot[0] * hash_numslots[1] + slot[1];
*num_hashneighbors = 0;
for (x = -1; x <= 1; x++)
{
if (x == -1 && slotdiff[0] > hash_scale[0] * (2 * ON_EPSILON) ||
x == 1 && slotdiff[0] < 1 - hash_scale[0] * (2 * ON_EPSILON))
{
continue;
}
for (y = -1; y <= 1; y++)
{
if (y == -1 && slotdiff[1] > hash_scale[1] * (2 * ON_EPSILON) ||
y == 1 && slotdiff[1] < 1 - hash_scale[1] * (2 * ON_EPSILON))
{
continue;
}
if (*num_hashneighbors >= MAX_HASH_NEIGHBORS)
{
Error ("HashVec: internal error.");
}
hashneighbors[*num_hashneighbors] =
((slot[0] + x + hash_numslots[0]) % hash_numslots[0]) * hash_numslots[1] +
(slot[1] + y + hash_numslots[1]) % hash_numslots[1];
(*num_hashneighbors)++;
}
}
return h;
}
#else
static unsigned HashVec(const vec3_t vec)
{
unsigned h;
h = hash_scale[0] * (vec[0] - hash_min[0]) * hash_scale[2] + hash_scale[1] * (vec[1] - hash_min[1]);
if (h >= NUM_HASH)
{
return NUM_HASH - 1;
}
return h;
}
#endif
//============================================================================
static bool CanonicalVector(vec3_t vec)
{
if (VectorNormalize(vec))
{
if (vec[0] > NORMAL_EPSILON )
{
return true;
}
else if (vec[0] < -NORMAL_EPSILON )
{
VectorSubtract(vec3_origin, vec, vec);
return true;
}
else
{
vec[0] = 0;
}
if (vec[1] > NORMAL_EPSILON )
{
return true;
}
else if (vec[1] < -NORMAL_EPSILON )
{
VectorSubtract(vec3_origin, vec, vec);
return true;
}
else
{
vec[1] = 0;
}
if (vec[2] > NORMAL_EPSILON )
{
return true;
}
else if (vec[2] < -NORMAL_EPSILON )
{
VectorSubtract(vec3_origin, vec, vec);
return true;
}
else
{
vec[2] = 0;
}
// hlassert(false);
return false;
}
// hlassert(false);
return false;
}
static wedge_t *FindEdge(const vec3_t p1, const vec3_t p2, vec_t* t1, vec_t* t2)
{
vec3_t origin;
vec3_t dir;
wedge_t* w;
vec_t temp;
int h;
#ifdef HLBSP_HASH_FIX
int num_hashneighbors;
int hashneighbors[MAX_HASH_NEIGHBORS];
#endif
VectorSubtract(p2, p1, dir);
if (!CanonicalVector(dir))
{
#if _DEBUG
Warning("CanonicalVector: degenerate @ (%4.3f %4.3f %4.3f )\n", p1[0], p1[1], p1[2]);
#endif
}
*t1 = DotProduct(p1, dir);
*t2 = DotProduct(p2, dir);
VectorMA(p1, -*t1, dir, origin);
if (*t1 > *t2)
{
temp = *t1;
*t1 = *t2;
*t2 = temp;
}
#ifdef HLBSP_HASH_FIX
h = HashVec(origin, &num_hashneighbors, hashneighbors);
#else
h = HashVec(origin);
#endif
#ifdef HLBSP_HASH_FIX
for (int i = 0; i < num_hashneighbors; ++i)
for (w = wedge_hash[hashneighbors[i]]; w; w = w->next)
#else
for (w = wedge_hash[h]; w; w = w->next)
#endif
{
#ifdef HLBSP_TJUNC_PRECISION_FIX
if (fabs (w->origin[0] - origin[0]) > EQUAL_EPSILON ||
fabs (w->origin[1] - origin[1]) > EQUAL_EPSILON ||
fabs (w->origin[2] - origin[2]) > EQUAL_EPSILON )
{
continue;
}
if (fabs (w->dir[0] - dir[0]) > NORMAL_EPSILON ||
fabs (w->dir[1] - dir[1]) > NORMAL_EPSILON ||
fabs (w->dir[2] - dir[2]) > NORMAL_EPSILON )
{
continue;
}
#else
temp = w->origin[0] - origin[0];
if (temp < -EQUAL_EPSILON || temp > EQUAL_EPSILON)
{
continue;
}
temp = w->origin[1] - origin[1];
if (temp < -EQUAL_EPSILON || temp > EQUAL_EPSILON)
{
continue;
}
temp = w->origin[2] - origin[2];
if (temp < -EQUAL_EPSILON || temp > EQUAL_EPSILON)
{
continue;
}
temp = w->dir[0] - dir[0];
if (temp < -EQUAL_EPSILON || temp > EQUAL_EPSILON)
{
continue;
}
temp = w->dir[1] - dir[1];
if (temp < -EQUAL_EPSILON || temp > EQUAL_EPSILON)
{
continue;
}
temp = w->dir[2] - dir[2];
if (temp < -EQUAL_EPSILON || temp > EQUAL_EPSILON)
{
continue;
}
#endif
return w;
}
hlassume(numwedges < MAX_WEDGES, assume_MAX_WEDGES);
w = &wedges[numwedges];
numwedges++;
w->next = wedge_hash[h];
wedge_hash[h] = w;
VectorCopy(origin, w->origin);
VectorCopy(dir, w->dir);
w->head.next = w->head.prev = &w->head;
w->head.t = 99999;
return w;
}
/*
* ===============
* AddVert
*
* ===============
*/
#define T_EPSILON ON_EPSILON
static void AddVert(const wedge_t* const w, const vec_t t)
{
wvert_t* v;
wvert_t* newv;
v = w->head.next;
do
{
if (fabs(v->t - t) < T_EPSILON)
{
return;
}
if (v->t > t)
{
break;
}
v = v->next;
}
while (1);
// insert a new wvert before v
hlassume(numwverts < MAX_WVERTS, assume_MAX_WVERTS);
newv = &wverts[numwverts];
numwverts++;
newv->t = t;
newv->next = v;
newv->prev = v->prev;
v->prev->next = newv;
v->prev = newv;
}
/*
* ===============
* AddEdge
* ===============
*/
static void AddEdge(const vec3_t p1, const vec3_t p2)
{
wedge_t* w;
vec_t t1;
vec_t t2;
w = FindEdge(p1, p2, &t1, &t2);
AddVert(w, t1);
AddVert(w, t2);
}
/*
* ===============
* AddFaceEdges
*
* ===============
*/
static void AddFaceEdges(const face_t* const f)
{
int i, j;
for (i = 0; i < f->numpoints; i++)
{
j = (i + 1) % f->numpoints;
AddEdge(f->pts[i], f->pts[j]);
}
}
//============================================================================
static byte superfacebuf[1024 * 16];
static face_t* superface = (face_t*)superfacebuf;
static int MAX_SUPERFACEEDGES = (sizeof(superfacebuf) - sizeof(face_t) + sizeof(superface->pts)) / sizeof(vec3_t);
static face_t* newlist;
static void SplitFaceForTjunc(face_t* f, face_t* original)
{
int i;
face_t* newface;
face_t* chain;
vec3_t dir, test;
vec_t v;
int firstcorner, lastcorner;
#ifdef _DEBUG
static int counter = 0;
Log("SplitFaceForTjunc %d\n", counter++);
#endif
chain = NULL;
do
{
hlassume(f->original == NULL, assume_ValidPointer); // "SplitFaceForTjunc: f->original"
if (f->numpoints <= MAXPOINTS)
{ // the face is now small enough without more cutting
// so copy it back to the original
*original = *f;
original->original = chain;
original->next = newlist;
newlist = original;
return;
}
tjuncfaces++;
restart:
// find the last corner
VectorSubtract(f->pts[f->numpoints - 1], f->pts[0], dir);
VectorNormalize(dir);
for (lastcorner = f->numpoints - 1; lastcorner > 0; lastcorner--)
{
VectorSubtract(f->pts[lastcorner - 1], f->pts[lastcorner], test);
VectorNormalize(test);
v = DotProduct(test, dir);
if (v < 1.0 - ON_EPSILON || v > 1.0 + ON_EPSILON)
{
break;
}
}
// find the first corner
VectorSubtract(f->pts[1], f->pts[0], dir);
VectorNormalize(dir);
for (firstcorner = 1; firstcorner < f->numpoints - 1; firstcorner++)
{
VectorSubtract(f->pts[firstcorner + 1], f->pts[firstcorner], test);
VectorNormalize(test);
v = DotProduct(test, dir);
if (v < 1.0 - ON_EPSILON || v > 1.0 + ON_EPSILON)
{
break;
}
}
if (firstcorner + 2 >= MAXPOINTS)
{
// rotate the point winding
VectorCopy(f->pts[0], test);
for (i = 1; i < f->numpoints; i++)
{
VectorCopy(f->pts[i], f->pts[i - 1]);
}
VectorCopy(test, f->pts[f->numpoints - 1]);
goto restart;
}
// cut off as big a piece as possible, less than MAXPOINTS, and not
// past lastcorner
newface = NewFaceFromFace(f);
hlassume(f->original == NULL, assume_ValidPointer); // "SplitFaceForTjunc: f->original"
newface->original = chain;
chain = newface;
newface->next = newlist;
newlist = newface;
if (f->numpoints - firstcorner <= MAXPOINTS)
{
newface->numpoints = firstcorner + 2;
}
else if (lastcorner + 2 < MAXPOINTS && f->numpoints - lastcorner <= MAXPOINTS)
{
newface->numpoints = lastcorner + 2;
}
else
{
newface->numpoints = MAXPOINTS;
}
for (i = 0; i < newface->numpoints; i++)
{
VectorCopy(f->pts[i], newface->pts[i]);
}
for (i = newface->numpoints - 1; i < f->numpoints; i++)
{
VectorCopy(f->pts[i], f->pts[i - (newface->numpoints - 2)]);
}
f->numpoints -= (newface->numpoints - 2);
}
while (1);
}
/*
* ===============
* FixFaceEdges
*
* ===============
*/
static void FixFaceEdges(face_t* f)
{
int i;
int j;
int k;
wedge_t* w;
wvert_t* v;
vec_t t1;
vec_t t2;
*superface = *f;
restart:
for (i = 0; i < superface->numpoints; i++)
{
j = (i + 1) % superface->numpoints;
w = FindEdge(superface->pts[i], superface->pts[j], &t1, &t2);
for (v = w->head.next; v->t < t1 + T_EPSILON; v = v->next)
{
}
if (v->t < t2 - T_EPSILON)
{
tjuncs++;
// insert a new vertex here
for (k = superface->numpoints; k > j; k--)
{
VectorCopy(superface->pts[k - 1], superface->pts[k]);
}
VectorMA(w->origin, v->t, w->dir, superface->pts[j]);
superface->numpoints++;
hlassume(superface->numpoints < MAX_SUPERFACEEDGES, assume_MAX_SUPERFACEEDGES);
goto restart;
}
}
if (superface->numpoints <= MAXPOINTS)
{
*f = *superface;
f->next = newlist;
newlist = f;
return;
}
// the face needs to be split into multiple faces because of too many edges
SplitFaceForTjunc(superface, f);
}
//============================================================================
static void tjunc_find_r(node_t* node)
{
face_t* f;
if (node->planenum == PLANENUM_LEAF)
{
return;
}
for (f = node->faces; f; f = f->next)
{
AddFaceEdges(f);
}
tjunc_find_r(node->children[0]);
tjunc_find_r(node->children[1]);
}
static void tjunc_fix_r(node_t* node)
{
face_t* f;
face_t* next;
if (node->planenum == PLANENUM_LEAF)
{
return;
}
newlist = NULL;
for (f = node->faces; f; f = next)
{
next = f->next;
FixFaceEdges(f);
}
node->faces = newlist;
tjunc_fix_r(node->children[0]);
tjunc_fix_r(node->children[1]);
}
/*
* ===========
* tjunc
*
* ===========
*/
void tjunc(node_t* headnode)
{
vec3_t maxs, mins;
int i;
Verbose("---- tjunc ----\n");
if (g_notjunc)
{
return;
}
//
// identify all points on common edges
//
// origin points won't allways be inside the map, so extend the hash area
for (i = 0; i < 3; i++)
{
if (fabs(headnode->maxs[i]) > fabs(headnode->mins[i]))
{
maxs[i] = fabs(headnode->maxs[i]);
}
else
{
maxs[i] = fabs(headnode->mins[i]);
}
}
VectorSubtract(vec3_origin, maxs, mins);
InitHash(mins, maxs);
numwedges = numwverts = 0;
tjunc_find_r(headnode);
Verbose("%i world edges %i edge points\n", numwedges, numwverts);
//
// add extra vertexes on edges where needed
//
tjuncs = tjuncfaces = 0;
tjunc_fix_r(headnode);
Verbose("%i edges added by tjunctions\n", tjuncs);
Verbose("%i faces added by tjunctions\n", tjuncfaces);
}