mirror of
https://github.com/nzp-team/glquake.git
synced 2024-11-28 23:02:17 +00:00
506 lines
No EOL
17 KiB
C
506 lines
No EOL
17 KiB
C
/*
|
|
matrixlib.c - internal matrixlib
|
|
Copyright (C) 2010 Uncle Mike
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
*/
|
|
|
|
#include "quakedef.h"
|
|
#include <math.h>
|
|
|
|
|
|
const matrix3x4 matrix3x4_identity =
|
|
{
|
|
{ 1, 0, 0, 0 }, // PITCH [forward], org[0]
|
|
{ 0, 1, 0, 0 }, // YAW [right] , org[1]
|
|
{ 0, 0, 1, 0 }, // ROLL [up] , org[2]
|
|
};
|
|
|
|
/*
|
|
========================================================================
|
|
|
|
Matrix3x4 operations
|
|
|
|
========================================================================
|
|
*/
|
|
void Matrix3x4_VectorTransform( const matrix3x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[0][1] + v[2] * in[0][2] + in[0][3];
|
|
out[1] = v[0] * in[1][0] + v[1] * in[1][1] + v[2] * in[1][2] + in[1][3];
|
|
out[2] = v[0] * in[2][0] + v[1] * in[2][1] + v[2] * in[2][2] + in[2][3];
|
|
}
|
|
|
|
void Matrix3x4_VectorITransform( const matrix3x4 in, const float v[3], float out[3] )
|
|
{
|
|
vec3_t dir;
|
|
|
|
dir[0] = v[0] - in[0][3];
|
|
dir[1] = v[1] - in[1][3];
|
|
dir[2] = v[2] - in[2][3];
|
|
|
|
out[0] = dir[0] * in[0][0] + dir[1] * in[1][0] + dir[2] * in[2][0];
|
|
out[1] = dir[0] * in[0][1] + dir[1] * in[1][1] + dir[2] * in[2][1];
|
|
out[2] = dir[0] * in[0][2] + dir[1] * in[1][2] + dir[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix3x4_VectorRotate( const matrix3x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[0][1] + v[2] * in[0][2];
|
|
out[1] = v[0] * in[1][0] + v[1] * in[1][1] + v[2] * in[1][2];
|
|
out[2] = v[0] * in[2][0] + v[1] * in[2][1] + v[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix3x4_VectorIRotate( const matrix3x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[1][0] + v[2] * in[2][0];
|
|
out[1] = v[0] * in[0][1] + v[1] * in[1][1] + v[2] * in[2][1];
|
|
out[2] = v[0] * in[0][2] + v[1] * in[1][2] + v[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix3x4_ConcatTransforms( matrix3x4 out, const matrix3x4 in1, const matrix3x4 in2 )
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2];
|
|
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2];
|
|
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
|
|
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3];
|
|
}
|
|
|
|
void Matrix3x4_SetOrigin( matrix3x4 out, float x, float y, float z )
|
|
{
|
|
out[0][3] = x;
|
|
out[1][3] = y;
|
|
out[2][3] = z;
|
|
}
|
|
|
|
void Matrix3x4_OriginFromMatrix( const matrix3x4 in, float *out )
|
|
{
|
|
out[0] = in[0][3];
|
|
out[1] = in[1][3];
|
|
out[2] = in[2][3];
|
|
}
|
|
|
|
void Matrix3x4_FromOriginQuat( matrix3x4 out, const vec4_t quaternion, const vec3_t origin )
|
|
{
|
|
out[0][0] = 1.0f - 2.0f * quaternion[1] * quaternion[1] - 2.0f * quaternion[2] * quaternion[2];
|
|
out[1][0] = 2.0f * quaternion[0] * quaternion[1] + 2.0f * quaternion[3] * quaternion[2];
|
|
out[2][0] = 2.0f * quaternion[0] * quaternion[2] - 2.0f * quaternion[3] * quaternion[1];
|
|
|
|
out[0][1] = 2.0f * quaternion[0] * quaternion[1] - 2.0f * quaternion[3] * quaternion[2];
|
|
out[1][1] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[2] * quaternion[2];
|
|
out[2][1] = 2.0f * quaternion[1] * quaternion[2] + 2.0f * quaternion[3] * quaternion[0];
|
|
|
|
out[0][2] = 2.0f * quaternion[0] * quaternion[2] + 2.0f * quaternion[3] * quaternion[1];
|
|
out[1][2] = 2.0f * quaternion[1] * quaternion[2] - 2.0f * quaternion[3] * quaternion[0];
|
|
out[2][2] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[1] * quaternion[1];
|
|
|
|
out[0][3] = origin[0];
|
|
out[1][3] = origin[1];
|
|
out[2][3] = origin[2];
|
|
}
|
|
|
|
void Matrix3x4_CreateFromEntity( matrix3x4 out, const vec3_t angles, const vec3_t origin, float scale )
|
|
{
|
|
float angle, sr, sp, sy, cr, cp, cy;
|
|
|
|
if( angles[ROLL] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sincos( angle, &sy, &cy );
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
sincos( angle, &sp, &cp );
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
sincos( angle, &sr, &cr );
|
|
|
|
out[0][0] = (cp*cy) * scale;
|
|
out[0][1] = (sr*sp*cy+cr*-sy) * scale;
|
|
out[0][2] = (cr*sp*cy+-sr*-sy) * scale;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (cp*sy) * scale;
|
|
out[1][1] = (sr*sp*sy+cr*cy) * scale;
|
|
out[1][2] = (cr*sp*sy+-sr*cy) * scale;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = (-sp) * scale;
|
|
out[2][1] = (sr*cp) * scale;
|
|
out[2][2] = (cr*cp) * scale;
|
|
out[2][3] = origin[2];
|
|
}
|
|
else if( angles[PITCH] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sincos( angle, &sy, &cy );
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
sincos( angle, &sp, &cp );
|
|
|
|
out[0][0] = (cp*cy) * scale;
|
|
out[0][1] = (-sy) * scale;
|
|
out[0][2] = (sp*cy) * scale;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (cp*sy) * scale;
|
|
out[1][1] = (cy) * scale;
|
|
out[1][2] = (sp*sy) * scale;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = (-sp) * scale;
|
|
out[2][1] = 0;
|
|
out[2][2] = (cp) * scale;
|
|
out[2][3] = origin[2];
|
|
}
|
|
else if( angles[YAW] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sincos( angle, &sy, &cy );
|
|
|
|
out[0][0] = (cy) * scale;
|
|
out[0][1] = (-sy) * scale;
|
|
out[0][2] = 0;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (sy) * scale;
|
|
out[1][1] = (cy) * scale;
|
|
out[1][2] = 0;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = 0;
|
|
out[2][1] = 0;
|
|
out[2][2] = scale;
|
|
out[2][3] = origin[2];
|
|
}
|
|
else
|
|
{
|
|
out[0][0] = scale;
|
|
out[0][1] = 0;
|
|
out[0][2] = 0;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = 0;
|
|
out[1][1] = scale;
|
|
out[1][2] = 0;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = 0;
|
|
out[2][1] = 0;
|
|
out[2][2] = scale;
|
|
out[2][3] = origin[2];
|
|
}
|
|
}
|
|
|
|
void Matrix3x4_TransformPositivePlane( const matrix3x4 in, const vec3_t normal, float d, vec3_t out, float *dist )
|
|
{
|
|
float scale = sqrt( in[0][0] * in[0][0] + in[0][1] * in[0][1] + in[0][2] * in[0][2] );
|
|
float iscale = 1.0f / scale;
|
|
|
|
out[0] = (normal[0] * in[0][0] + normal[1] * in[0][1] + normal[2] * in[0][2]) * iscale;
|
|
out[1] = (normal[0] * in[1][0] + normal[1] * in[1][1] + normal[2] * in[1][2]) * iscale;
|
|
out[2] = (normal[0] * in[2][0] + normal[1] * in[2][1] + normal[2] * in[2][2]) * iscale;
|
|
*dist = d * scale + ( out[0] * in[0][3] + out[1] * in[1][3] + out[2] * in[2][3] );
|
|
}
|
|
|
|
void Matrix3x4_Invert_Simple( matrix3x4 out, const matrix3x4 in1 )
|
|
{
|
|
// we only support uniform scaling, so assume the first row is enough
|
|
// (note the lack of sqrt here, because we're trying to undo the scaling,
|
|
// this means multiplying by the inverse scale twice - squaring it, which
|
|
// makes the sqrt a waste of time)
|
|
float scale = 1.0 / (in1[0][0] * in1[0][0] + in1[0][1] * in1[0][1] + in1[0][2] * in1[0][2]);
|
|
|
|
// invert the rotation by transposing and multiplying by the squared
|
|
// recipricol of the input matrix scale as described above
|
|
out[0][0] = in1[0][0] * scale;
|
|
out[0][1] = in1[1][0] * scale;
|
|
out[0][2] = in1[2][0] * scale;
|
|
out[1][0] = in1[0][1] * scale;
|
|
out[1][1] = in1[1][1] * scale;
|
|
out[1][2] = in1[2][1] * scale;
|
|
out[2][0] = in1[0][2] * scale;
|
|
out[2][1] = in1[1][2] * scale;
|
|
out[2][2] = in1[2][2] * scale;
|
|
|
|
// invert the translate
|
|
out[0][3] = -(in1[0][3] * out[0][0] + in1[1][3] * out[0][1] + in1[2][3] * out[0][2]);
|
|
out[1][3] = -(in1[0][3] * out[1][0] + in1[1][3] * out[1][1] + in1[2][3] * out[1][2]);
|
|
out[2][3] = -(in1[0][3] * out[2][0] + in1[1][3] * out[2][1] + in1[2][3] * out[2][2]);
|
|
}
|
|
|
|
const matrix4x4 matrix4x4_identity =
|
|
{
|
|
{ 1, 0, 0, 0 }, // PITCH
|
|
{ 0, 1, 0, 0 }, // YAW
|
|
{ 0, 0, 1, 0 }, // ROLL
|
|
{ 0, 0, 0, 1 }, // ORIGIN
|
|
};
|
|
|
|
/*
|
|
========================================================================
|
|
|
|
Matrix4x4 operations
|
|
|
|
========================================================================
|
|
*/
|
|
void Matrix4x4_VectorTransform( const matrix4x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[0][1] + v[2] * in[0][2] + in[0][3];
|
|
out[1] = v[0] * in[1][0] + v[1] * in[1][1] + v[2] * in[1][2] + in[1][3];
|
|
out[2] = v[0] * in[2][0] + v[1] * in[2][1] + v[2] * in[2][2] + in[2][3];
|
|
}
|
|
|
|
void Matrix4x4_VectorITransform( const matrix4x4 in, const float v[3], float out[3] )
|
|
{
|
|
vec3_t dir;
|
|
|
|
dir[0] = v[0] - in[0][3];
|
|
dir[1] = v[1] - in[1][3];
|
|
dir[2] = v[2] - in[2][3];
|
|
|
|
out[0] = dir[0] * in[0][0] + dir[1] * in[1][0] + dir[2] * in[2][0];
|
|
out[1] = dir[0] * in[0][1] + dir[1] * in[1][1] + dir[2] * in[2][1];
|
|
out[2] = dir[0] * in[0][2] + dir[1] * in[1][2] + dir[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix4x4_VectorRotate( const matrix4x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[0][1] + v[2] * in[0][2];
|
|
out[1] = v[0] * in[1][0] + v[1] * in[1][1] + v[2] * in[1][2];
|
|
out[2] = v[0] * in[2][0] + v[1] * in[2][1] + v[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix4x4_VectorIRotate( const matrix4x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[1][0] + v[2] * in[2][0];
|
|
out[1] = v[0] * in[0][1] + v[1] * in[1][1] + v[2] * in[2][1];
|
|
out[2] = v[0] * in[0][2] + v[1] * in[1][2] + v[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix4x4_ConcatTransforms( matrix4x4 out, const matrix4x4 in1, const matrix4x4 in2 )
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2];
|
|
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2];
|
|
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
|
|
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3];
|
|
}
|
|
|
|
void Matrix4x4_SetOrigin( matrix4x4 out, float x, float y, float z )
|
|
{
|
|
out[0][3] = x;
|
|
out[1][3] = y;
|
|
out[2][3] = z;
|
|
}
|
|
|
|
void Matrix4x4_OriginFromMatrix( const matrix4x4 in, float *out )
|
|
{
|
|
out[0] = in[0][3];
|
|
out[1] = in[1][3];
|
|
out[2] = in[2][3];
|
|
}
|
|
|
|
void Matrix4x4_FromOriginQuat( matrix4x4 out, const vec4_t quaternion, const vec3_t origin )
|
|
{
|
|
out[0][0] = 1.0f - 2.0f * quaternion[1] * quaternion[1] - 2.0f * quaternion[2] * quaternion[2];
|
|
out[1][0] = 2.0f * quaternion[0] * quaternion[1] + 2.0f * quaternion[3] * quaternion[2];
|
|
out[2][0] = 2.0f * quaternion[0] * quaternion[2] - 2.0f * quaternion[3] * quaternion[1];
|
|
out[0][3] = origin[0];
|
|
out[0][1] = 2.0f * quaternion[0] * quaternion[1] - 2.0f * quaternion[3] * quaternion[2];
|
|
out[1][1] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[2] * quaternion[2];
|
|
out[2][1] = 2.0f * quaternion[1] * quaternion[2] + 2.0f * quaternion[3] * quaternion[0];
|
|
out[1][3] = origin[1];
|
|
out[0][2] = 2.0f * quaternion[0] * quaternion[2] + 2.0f * quaternion[3] * quaternion[1];
|
|
out[1][2] = 2.0f * quaternion[1] * quaternion[2] - 2.0f * quaternion[3] * quaternion[0];
|
|
out[2][2] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[1] * quaternion[1];
|
|
out[2][3] = origin[2];
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|
|
|
|
void Matrix4x4_CreateFromEntity( matrix4x4 out, const vec3_t angles, const vec3_t origin, float scale )
|
|
{
|
|
float angle, sr, sp, sy, cr, cp, cy;
|
|
|
|
if( angles[ROLL] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sincos( angle, &sy, &cy );
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
sincos( angle, &sp, &cp );
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
sincos( angle, &sr, &cr );
|
|
|
|
out[0][0] = (cp*cy) * scale;
|
|
out[0][1] = (sr*sp*cy+cr*-sy) * scale;
|
|
out[0][2] = (cr*sp*cy+-sr*-sy) * scale;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (cp*sy) * scale;
|
|
out[1][1] = (sr*sp*sy+cr*cy) * scale;
|
|
out[1][2] = (cr*sp*sy+-sr*cy) * scale;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = (-sp) * scale;
|
|
out[2][1] = (sr*cp) * scale;
|
|
out[2][2] = (cr*cp) * scale;
|
|
out[2][3] = origin[2];
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|
|
else if( angles[PITCH] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sincos( angle, &sy, &cy );
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
sincos( angle, &sp, &cp );
|
|
|
|
out[0][0] = (cp*cy) * scale;
|
|
out[0][1] = (-sy) * scale;
|
|
out[0][2] = (sp*cy) * scale;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (cp*sy) * scale;
|
|
out[1][1] = (cy) * scale;
|
|
out[1][2] = (sp*sy) * scale;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = (-sp) * scale;
|
|
out[2][1] = 0;
|
|
out[2][2] = (cp) * scale;
|
|
out[2][3] = origin[2];
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|
|
else if( angles[YAW] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sincos( angle, &sy, &cy );
|
|
|
|
out[0][0] = (cy) * scale;
|
|
out[0][1] = (-sy) * scale;
|
|
out[0][2] = 0;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (sy) * scale;
|
|
out[1][1] = (cy) * scale;
|
|
out[1][2] = 0;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = 0;
|
|
out[2][1] = 0;
|
|
out[2][2] = scale;
|
|
out[2][3] = origin[2];
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|
|
else
|
|
{
|
|
out[0][0] = scale;
|
|
out[0][1] = 0;
|
|
out[0][2] = 0;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = 0;
|
|
out[1][1] = scale;
|
|
out[1][2] = 0;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = 0;
|
|
out[2][1] = 0;
|
|
out[2][2] = scale;
|
|
out[2][3] = origin[2];
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|
|
}
|
|
|
|
void Matrix4x4_ConvertToEntity( const matrix4x4 in, vec3_t angles, vec3_t origin )
|
|
{
|
|
float xyDist = sqrt( in[0][0] * in[0][0] + in[1][0] * in[1][0] );
|
|
|
|
// enough here to get angles?
|
|
if( xyDist > 0.001f )
|
|
{
|
|
angles[0] = RAD2DEG( atan2( -in[2][0], xyDist ) );
|
|
angles[1] = RAD2DEG( atan2( in[1][0], in[0][0] ) );
|
|
angles[2] = RAD2DEG( atan2( in[2][1], in[2][2] ) );
|
|
}
|
|
else // forward is mostly Z, gimbal lock
|
|
{
|
|
angles[0] = RAD2DEG( atan2( -in[2][0], xyDist ) );
|
|
angles[1] = RAD2DEG( atan2( -in[0][1], in[1][1] ) );
|
|
angles[2] = 0;
|
|
}
|
|
|
|
origin[0] = in[0][3];
|
|
origin[1] = in[1][3];
|
|
origin[2] = in[2][3];
|
|
}
|
|
|
|
void Matrix4x4_TransformPositivePlane( const matrix4x4 in, const vec3_t normal, float d, vec3_t out, float *dist )
|
|
{
|
|
float scale = sqrt( in[0][0] * in[0][0] + in[0][1] * in[0][1] + in[0][2] * in[0][2] );
|
|
float iscale = 1.0f / scale;
|
|
|
|
out[0] = (normal[0] * in[0][0] + normal[1] * in[0][1] + normal[2] * in[0][2]) * iscale;
|
|
out[1] = (normal[0] * in[1][0] + normal[1] * in[1][1] + normal[2] * in[1][2]) * iscale;
|
|
out[2] = (normal[0] * in[2][0] + normal[1] * in[2][1] + normal[2] * in[2][2]) * iscale;
|
|
*dist = d * scale + ( out[0] * in[0][3] + out[1] * in[1][3] + out[2] * in[2][3] );
|
|
}
|
|
|
|
void Matrix4x4_TransformStandardPlane( const matrix4x4 in, const vec3_t normal, float d, vec3_t out, float *dist )
|
|
{
|
|
float scale = sqrt( in[0][0] * in[0][0] + in[0][1] * in[0][1] + in[0][2] * in[0][2] );
|
|
float iscale = 1.0f / scale;
|
|
|
|
out[0] = (normal[0] * in[0][0] + normal[1] * in[0][1] + normal[2] * in[0][2]) * iscale;
|
|
out[1] = (normal[0] * in[1][0] + normal[1] * in[1][1] + normal[2] * in[1][2]) * iscale;
|
|
out[2] = (normal[0] * in[2][0] + normal[1] * in[2][1] + normal[2] * in[2][2]) * iscale;
|
|
*dist = d * scale - ( out[0] * in[0][3] + out[1] * in[1][3] + out[2] * in[2][3] );
|
|
}
|
|
|
|
void Matrix4x4_Invert_Simple( matrix4x4 out, const matrix4x4 in1 )
|
|
{
|
|
// we only support uniform scaling, so assume the first row is enough
|
|
// (note the lack of sqrt here, because we're trying to undo the scaling,
|
|
// this means multiplying by the inverse scale twice - squaring it, which
|
|
// makes the sqrt a waste of time)
|
|
float scale = 1.0f / (in1[0][0] * in1[0][0] + in1[0][1] * in1[0][1] + in1[0][2] * in1[0][2]);
|
|
|
|
// invert the rotation by transposing and multiplying by the squared
|
|
// recipricol of the input matrix scale as described above
|
|
out[0][0] = in1[0][0] * scale;
|
|
out[0][1] = in1[1][0] * scale;
|
|
out[0][2] = in1[2][0] * scale;
|
|
out[1][0] = in1[0][1] * scale;
|
|
out[1][1] = in1[1][1] * scale;
|
|
out[1][2] = in1[2][1] * scale;
|
|
out[2][0] = in1[0][2] * scale;
|
|
out[2][1] = in1[1][2] * scale;
|
|
out[2][2] = in1[2][2] * scale;
|
|
|
|
// invert the translate
|
|
out[0][3] = -(in1[0][3] * out[0][0] + in1[1][3] * out[0][1] + in1[2][3] * out[0][2]);
|
|
out[1][3] = -(in1[0][3] * out[1][0] + in1[1][3] * out[1][1] + in1[2][3] * out[1][2]);
|
|
out[2][3] = -(in1[0][3] * out[2][0] + in1[1][3] * out[2][1] + in1[2][3] * out[2][2]);
|
|
|
|
// don't know if there's anything worth doing here
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
} |