glquake/source/gl_warp.c

786 lines
16 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// gl_warp.c -- sky and water polygons
#include "quakedef.h"
extern model_t *loadmodel;
int skytexturenum;
int solidskytexture;
int alphaskytexture;
float speedscale; // for top sky and bottom sky
int skytexorder[5] = {0,2,1,3,4};
int skyimage[5]; // Where sky images are stored
char skybox_name[32] = ""; //name of current skybox, or "" if no skybox
// cut off down for half skybox
char *suf[5] = {"rt", "bk", "lf", "ft", "up" };
msurface_t *warpface;
extern cvar_t gl_subdivide_size;
void BoundPoly (int numverts, float *verts, vec3_t mins, vec3_t maxs)
{
int i, j;
float *v;
mins[0] = mins[1] = mins[2] = 9999;
maxs[0] = maxs[1] = maxs[2] = -9999;
v = verts;
for (i=0 ; i<numverts ; i++)
for (j=0 ; j<3 ; j++, v++)
{
if (*v < mins[j])
mins[j] = *v;
if (*v > maxs[j])
maxs[j] = *v;
}
}
void SubdividePolygon (int numverts, float *verts)
{
int i, j, k;
vec3_t mins, maxs;
float m;
float *v;
vec3_t front[64], back[64];
int f, b;
float dist[64];
float frac;
glpoly_t *poly;
float s, t;
if (numverts > 60)
Sys_Error ("numverts = %i", numverts);
BoundPoly (numverts, verts, mins, maxs);
for (i=0 ; i<3 ; i++)
{
m = (mins[i] + maxs[i]) * 0.5;
m = gl_subdivide_size.value * floor (m/gl_subdivide_size.value + 0.5);
if (maxs[i] - m < 8)
continue;
if (m - mins[i] < 8)
continue;
// cut it
v = verts + i;
for (j=0 ; j<numverts ; j++, v+= 3)
dist[j] = *v - m;
// wrap cases
dist[j] = dist[0];
v-=i;
VectorCopy (verts, v);
f = b = 0;
v = verts;
for (j=0 ; j<numverts ; j++, v+= 3)
{
if (dist[j] >= 0)
{
VectorCopy (v, front[f]);
f++;
}
if (dist[j] <= 0)
{
VectorCopy (v, back[b]);
b++;
}
if (dist[j] == 0 || dist[j+1] == 0)
continue;
if ( (dist[j] > 0) != (dist[j+1] > 0) )
{
// clip point
frac = dist[j] / (dist[j] - dist[j+1]);
for (k=0 ; k<3 ; k++)
front[f][k] = back[b][k] = v[k] + frac*(v[3+k] - v[k]);
f++;
b++;
}
}
SubdividePolygon (f, front[0]);
SubdividePolygon (b, back[0]);
return;
}
poly = Hunk_Alloc (sizeof(glpoly_t) + (numverts-4) * VERTEXSIZE*sizeof(float));
poly->next = warpface->polys;
warpface->polys = poly;
poly->numverts = numverts;
for (i=0 ; i<numverts ; i++, verts+= 3)
{
VectorCopy (verts, poly->verts[i]);
s = DotProduct (verts, warpface->texinfo->vecs[0]);
t = DotProduct (verts, warpface->texinfo->vecs[1]);
poly->verts[i][3] = s;
poly->verts[i][4] = t;
}
}
/*
================
GL_SubdivideSurface
Breaks a polygon up along axial 64 unit
boundaries so that turbulent and sky warps
can be done reasonably.
================
*/
void GL_SubdivideSurface (msurface_t *fa)
{
vec3_t verts[64];
int numverts;
int i;
int lindex;
float *vec;
texture_t *t;
warpface = fa;
//
// convert edges back to a normal polygon
//
numverts = 0;
for (i=0 ; i<fa->numedges ; i++)
{
lindex = loadmodel->surfedges[fa->firstedge + i];
if (lindex > 0)
vec = loadmodel->vertexes[loadmodel->edges[lindex].v[0]].position;
else
vec = loadmodel->vertexes[loadmodel->edges[-lindex].v[1]].position;
VectorCopy (vec, verts[numverts]);
numverts++;
}
SubdividePolygon (numverts, verts[0]);
}
//=========================================================
// speed up sin calculations - Ed
float turbsin[] =
{
#include "gl_warp_sin.h"
};
#define TURBSCALE (256.0 / (2 * M_PI))
/*
=============
EmitWaterPolys
Does a water warp on the pre-fragmented glpoly_t chain
=============
*/
void EmitWaterPolys (msurface_t *fa)
{
glpoly_t *p;
float *v;
int i;
float s, t, os, ot;
for (p=fa->polys ; p ; p=p->next)
{
glBegin (GL_POLYGON);
for (i=0,v=p->verts[0] ; i<p->numverts ; i++, v+=VERTEXSIZE)
{
os = v[3];
ot = v[4];
s = os + turbsin[(int)((ot*0.125+realtime) * TURBSCALE) & 255];
s *= (1.0/64);
t = ot + turbsin[(int)((os*0.125+realtime) * TURBSCALE) & 255];
t *= (1.0/64);
glTexCoord2f (s, t);
glVertex3fv (v);
}
glEnd ();
}
}
/*
=============
EmitSkyPolys
=============
*/
void EmitSkyPolys (msurface_t *fa)
{
glpoly_t *p;
float *v;
int i;
float s, t;
vec3_t dir;
float length;
for (p=fa->polys ; p ; p=p->next)
{
glBegin (GL_POLYGON);
for (i=0,v=p->verts[0] ; i<p->numverts ; i++, v+=VERTEXSIZE)
{
VectorSubtract (v, r_origin, dir);
dir[2] *= 3; // flatten the sphere
length = dir[0]*dir[0] + dir[1]*dir[1] + dir[2]*dir[2];
length = sqrt (length);
length = 6*63/length;
dir[0] *= length;
dir[1] *= length;
s = (speedscale + dir[0]) * (1.0/128);
t = (speedscale + dir[1]) * (1.0/128);
glTexCoord2f (s, t);
glVertex3fv (v);
}
glEnd ();
}
}
/*
===============
EmitBothSkyLayers
Does a sky warp on the pre-fragmented glpoly_t chain
This will be called for brushmodels, the world
will have them chained together.
===============
*/
void EmitBothSkyLayers (msurface_t *fa)
{
int i;
int lindex;
float *vec;
GL_DisableMultitexture();
GL_Bind (solidskytexture);
speedscale = realtime*8;
speedscale -= (int)speedscale & ~127 ;
EmitSkyPolys (fa);
glEnable (GL_BLEND);
GL_Bind (alphaskytexture);
speedscale = realtime*16;
speedscale -= (int)speedscale & ~127 ;
EmitSkyPolys (fa);
glDisable (GL_BLEND);
}
#ifndef QUAKE2
/*
=================
R_DrawSkyChain
=================
*/
void R_DrawSkyChain (msurface_t *s)
{
msurface_t *fa;
GL_DisableMultitexture();
// used when gl_texsort is on
GL_Bind(solidskytexture);
speedscale = realtime*8;
speedscale -= (int)speedscale & ~127 ;
for (fa=s ; fa ; fa=fa->texturechain)
EmitSkyPolys (fa);
glEnable (GL_BLEND);
GL_Bind (alphaskytexture);
speedscale = realtime*16;
speedscale -= (int)speedscale & ~127 ;
for (fa=s ; fa ; fa=fa->texturechain)
EmitSkyPolys (fa);
glDisable (GL_BLEND);
}
#endif
/*
=================================================================
Quake 2 environment sky
=================================================================
*/
/*
==================
Sky_LoadSkyBox
==================
*/
//char *suf[6] = {"rt", "bk", "lf", "ft", "up", "dn"};
void Sky_LoadSkyBox(char* name)
{
if (strcmp(skybox_name, name) == 0)
return; //no change
//turn off skybox if sky is set to ""
if (name[0] == '0') {
skybox_name[0] = 0;
return;
}
// Do sides one way and top another, bottom is not done
for (int i = 0; i < 4; i++)
{
int mark = Hunk_LowMark ();
if(!(skyimage[i] = loadtextureimage (va("gfx/env/%s%s", name, suf[i]), 0, 0, false, false)) &&
!(skyimage[i] = loadtextureimage (va("gfx/env/%s_%s", name, suf[i]), 0, 0, false, false)))
{
Con_Printf("Sky: %s[%s] not found, used std\n", name, suf[i]);
if(!(skyimage[i] = loadtextureimage (va("gfx/env/skybox%s", suf[i]), 0, 0, false, false)))
{
Sys_Error("STD SKY NOT FOUND!");
}
}
Hunk_FreeToLowMark (mark);
}
int mark = Hunk_LowMark ();
if(!(skyimage[4] = loadtextureimage (va("gfx/env/%sup", name), 0, 0, false, false)) &&
!(skyimage[4] = loadtextureimage (va("gfx/env/%s_up", name), 0, 0, false, false)))
{
Con_Printf("Sky: %s[%s] not found, used std\n", name, suf[4]);
if(!(skyimage[4] = loadtextureimage (va("gfx/env/skybox%s", suf[4]), 0, 0, false, false)))
{
Sys_Error("STD SKY NOT FOUND!");
}
}
Hunk_FreeToLowMark (mark);
strcpy(skybox_name, name);
}
/*
=================
Sky_NewMap
=================
*/
void Sky_NewMap (void)
{
char key[128], value[4096];
char *data;
//purge old sky textures
//UnloadSkyTexture ();
//
// initially no sky
//
Sky_LoadSkyBox (""); //not used
//
// read worldspawn (this is so ugly, and shouldn't it be done on the server?)
//
data = cl.worldmodel->entities;
if (!data)
return; //FIXME: how could this possibly ever happen? -- if there's no
// worldspawn then the sever wouldn't send the loadmap message to the client
data = COM_Parse(data);
if (!data) //should never happen
return; // error
if (com_token[0] != '{') //should never happen
return; // error
while (1)
{
data = COM_Parse(data);
if (!data)
return; // error
if (com_token[0] == '}')
break; // end of worldspawn
if (com_token[0] == '_')
strcpy(key, com_token + 1);
else
strcpy(key, com_token);
while (key[strlen(key)-1] == ' ') // remove trailing spaces
key[strlen(key)-1] = 0;
data = COM_Parse(data);
if (!data)
return; // error
strcpy(value, com_token);
if (!strcmp("sky", key))
Sky_LoadSkyBox(value);
else if (!strcmp("skyname", key)) //half-life
Sky_LoadSkyBox(value);
else if (!strcmp("qlsky", key)) //quake lives
Sky_LoadSkyBox(value);
}
}
/*
=================
Sky_SkyCommand_f
=================
*/
void Sky_SkyCommand_f (void)
{
switch (Cmd_Argc())
{
case 1:
Con_Printf("\"sky\" is \"%s\"\n", skybox_name);
break;
case 2:
Sky_LoadSkyBox(Cmd_Argv(1));
break;
default:
Con_Printf("usage: sky <skyname>\n");
}
}
/*
=============
Sky_Init
=============
*/
void Sky_Init (void)
{
int i;
Cmd_AddCommand ("sky",Sky_SkyCommand_f);
for (i=0; i<5; i++)
skyimage[i] = NULL;
}
static vec3_t skyclip[6] = {
{1,1,0},
{1,-1,0},
{0,-1,1},
{0,1,1},
{1,0,1},
{-1,0,1}
};
int c_sky;
// 1 = s, 2 = t, 3 = 2048
static int st_to_vec[6][3] =
{
{3,-1,2},
{-3,1,2},
{1,3,2},
{-1,-3,2},
{-2,-1,3}, // 0 degrees yaw, look straight up
{2,-1,-3} // look straight down
// {-1,2,3},
// {1,2,-3}
};
// s = [0]/[2], t = [1]/[2]
static int vec_to_st[6][3] =
{
{-2,3,1},
{2,3,-1},
{1,3,2},
{-1,3,-2},
{-2,-1,3},
{-2,1,-3}
// {-1,2,3},
// {1,2,-3}
};
static float skymins[2][6], skymaxs[2][6];
/*
==============
R_ClearSkyBox
==============
*/
void R_ClearSkyBox (void)
{
int i;
for (i=0 ; i<5 ; i++)
{
skymins[0][i] = skymins[1][i] = 9999;
skymaxs[0][i] = skymaxs[1][i] = -9999;
}
}
void MakeSkyVec (float s, float t, int axis)
{
vec3_t v, b;
int j, k;
b[0] = s*2048;
b[1] = t*2048;
b[2] = 2048;
for (j=0 ; j<3 ; j++)
{
k = st_to_vec[axis][j];
if (k < 0)
v[j] = -b[-k - 1];
else
v[j] = b[k - 1];
v[j] += r_origin[j];
}
// avoid bilerp seam
s = (s+1)*0.5;
t = (t+1)*0.5;
if (s < 1.0/512)
s = 1.0/512;
else if (s > 511.0/512)
s = 511.0/512;
if (t < 1.0/512)
t = 1.0/512;
else if (t > 511.0/512)
t = 511.0/512;
t = 1.0 - t;
glTexCoord2f (s, t);
glVertex3fv (v);
}
/*
==============
R_DrawSkyBox
==============
*/
float skynormals[5][3] = {
{ 1.f, 0.f, 0.f },
{ -1.f, 0.f, 0.f },
{ 0.f, 1.f, 0.f },
{ 0.f, -1.f, 0.f },
{ 0.f, 0.f, 1.f }
};
float skyrt[5][3] = {
{ 0.f, -1.f, 0.f },
{ 0.f, 1.f, 0.f },
{ 1.f, 0.f, 0.f },
{ -1.f, 0.f, 0.f },
{ 0.f, -1.f, 0.f }
};
float skyup[5][3] = {
{ 0.f, 0.f, 1.f },
{ 0.f, 0.f, 1.f },
{ 0.f, 0.f, 1.f },
{ 0.f, 0.f, 1.f },
{ -1.f, 0.f, 0.f }
};
void R_DrawSkyBox (void)
{
int i, j, k;
vec3_t v;
float s, t;
//Fog_DisableGFog();
//Fog_SetColorForSkyS();
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
float skydepth = 1000.0f;
for (i=0 ; i<5 ; i++)
{
const int vertex_count = 4;
glvert_t sky_vertices[vertex_count];
// check if poly needs to be drawn at all
float dot = DotProduct(skynormals[i], vpn);
// < 0 check would work at fov 90 or less, just guess a value that's high enough?
if (dot < -0.25f) continue;
GL_Bind(skyimage[skytexorder[i]]);
// if direction is not up, cut "down" vector to zero to only render half cube
//float upnegfact = i == 4 ? 1.0f : 0.0f;
float upnegfact = 1.0f;
float skyboxtexsize = 256.f;
// move ever so slightly less towards forward to make edges overlap a bit, just to not have shimmering pixels between sky edges
float forwardfact = 0.99f;
glBegin(GL_QUADS);
sky_vertices[0].s = 0.5f / skyboxtexsize;
sky_vertices[0].t = (skyboxtexsize - .5f) / skyboxtexsize;
sky_vertices[0].x = r_origin[0] + (forwardfact * skynormals[i][0] - skyrt[i][0] - skyup[i][0] * upnegfact) * skydepth;
sky_vertices[0].y = r_origin[1] + (forwardfact * skynormals[i][1] - skyrt[i][1] - skyup[i][1] * upnegfact) * skydepth;
sky_vertices[0].z = r_origin[2] + (forwardfact * skynormals[i][2] - skyrt[i][2] - skyup[i][2] * upnegfact) * skydepth;
v[0] = sky_vertices[0].x;
v[1] = sky_vertices[0].y;
v[2] = sky_vertices[0].z;
glTexCoord2f (sky_vertices[0].s, sky_vertices[0].t);
glVertex3fv (v);
sky_vertices[1].s = 0.5f / skyboxtexsize;
sky_vertices[1].t = 0.5f / skyboxtexsize;
sky_vertices[1].x = r_origin[0] + (forwardfact * skynormals[i][0] - skyrt[i][0] + skyup[i][0]) * skydepth;
sky_vertices[1].y = r_origin[1] + (forwardfact * skynormals[i][1] - skyrt[i][1] + skyup[i][1]) * skydepth;
sky_vertices[1].z = r_origin[2] + (forwardfact * skynormals[i][2] - skyrt[i][2] + skyup[i][2]) * skydepth;
v[0] = sky_vertices[1].x;
v[1] = sky_vertices[1].y;
v[2] = sky_vertices[1].z;
glTexCoord2f (sky_vertices[1].s, sky_vertices[1].t);
glVertex3fv (v);
sky_vertices[2].s = (skyboxtexsize - .5f) / skyboxtexsize;
sky_vertices[2].t = 0.5f / skyboxtexsize;
sky_vertices[2].x = r_origin[0] + (forwardfact * skynormals[i][0] + skyrt[i][0] + skyup[i][0]) * skydepth;
sky_vertices[2].y = r_origin[1] + (forwardfact * skynormals[i][1] + skyrt[i][1] + skyup[i][1]) * skydepth;
sky_vertices[2].z = r_origin[2] + (forwardfact * skynormals[i][2] + skyrt[i][2] + skyup[i][2]) * skydepth;
v[0] = sky_vertices[2].x;
v[1] = sky_vertices[2].y;
v[2] = sky_vertices[2].z;
glTexCoord2f (sky_vertices[2].s, sky_vertices[2].t);
glVertex3fv (v);
sky_vertices[3].s = (skyboxtexsize - .5f) / skyboxtexsize;
sky_vertices[3].t = (skyboxtexsize - .5f) / skyboxtexsize;
sky_vertices[3].x = r_origin[0] + (forwardfact * skynormals[i][0] + skyrt[i][0] - skyup[i][0] * upnegfact) * skydepth;
sky_vertices[3].y = r_origin[1] + (forwardfact * skynormals[i][1] + skyrt[i][1] - skyup[i][1] * upnegfact) * skydepth;
sky_vertices[3].z = r_origin[2] + (forwardfact * skynormals[i][2] + skyrt[i][2] - skyup[i][2] * upnegfact) * skydepth;
v[0] = sky_vertices[3].x;
v[1] = sky_vertices[3].y;
v[2] = sky_vertices[3].z;
glTexCoord2f (sky_vertices[3].s, sky_vertices[3].t);
glVertex3fv (v);
glEnd();
}
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
//Fog_SetColorForSkyE(); //setup for Sky
//Fog_EnableGFog(); //setup for Sky
}
//===============================================================
/*
=============
R_InitSky
A sky texture is 256*128, with the right side being a masked overlay
==============
*/
void R_InitSky (texture_t *mt)
{
int i, j, p;
byte *src;
unsigned trans[128*128];
unsigned transpix;
int r, g, b;
unsigned *rgba;
extern int skytexturenum;
src = (byte *)mt + mt->offsets[0];
// make an average value for the back to avoid
// a fringe on the top level
r = g = b = 0;
for (i=0 ; i<128 ; i++)
for (j=0 ; j<128 ; j++)
{
p = src[i*256 + j + 128];
rgba = &d_8to24table[p];
trans[(i*128) + j] = *rgba;
r += ((byte *)rgba)[0];
g += ((byte *)rgba)[1];
b += ((byte *)rgba)[2];
}
((byte *)&transpix)[0] = r/(128*128);
((byte *)&transpix)[1] = g/(128*128);
((byte *)&transpix)[2] = b/(128*128);
((byte *)&transpix)[3] = 0;
if (!solidskytexture)
solidskytexture = texture_extension_number++;
GL_Bind (solidskytexture );
glTexImage2D (GL_TEXTURE_2D, 0, gl_solid_format, 128, 128, 0, GL_RGBA, GL_UNSIGNED_BYTE, trans);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
for (i=0 ; i<128 ; i++)
for (j=0 ; j<128 ; j++)
{
p = src[i*256 + j];
if (p == 0)
trans[(i*128) + j] = transpix;
else
trans[(i*128) + j] = d_8to24table[p];
}
if (!alphaskytexture)
alphaskytexture = texture_extension_number++;
GL_Bind(alphaskytexture);
glTexImage2D (GL_TEXTURE_2D, 0, gl_alpha_format, 128, 128, 0, GL_RGBA, GL_UNSIGNED_BYTE, trans);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
}