glquake/source/r_part.c

801 lines
15 KiB
C
Raw Normal View History

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "quakedef.h"
#include "r_local.h"
#define MAX_PARTICLES 2048 // default max # of particles at one
// time
#define ABSOLUTE_MIN_PARTICLES 512 // no fewer than this no matter what's
// on the command line
int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61};
int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66};
int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3};
particle_t *active_particles, *free_particles;
particle_t *particles;
int r_numparticles;
vec3_t r_pright, r_pup, r_ppn;
/*
===============
R_InitParticles
===============
*/
void R_InitParticles (void)
{
int i;
i = COM_CheckParm ("-particles");
if (i)
{
r_numparticles = (int)(Q_atoi(com_argv[i+1]));
if (r_numparticles < ABSOLUTE_MIN_PARTICLES)
r_numparticles = ABSOLUTE_MIN_PARTICLES;
}
else
{
r_numparticles = MAX_PARTICLES;
}
particles = (particle_t *)
Hunk_AllocName (r_numparticles * sizeof(particle_t), "particles");
}
#ifdef QUAKE2
void R_DarkFieldParticles (entity_t *ent)
{
int i, j, k;
particle_t *p;
float vel;
vec3_t dir;
vec3_t org;
org[0] = ent->origin[0];
org[1] = ent->origin[1];
org[2] = ent->origin[2];
for (i=-16 ; i<16 ; i+=8)
for (j=-16 ; j<16 ; j+=8)
for (k=0 ; k<32 ; k+=8)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.2 + (rand()&7) * 0.02;
p->color = 150 + rand()%6;
p->type = pt_slowgrav;
dir[0] = j*8;
dir[1] = i*8;
dir[2] = k*8;
p->org[0] = org[0] + i + (rand()&3);
p->org[1] = org[1] + j + (rand()&3);
p->org[2] = org[2] + k + (rand()&3);
VectorNormalize (dir);
vel = 50 + (rand()&63);
VectorScale (dir, vel, p->vel);
}
}
#endif
/*
===============
R_EntityParticles
===============
*/
#define NUMVERTEXNORMALS 162
extern float r_avertexnormals[NUMVERTEXNORMALS][3];
vec3_t avelocities[NUMVERTEXNORMALS];
float beamlength = 16;
vec3_t avelocity = {23, 7, 3};
float partstep = 0.01;
float timescale = 0.01;
void R_EntityParticles (entity_t *ent)
{
int count;
int i;
particle_t *p;
float angle;
float sr, sp, sy, cr, cp, cy;
vec3_t forward;
float dist;
dist = 64;
count = 50;
if (!avelocities[0][0])
{
for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
avelocities[0][i] = (rand()&255) * 0.01;
}
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
{
angle = cl.time * avelocities[i][0];
sy = sin(angle);
cy = cos(angle);
angle = cl.time * avelocities[i][1];
sp = sin(angle);
cp = cos(angle);
angle = cl.time * avelocities[i][2];
sr = sin(angle);
cr = cos(angle);
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.01;
p->color = 0x6f;
p->type = pt_explode;
p->org[0] = ent->origin[0] + r_avertexnormals[i][0]*dist + forward[0]*beamlength;
p->org[1] = ent->origin[1] + r_avertexnormals[i][1]*dist + forward[1]*beamlength;
p->org[2] = ent->origin[2] + r_avertexnormals[i][2]*dist + forward[2]*beamlength;
}
}
/*
===============
R_ClearParticles
===============
*/
void R_ClearParticles (void)
{
int i;
free_particles = &particles[0];
active_particles = NULL;
for (i=0 ;i<r_numparticles ; i++)
particles[i].next = &particles[i+1];
particles[r_numparticles-1].next = NULL;
}
void R_ReadPointFile_f (void)
{
FILE *f;
vec3_t org;
int r;
int c;
particle_t *p;
char name[MAX_OSPATH];
sprintf (name,"maps/%s.pts", sv.name);
COM_FOpenFile (name, &f);
if (!f)
{
Con_Printf ("couldn't open %s\n", name);
return;
}
Con_Printf ("Reading %s...\n", name);
c = 0;
for ( ;; )
{
r = fscanf (f,"%f %f %f\n", &org[0], &org[1], &org[2]);
if (r != 3)
break;
c++;
if (!free_particles)
{
Con_Printf ("Not enough free particles\n");
break;
}
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = 99999;
p->color = (-c)&15;
p->type = pt_static;
VectorCopy (vec3_origin, p->vel);
VectorCopy (org, p->org);
}
fclose (f);
Con_Printf ("%i points read\n", c);
}
/*
===============
R_ParseParticleEffect
Parse an effect out of the server message
===============
*/
void R_ParseParticleEffect (void)
{
vec3_t org, dir;
int i, count, msgcount, color;
for (i=0 ; i<3 ; i++)
org[i] = MSG_ReadCoord ();
for (i=0 ; i<3 ; i++)
dir[i] = MSG_ReadChar () * (1.0/16);
msgcount = MSG_ReadByte ();
color = MSG_ReadByte ();
if (msgcount == 255)
count = 1024;
else
count = msgcount;
R_RunParticleEffect (org, dir, color, count);
}
/*
===============
R_ParticleExplosion
===============
*/
void R_ParticleExplosion (vec3_t org)
{
int i, j;
particle_t *p;
for (i=0 ; i<1024 ; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 5;
p->color = ramp1[0];
p->ramp = rand()&3;
if (i & 1)
{
p->type = pt_explode;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
else
{
p->type = pt_explode2;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
}
}
/*
===============
R_ParticleExplosion2
===============
*/
void R_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
{
int i, j;
particle_t *p;
int colorMod = 0;
for (i=0; i<512; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.3;
p->color = colorStart + (colorMod % colorLength);
colorMod++;
p->type = pt_blob;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
}
/*
===============
R_BlobExplosion
===============
*/
void R_BlobExplosion (vec3_t org)
{
int i, j;
particle_t *p;
for (i=0 ; i<1024 ; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 1 + (rand()&8)*0.05;
if (i & 1)
{
p->type = pt_blob;
p->color = 66 + rand()%6;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
else
{
p->type = pt_blob2;
p->color = 150 + rand()%6;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
}
}
/*
===============
R_RunParticleEffect
===============
*/
void R_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
{
int i, j;
particle_t *p;
for (i=0 ; i<count ; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
if (count == 1024)
{ // rocket explosion
p->die = cl.time + 5;
p->color = ramp1[0];
p->ramp = rand()&3;
if (i & 1)
{
p->type = pt_explode;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
else
{
p->type = pt_explode2;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
}
else
{
p->die = cl.time + 0.1*(rand()%5);
p->color = (color&~7) + (rand()&7);
p->type = pt_slowgrav;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()&15)-8);
p->vel[j] = dir[j]*15;// + (rand()%300)-150;
}
}
}
}
/*
===============
R_LavaSplash
===============
*/
void R_LavaSplash (vec3_t org)
{
int i, j, k;
particle_t *p;
float vel;
vec3_t dir;
for (i=-16 ; i<16 ; i++)
for (j=-16 ; j<16 ; j++)
for (k=0 ; k<1 ; k++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 2 + (rand()&31) * 0.02;
p->color = 224 + (rand()&7);
p->type = pt_slowgrav;
dir[0] = j*8 + (rand()&7);
dir[1] = i*8 + (rand()&7);
dir[2] = 256;
p->org[0] = org[0] + dir[0];
p->org[1] = org[1] + dir[1];
p->org[2] = org[2] + (rand()&63);
VectorNormalize (dir);
vel = 50 + (rand()&63);
VectorScale (dir, vel, p->vel);
}
}
/*
===============
R_TeleportSplash
===============
*/
void R_TeleportSplash (vec3_t org)
{
int i, j, k;
particle_t *p;
float vel;
vec3_t dir;
for (i=-16 ; i<16 ; i+=4)
for (j=-16 ; j<16 ; j+=4)
for (k=-24 ; k<32 ; k+=4)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.2 + (rand()&7) * 0.02;
p->color = 7 + (rand()&7);
p->type = pt_slowgrav;
dir[0] = j*8;
dir[1] = i*8;
dir[2] = k*8;
p->org[0] = org[0] + i + (rand()&3);
p->org[1] = org[1] + j + (rand()&3);
p->org[2] = org[2] + k + (rand()&3);
VectorNormalize (dir);
vel = 50 + (rand()&63);
VectorScale (dir, vel, p->vel);
}
}
void R_RocketTrail (vec3_t start, vec3_t end, int type)
{
vec3_t vec;
float len;
int j;
particle_t *p;
int dec;
static int tracercount;
VectorSubtract (end, start, vec);
len = VectorNormalize (vec);
if (type < 128)
dec = 3;
else
{
dec = 1;
type -= 128;
}
while (len > 0)
{
len -= dec;
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
VectorCopy (vec3_origin, p->vel);
p->die = cl.time + 2;
switch (type)
{
case 0: // rocket trail
p->ramp = (rand()&3);
p->color = ramp3[(int)p->ramp];
p->type = pt_fire;
for (j=0 ; j<3 ; j++)
p->org[j] = start[j] + ((rand()%6)-3);
break;
case 1: // smoke smoke
p->ramp = (rand()&3) + 2;
p->color = ramp3[(int)p->ramp];
p->type = pt_fire;
for (j=0 ; j<3 ; j++)
p->org[j] = start[j] + ((rand()%6)-3);
break;
case 2: // blood
p->type = pt_grav;
p->color = 67 + (rand()&3);
for (j=0 ; j<3 ; j++)
p->org[j] = start[j] + ((rand()%6)-3);
break;
case 3:
case 5: // tracer
p->die = cl.time + 0.5;
p->type = pt_static;
if (type == 3)
p->color = 52 + ((tracercount&4)<<1);
else
p->color = 230 + ((tracercount&4)<<1);
tracercount++;
VectorCopy (start, p->org);
if (tracercount & 1)
{
p->vel[0] = 30*vec[1];
p->vel[1] = 30*-vec[0];
}
else
{
p->vel[0] = 30*-vec[1];
p->vel[1] = 30*vec[0];
}
break;
case 4: // slight blood
p->type = pt_grav;
p->color = 67 + (rand()&3);
for (j=0 ; j<3 ; j++)
p->org[j] = start[j] + ((rand()%6)-3);
len -= 3;
break;
case 6: // voor trail
p->color = 9*16 + 8 + (rand()&3);
p->type = pt_static;
p->die = cl.time + 0.3;
for (j=0 ; j<3 ; j++)
p->org[j] = start[j] + ((rand()&15)-8);
break;
}
VectorAdd (start, vec, start);
}
}
/*
===============
R_DrawParticles
===============
*/
extern cvar_t sv_gravity;
void R_DrawParticles (void)
{
particle_t *p, *kill;
float grav;
int i;
float time2, time3;
float time1;
float dvel;
float frametime;
#ifdef GLQUAKE
vec3_t up, right;
float scale;
GL_Bind(particletexture);
glEnable (GL_BLEND);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBegin (GL_TRIANGLES);
VectorScale (vup, 1.5, up);
VectorScale (vright, 1.5, right);
#else
D_StartParticles ();
VectorScale (vright, xscaleshrink, r_pright);
VectorScale (vup, yscaleshrink, r_pup);
VectorCopy (vpn, r_ppn);
#endif
frametime = cl.time - cl.oldtime;
time3 = frametime * 15;
time2 = frametime * 10; // 15;
time1 = frametime * 5;
grav = frametime * sv_gravity.value * 0.05;
dvel = 4*frametime;
for ( ;; )
{
kill = active_particles;
if (kill && kill->die < cl.time)
{
active_particles = kill->next;
kill->next = free_particles;
free_particles = kill;
continue;
}
break;
}
for (p=active_particles ; p ; p=p->next)
{
for ( ;; )
{
kill = p->next;
if (kill && kill->die < cl.time)
{
p->next = kill->next;
kill->next = free_particles;
free_particles = kill;
continue;
}
break;
}
#ifdef GLQUAKE
// hack a scale up to keep particles from disapearing
scale = (p->org[0] - r_origin[0])*vpn[0] + (p->org[1] - r_origin[1])*vpn[1]
+ (p->org[2] - r_origin[2])*vpn[2];
if (scale < 20)
scale = 1;
else
scale = 1 + scale * 0.004;
glColor3ubv ((byte *)&d_8to24table[(int)p->color]);
glTexCoord2f (0,0);
glVertex3fv (p->org);
glTexCoord2f (1,0);
glVertex3f (p->org[0] + up[0]*scale, p->org[1] + up[1]*scale, p->org[2] + up[2]*scale);
glTexCoord2f (0,1);
glVertex3f (p->org[0] + right[0]*scale, p->org[1] + right[1]*scale, p->org[2] + right[2]*scale);
#else
D_DrawParticle (p);
#endif
p->org[0] += p->vel[0]*frametime;
p->org[1] += p->vel[1]*frametime;
p->org[2] += p->vel[2]*frametime;
switch (p->type)
{
case pt_static:
break;
case pt_fire:
p->ramp += time1;
if (p->ramp >= 6)
p->die = -1;
else
p->color = ramp3[(int)p->ramp];
p->vel[2] += grav;
break;
case pt_explode:
p->ramp += time2;
if (p->ramp >=8)
p->die = -1;
else
p->color = ramp1[(int)p->ramp];
for (i=0 ; i<3 ; i++)
p->vel[i] += p->vel[i]*dvel;
p->vel[2] -= grav;
break;
case pt_explode2:
p->ramp += time3;
if (p->ramp >=8)
p->die = -1;
else
p->color = ramp2[(int)p->ramp];
for (i=0 ; i<3 ; i++)
p->vel[i] -= p->vel[i]*frametime;
p->vel[2] -= grav;
break;
case pt_blob:
for (i=0 ; i<3 ; i++)
p->vel[i] += p->vel[i]*dvel;
p->vel[2] -= grav;
break;
case pt_blob2:
for (i=0 ; i<2 ; i++)
p->vel[i] -= p->vel[i]*dvel;
p->vel[2] -= grav;
break;
case pt_grav:
#ifdef QUAKE2
p->vel[2] -= grav * 20;
break;
#endif
case pt_slowgrav:
p->vel[2] -= grav;
break;
}
}
#ifdef GLQUAKE
glEnd ();
glDisable (GL_BLEND);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
#else
D_EndParticles ();
#endif
}