mirror of
https://github.com/nzp-team/fteqw.git
synced 2024-11-14 16:31:38 +00:00
eccfe6b560
openal: doppler now applies to openal more consistently. vulkan: vk_loadglsl cvar enables vk_nv_glsl_shader, with support for existing glsl shaders (still no permutations for now). needs !!samps stuff. vulkan: r_renderscale now partly works. r_fxaa also works under specific circumstances. needs more work. still no bloom or projections stuff. menu_download: got a few tweaks to improve it, including zips. I still want to handle engine updates with this stuff, but that can wait for later. git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@5008 fc73d0e0-1445-4013-8a0c-d673dee63da5
231 lines
6.5 KiB
HLSL
231 lines
6.5 KiB
HLSL
!!samps diffuse normalmap specular upper lower shadowmap projectionmap
|
|
!!permu BUMP
|
|
!!permu FRAMEBLEND
|
|
!!permu SKELETAL
|
|
!!permu UPPERLOWER
|
|
!!permu FOG
|
|
!!cvarf r_glsl_offsetmapping_scale
|
|
!!cvardf r_glsl_pcf=5
|
|
|
|
|
|
//this is the main shader responsible for realtime dlights.
|
|
|
|
//texture units:
|
|
//s0=diffuse, s1=normal, s2=specular, s3=shadowmap
|
|
//custom modifiers:
|
|
//PCF(shadowmap)
|
|
//CUBEPROJ(projected cubemap)
|
|
//SPOT(projected circle
|
|
//CUBESHADOW
|
|
|
|
#undef CUBE //engine cannot load cubemaps properly with d3d yet.
|
|
|
|
#ifndef r_glsl_pcf
|
|
#error r_glsl_pcf wasn't defined
|
|
#endif
|
|
#if r_glsl_pcf < 1
|
|
#undef r_glsl_pcf
|
|
#define r_glsl_pcf 9
|
|
#endif
|
|
|
|
#ifdef UPPERLOWER
|
|
#define UPPER
|
|
#define LOWER
|
|
#endif
|
|
|
|
|
|
struct a2v
|
|
{
|
|
float4 pos: POSITION;
|
|
float2 tc: TEXCOORD0;
|
|
float3 n: NORMAL;
|
|
float3 s: TANGENT;
|
|
float3 t: BINORMAL;
|
|
};
|
|
struct v2f
|
|
{
|
|
float4 pos: SV_POSITION;
|
|
float2 tc: TEXCOORD0;
|
|
float3 lightvector: TEXCOORD1;
|
|
float3 eyevector: TEXCOORD2;
|
|
float3 vtexprojcoord: TEXCOORD3;
|
|
};
|
|
|
|
#include <ftedefs.h>
|
|
|
|
#ifdef VERTEX_SHADER
|
|
v2f main (a2v inp)
|
|
{
|
|
v2f outp;
|
|
float4 wpos;
|
|
wpos = mul(m_model, inp.pos);
|
|
outp.pos = mul(m_view, wpos);
|
|
outp.pos = mul(m_projection, outp.pos);
|
|
outp.tc = inp.tc.xy;
|
|
float3 lightminusvertex = l_lightposition - wpos.xyz;
|
|
outp.lightvector.x = -dot(lightminusvertex, inp.s.xyz);
|
|
outp.lightvector.y = dot(lightminusvertex, inp.t.xyz);
|
|
outp.lightvector.z = dot(lightminusvertex, inp.n.xyz);
|
|
float3 eyeminusvertex = e_eyepos - wpos.xyz;
|
|
outp.eyevector.x = -dot(eyeminusvertex, inp.s.xyz);
|
|
outp.eyevector.y = dot(eyeminusvertex, inp.t.xyz);
|
|
outp.eyevector.z = dot(eyeminusvertex, inp.n.xyz);
|
|
outp.vtexprojcoord = mul(l_cubematrix, wpos).xyz;
|
|
return outp;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef FRAGMENT_SHADER
|
|
|
|
Texture2D t_shadowmap : register(t0);
|
|
TextureCube t_projectionmap : register(t1);
|
|
Texture2D t_diffuse : register(t2);
|
|
Texture2D t_normalmap : register(t3);
|
|
Texture2D t_specular : register(t4);
|
|
Texture2D t_upper : register(t5);
|
|
Texture2D t_lower : register(t6);
|
|
|
|
SamplerComparisonState s_shadowmap : register(s0);
|
|
SamplerState s_projectionmap : register(s1);
|
|
SamplerState s_diffuse : register(s2);
|
|
SamplerState s_normalmap : register(s3);
|
|
SamplerState s_specular : register(s4);
|
|
SamplerState s_upper : register(s5);
|
|
SamplerState s_lower : register(s6);
|
|
|
|
|
|
#ifdef PCF
|
|
float3 ShadowmapCoord(float3 vtexprojcoord)
|
|
{
|
|
#ifdef SPOT
|
|
//bias it. don't bother figuring out which side or anything, its not needed
|
|
//l_projmatrix contains the light's projection matrix so no other magic needed
|
|
vtexprojcoord.z -= 0.015;
|
|
return (vtexprojcoord.xyz + float3(1.0, 1.0, 1.0)) * float3(0.5, 0.5, 0.5);
|
|
//#elif defined(CUBESHADOW)
|
|
// vec3 shadowcoord = vshadowcoord.xyz / vshadowcoord.w;
|
|
// #define dosamp(x,y) shadowCube(s_t4, shadowcoord + vec2(x,y)*texscale.xy).r
|
|
#else
|
|
//figure out which axis to use
|
|
//texture is arranged thusly:
|
|
//forward left up
|
|
//back right down
|
|
float3 dir = abs(vtexprojcoord.xyz);
|
|
//assume z is the major axis (ie: forward from the light)
|
|
float3 t = vtexprojcoord.xyz;
|
|
float ma = dir.z;
|
|
float3 axis = float3(0.5/3.0, 0.5/2.0, 0.5);
|
|
if (dir.x > ma)
|
|
{
|
|
ma = dir.x;
|
|
t = vtexprojcoord.zyx;
|
|
axis.x = 0.5;
|
|
}
|
|
if (dir.y > ma)
|
|
{
|
|
ma = dir.y;
|
|
t = vtexprojcoord.xzy;
|
|
axis.x = 2.5/3.0;
|
|
}
|
|
//if the axis is negative, flip it.
|
|
if (t.z > 0.0)
|
|
{
|
|
axis.y = 1.5/2.0;
|
|
t.z = -t.z;
|
|
}
|
|
|
|
//we also need to pass the result through the light's projection matrix too
|
|
//the 'matrix' we need only contains 5 actual values. and one of them is a -1. So we might as well just use a vec4.
|
|
//note: the projection matrix also includes scalers to pinch the image inwards to avoid sampling over borders, as well as to cope with non-square source image
|
|
//the resulting z is prescaled to result in a value between -0.5 and 0.5.
|
|
//also make sure we're in the right quadrant type thing
|
|
return axis + ((l_shadowmapproj.xyz*t.xyz + float3(0.0, 0.0, l_shadowmapproj.w)) / -t.z);
|
|
#endif
|
|
}
|
|
|
|
float ShadowmapFilter(float3 vtexprojcoord)
|
|
{
|
|
float3 shadowcoord = ShadowmapCoord(vtexprojcoord);
|
|
|
|
// #define dosamp(x,y) shadow2D(s_t4, shadowcoord.xyz + (vec3(x,y,0.0)*l_shadowmapscale.xyx)).r
|
|
|
|
// #define dosamp(x,y) (t_shadowmap.Sample(s_shadowmap, shadowcoord.xy + (float2(x,y)*l_shadowmapscale.xy)).r < shadowcoord.z)
|
|
#define dosamp(x,y) (t_shadowmap.SampleCmpLevelZero(s_shadowmap, shadowcoord.xy+(float2(x,y)*l_shadowmapscale.xy), shadowcoord.z))
|
|
|
|
float s = 0.0;
|
|
#if r_glsl_pcf >= 1 && r_glsl_pcf < 5
|
|
s += dosamp(0.0, 0.0);
|
|
return s;
|
|
#elif r_glsl_pcf >= 5 && r_glsl_pcf < 9
|
|
s += dosamp(-1.0, 0.0);
|
|
s += dosamp(0.0, -1.0);
|
|
s += dosamp(0.0, 0.0);
|
|
s += dosamp(0.0, 1.0);
|
|
s += dosamp(1.0, 0.0);
|
|
return s * (1.0/5.0);
|
|
#else
|
|
s += dosamp(-1.0, -1.0);
|
|
s += dosamp(-1.0, 0.0);
|
|
s += dosamp(-1.0, 1.0);
|
|
s += dosamp(0.0, -1.0);
|
|
s += dosamp(0.0, 0.0);
|
|
s += dosamp(0.0, 1.0);
|
|
s += dosamp(1.0, -1.0);
|
|
s += dosamp(1.0, 0.0);
|
|
s += dosamp(1.0, 1.0);
|
|
return s * (1.0/9.0);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
|
|
float4 main (v2f inp) : SV_TARGET
|
|
{
|
|
float2 tc = inp.tc; //TODO: offsetmapping.
|
|
|
|
float4 base = t_diffuse.Sample(s_diffuse, tc);
|
|
#ifdef BUMP
|
|
float4 bump = t_normalmap.Sample(s_normalmap, tc);
|
|
bump.rgb = normalize(bump.rgb - 0.5);
|
|
#else
|
|
float4 bump = float4(0, 0, 1, 0);
|
|
#endif
|
|
float4 spec = t_specular.Sample(s_specular, tc);
|
|
#ifdef CUBE
|
|
float4 cubemap = t_projectionmap.Sample(s_projectionmap, inp.vtexprojcoord);
|
|
#endif
|
|
#ifdef LOWER
|
|
float4 lower = t_lower.Sample(s_lower, tc);
|
|
base += lower;
|
|
#endif
|
|
#ifdef UPPER
|
|
float4 upper = t_upper.Sample(s_upper, tc);
|
|
base += upper;
|
|
#endif
|
|
|
|
float lightscale = max(1.0 - (dot(inp.lightvector,inp.lightvector)/(l_lightradius*l_lightradius)), 0.0);
|
|
float3 nl = normalize(inp.lightvector);
|
|
float bumpscale = max(dot(bump.xyz, nl), 0.0);
|
|
float3 halfdir = normalize(normalize(inp.eyevector) + nl);
|
|
float specscale = pow(max(dot(halfdir, bump.rgb), 0.0), 32.0 * spec.a);
|
|
|
|
float4 result;
|
|
result.a = base.a;
|
|
result.rgb = base.rgb * (l_lightcolourscale.x + l_lightcolourscale.y * bumpscale); //amient light + diffuse
|
|
result.rgb += spec.rgb * l_lightcolourscale.z * specscale; //specular
|
|
|
|
result.rgb *= lightscale * l_colour; //fade light by distance and light colour.
|
|
|
|
#ifdef CUBE
|
|
result.rgb *= cubemap.rgb; //fade by cubemap
|
|
#endif
|
|
|
|
#ifdef PCF
|
|
result.rgb *= ShadowmapFilter(inp.vtexprojcoord);
|
|
#endif
|
|
|
|
//TODO: fog
|
|
return result;
|
|
}
|
|
#endif
|