fteqw/engine/gl/gl_alias.c
Spoike 47afae3dfe Fixing tags.
git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@665 fc73d0e0-1445-4013-8a0c-d673dee63da5
2004-12-21 04:32:34 +00:00

3217 lines
No EOL
82 KiB
C

#include "quakedef.h"
#ifdef RGLQUAKE
#include "glquake.h"
#include "shader.h"
#include "hash.h"
#ifdef ZYMOTICMODELS
#define SKELETALMODELS
#endif
//FIXME
typedef struct
{
float scale[3]; // multiply qbyte verts by this
float translate[3]; // then add this
char name[16]; // frame name from grabbing
dtrivertx_t verts[1]; // variable sized
} dmd2aliasframe_t;
// entity_state_t->renderfx flags
#define Q2RF_MINLIGHT 1 // allways have some light (viewmodel)
#define Q2RF_VIEWERMODEL 2 // don't draw through eyes, only mirrors
#define Q2RF_WEAPONMODEL 4 // only draw through eyes
#define Q2RF_FULLBRIGHT 8 // allways draw full intensity
#define Q2RF_DEPTHHACK 16 // for view weapon Z crunching
#define Q2RF_TRANSLUCENT 32
#define Q2RF_FRAMELERP 64
#define Q2RF_BEAM 128
#define Q2RF_CUSTOMSKIN 256 // skin is an index in image_precache
#define Q2RF_GLOW 512 // pulse lighting for bonus items
#define Q2RF_SHELL_RED 1024
#define Q2RF_SHELL_GREEN 2048
#define Q2RF_SHELL_BLUE 4096
//ROGUE
#define Q2RF_IR_VISIBLE 0x00008000 // 32768
#define Q2RF_SHELL_DOUBLE 0x00010000 // 65536
#define Q2RF_SHELL_HALF_DAM 0x00020000
#define Q2RF_USE_DISGUISE 0x00040000
//ROGUE
extern cvar_t gl_part_flame, gl_part_torch, r_fullbrightSkins, r_fb_models;
extern cvar_t r_noaliasshadows;
void R_TorchEffect (vec3_t pos, int type);
void GLMod_FloodFillSkin( qbyte *skin, int skinwidth, int skinheight );
extern char loadname[32]; // for hunk tags
int numTempColours;
byte_vec4_t *tempColours;
int numTempVertexCoords;
vec4_t *tempVertexCoords;
int numTempNormals;
vec3_t *tempNormals;
extern cvar_t gl_ati_truform;
extern cvar_t r_vertexdlights;
typedef struct {
int ofs_indexes;
int numindexes;
int ofs_trineighbours;
int numskins;
int ofsskins;
qboolean sharesverts; //used with models with two shaders using the same vertex.
int numverts;
int ofs_st_array;
int groups;
int groupofs;
int nextsurf;
int numbones;
int ofsbones;
int numtransforms;
int ofstransforms;
//these exist only in the root mesh.
int numtags;
int ofstags;
} galiasinfo_t;
//frame is an index into this
typedef struct {
#ifdef SKELETALMODELS
qboolean isskeletal;
#endif
int numposes;
float rate;
int poseofs;
} galiasgroup_t;
typedef struct {
int ofsverts;
int ofsnormals;
vec3_t scale;
vec3_t scale_origin;
} galiaspose_t;
#ifdef SKELETALMODELS
typedef struct {
int parent;
} galiasbone_t;
typedef struct {
//skeletal poses refer to this.
int vertexindex;
int boneindex;
vec4_t org;
} galisskeletaltransforms_t;
#endif
//we can't be bothered with animating skins.
//We'll load up to four of them but after that you're on your own
typedef struct {
int skinwidth;
int skinheight;
int ofstexels; //this is 8bit for frame 0 only. only valid in q1 models without replacement textures, used for colourising player skins.
float skinspeed;
int texnums;
int ofstexnums;
} galiasskin_t;
typedef struct {
int base;
int bump;
int fullbright;
shader_t *shader;
} galiastexnum_t;
typedef struct {
char name[MAX_QPATH];
galiastexnum_t texnum;
int colour;
int skinnum;
bucket_t bucket;
} galiascolourmapped_t;
static hashtable_t skincolourmapped;
static vec3_t shadevector;
static vec3_t shadelight, ambientlight;
static void R_LerpFrames(mesh_t *mesh, galiaspose_t *p1, galiaspose_t *p2, float lerp, qbyte alpha, float expand)
{
extern cvar_t r_nolerp, r_nolightdir;
float blerp = 1-lerp;
int i;
float l;
int temp;
vec3_t *p1v, *p2v;
vec3_t *p1n, *p2n;
p1v = (vec3_t *)((char *)p1 + p1->ofsverts);
p2v = (vec3_t *)((char *)p2 + p2->ofsverts);
p1n = (vec3_t *)((char *)p1 + p1->ofsnormals);
p2n = (vec3_t *)((char *)p2 + p2->ofsnormals);
if (p1v == p2v || r_nolerp.value)
{
mesh->normals_array = (vec3_t*)((char *)p1 + p1->ofsnormals);
if (r_nolightdir.value)
{
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->xyz_array[i][0] = p1v[i][0];
mesh->xyz_array[i][1] = p1v[i][1];
mesh->xyz_array[i][2] = p1v[i][2];
mesh->colors_array[i][0] = /*ambientlight[0]/2*/+shadelight[0];
mesh->colors_array[i][1] = /*ambientlight[1]/2*/+shadelight[1];
mesh->colors_array[i][2] = /*ambientlight[2]/2*/+shadelight[2];
mesh->colors_array[i][3] = alpha;
}
}
else
{
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->xyz_array[i][0] = p1v[i][0];
mesh->xyz_array[i][1] = p1v[i][1];
mesh->xyz_array[i][2] = p1v[i][2];
l = DotProduct(mesh->normals_array[i], shadevector);
temp = l*ambientlight[0]+shadelight[0];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][0] = temp;
temp = l*ambientlight[1]+shadelight[1];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][1] = temp;
temp = l*ambientlight[2]+shadelight[2];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][2] = temp;
mesh->colors_array[i][3] = alpha;
}
}
}
else
{
if (r_nolightdir.value)
{
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->normals_array[i][0] = p1n[i][0]*lerp + p2n[i][0]*blerp;
mesh->normals_array[i][1] = p1n[i][1]*lerp + p2n[i][1]*blerp;
mesh->normals_array[i][2] = p1n[i][2]*lerp + p2n[i][2]*blerp;
mesh->xyz_array[i][0] = p1v[i][0]*lerp + p2v[i][0]*blerp;
mesh->xyz_array[i][1] = p1v[i][1]*lerp + p2v[i][1]*blerp;
mesh->xyz_array[i][2] = p1v[i][2]*lerp + p2v[i][2]*blerp;
mesh->colors_array[i][0] = ambientlight[0];
mesh->colors_array[i][1] = ambientlight[1];
mesh->colors_array[i][2] = ambientlight[2];
mesh->colors_array[i][3] = alpha;
}
}
else
{
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->normals_array[i][0] = p1n[i][0]*lerp + p2n[i][0]*blerp;
mesh->normals_array[i][1] = p1n[i][1]*lerp + p2n[i][1]*blerp;
mesh->normals_array[i][2] = p1n[i][2]*lerp + p2n[i][2]*blerp;
mesh->xyz_array[i][0] = p1v[i][0]*lerp + p2v[i][0]*blerp;
mesh->xyz_array[i][1] = p1v[i][1]*lerp + p2v[i][1]*blerp;
mesh->xyz_array[i][2] = p1v[i][2]*lerp + p2v[i][2]*blerp;
l = DotProduct(mesh->normals_array[i], shadevector);
temp = l*ambientlight[0]+shadelight[0];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][0] = temp;
temp = l*ambientlight[1]+shadelight[1];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][1] = temp;
temp = l*ambientlight[2]+shadelight[2];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][2] = temp;
mesh->colors_array[i][3] = alpha;
}
}
}
if (expand)
{
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->xyz_array[i][0] += mesh->normals_array[i][0]*expand;
mesh->xyz_array[i][1] += mesh->normals_array[i][1]*expand;
mesh->xyz_array[i][2] += mesh->normals_array[i][2]*expand;
}
}
}
#ifdef SKELETALMODELS
static void R_BuildSkeletalMesh(mesh_t *mesh, float *plerp, float **pose, int poses, galiasbone_t *bones, int bonecount, galisskeletaltransforms_t *weights, int numweights)
{
float bonepose[256][12];
float *outhead;
galisskeletaltransforms_t *v;
int i, k, b;
float *out, *matrix, m[12];
// vertex weighted skeletal
// interpolate matrices and concatenate them to their parents
for (i = 0;i < bonecount;i++)
{
for (k = 0;k < 12;k++)
m[k] = 0;
for (b = 0;b < poses;b++)
{
matrix = pose[b] + i*12;
for (k = 0;k < 12;k++)
m[k] += matrix[k] * plerp[b];
}
if (bones[i].parent >= 0)
R_ConcatTransforms((void*)bonepose[bones[i].parent], (void*)m, (void*)bonepose[i]);
else
for (k = 0;k < 12;k++) //parentless
bonepose[i][k] = m[k];
}
outhead = (float*)mesh->xyz_array;
// blend the vertex bone weights
memset(outhead, 0, mesh->numvertexes * sizeof(mesh->xyz_array[0]));
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->normals_array[i][0] = 0;
mesh->normals_array[i][1] = 0;
mesh->normals_array[i][2] = 1;
mesh->colors_array[i][0] = ambientlight[0];
mesh->colors_array[i][1] = ambientlight[1];
mesh->colors_array[i][2] = ambientlight[2];
mesh->colors_array[i][3] = 255;//alpha;
/*
mesh->xyz_array[i][0] = 0;
mesh->xyz_array[i][1] = 0;
mesh->xyz_array[i][2] = 0;
mesh->xyz_array[i][3] = 1;
*/
}
v = weights;
for (i = 0;i < numweights;i++, v++)
{
out = outhead + v->vertexindex * 4;
matrix = bonepose[v->boneindex];
// FIXME: this can very easily be optimized with SSE or 3DNow
out[0] += v->org[0] * matrix[0] + v->org[1] * matrix[1] + v->org[2] * matrix[ 2] + v->org[3] * matrix[ 3];
out[1] += v->org[0] * matrix[4] + v->org[1] * matrix[5] + v->org[2] * matrix[ 6] + v->org[3] * matrix[ 7];
out[2] += v->org[0] * matrix[8] + v->org[1] * matrix[9] + v->org[2] * matrix[10] + v->org[3] * matrix[11];
}
}
#endif
static void R_GAliasAddDlights(mesh_t *mesh, vec3_t org, vec3_t angles)
{
int l, v;
vec3_t rel;
vec3_t dir;
vec3_t axis[3];
float dot, d, a, f;
AngleVectors(angles, axis[0], axis[1], axis[2]);
for (l=0 ; l<MAX_DLIGHTS ; l++)
{
if (cl_dlights[l].radius)
{
VectorSubtract (cl_dlights[l].origin,
org,
dir);
if (Length(dir)>cl_dlights[l].radius+mesh->radius) //far out man!
continue;
rel[0] = -DotProduct(dir, axis[0]);
rel[1] = DotProduct(dir, axis[1]); //quake's crazy.
rel[2] = -DotProduct(dir, axis[2]);
/*
glBegin(GL_LINES);
glVertex3f(0,0,0);
glVertex3f(rel[0],rel[1],rel[2]);
glEnd();
*/
for (v = 0; v < mesh->numvertexes; v++)
{
VectorSubtract(mesh->xyz_array[v], rel, dir);
dot = DotProduct(dir, mesh->normals_array[v]);
if (dot>0)
{
d = DotProduct(dir, dir);
a = 1/d;
if (a>0)
{
a *= 10000000*dot/sqrt(d);
f = mesh->colors_array[v][0] + a*cl_dlights[l].color[0];
if (f > 255)
f = 255;
else if (f < 0)
f = 0;
mesh->colors_array[v][0] = f;
f = mesh->colors_array[v][1] + a*cl_dlights[l].color[1];
if (f > 255)
f = 255;
else if (f < 0)
f = 0;
mesh->colors_array[v][1] = f;
f = mesh->colors_array[v][2] + a*cl_dlights[l].color[2];
if (f > 255)
f = 255;
else if (f < 0)
f = 0;
mesh->colors_array[v][2] = f;
}
// else
// mesh->colors_array[v][1] =255;
}
// else
// mesh->colors_array[v][2] =255;
}
}
}
}
static qboolean R_GAliasBuildMesh(mesh_t *mesh, galiasinfo_t *inf, int frame1, int frame2, float lerp, float alpha)
{
galiasgroup_t *g1, *g2;
if (!inf->groups)
{
Con_DPrintf("Model with no frames (%s)\n", currententity->model->name);
return false;
}
if (frame1 < 0)
{
Con_DPrintf("Negative frame (%s)\n", currententity->model->name);
frame1 = 0;
}
if (frame2 < 0)
{
Con_DPrintf("Negative frame (%s)\n", currententity->model->name);
frame2 = frame1;
}
if (frame1 >= inf->groups)
{
Con_DPrintf("Too high frame %i (%s)\n", frame1, currententity->model->name);
frame1 = 0;
}
if (frame2 >= inf->groups)
{
Con_DPrintf("Too high frame %i (%s)\n", frame2, currententity->model->name);
frame2 = frame1;
}
if (lerp <= 0)
frame2 = frame1;
else if (lerp >= 1)
frame1 = frame2;
if (numTempColours < inf->numverts)
{
if (tempColours)
BZ_Free(tempColours);
tempColours = BZ_Malloc(sizeof(*tempColours)*inf->numverts);
numTempColours = inf->numverts;
}
if (numTempNormals < inf->numverts)
{
if (tempNormals)
BZ_Free(tempNormals);
tempNormals = BZ_Malloc(sizeof(*tempNormals)*inf->numverts);
numTempNormals = inf->numverts;
}
if (numTempVertexCoords < inf->numverts)
{
if (tempVertexCoords)
BZ_Free(tempVertexCoords);
tempVertexCoords = BZ_Malloc(sizeof(*tempVertexCoords)*inf->numverts);
numTempVertexCoords = inf->numverts;
}
mesh->indexes = (index_t*)((char *)inf + inf->ofs_indexes);
mesh->numindexes = inf->numindexes;
mesh->st_array = (vec2_t*)((char *)inf + inf->ofs_st_array);
mesh->lmst_array = NULL;
mesh->colors_array = tempColours;
mesh->xyz_array = tempVertexCoords;
mesh->numvertexes = inf->numverts;
mesh->trneighbors = (int *)((char *)inf + inf->ofs_trineighbours);
if (inf->sharesverts)
return false; //don't generate the new vertex positions. We still have them all.
mesh->normals_array = tempNormals;
g1 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame1);
g2 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame2);
//we don't support meshes with one pose skeletal and annother not.
//we don't support meshes with one group skeletal and annother not.
#ifdef SKELETALMODELS
if (g1->isskeletal)
{
int l=0;
float plerp[4];
float *pose[4];
float mlerp; //minor lerp, poses within a group.
mlerp = cl.time*g1->rate;
frame1=mlerp;
frame2=frame1+1;
mlerp-=frame1;
frame1=frame1%g1->numposes;
frame2=frame2%g1->numposes;
plerp[l] = (1-mlerp)*(1-lerp);
if (plerp[l]>0)
pose[l++] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*inf->numbones*12*frame1);
plerp[l] = (mlerp)*(1-lerp);
if (plerp[l]>0)
pose[l++] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*inf->numbones*12*frame2);
mlerp = cl.time*g2->rate;
frame1=mlerp;
frame2=frame1+1;
mlerp-=frame1;
frame1=frame1%g2->numposes;
frame2=frame2%g2->numposes;
plerp[l] = (1-mlerp)*(lerp);
if (plerp[l]>0)
pose[l++] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*inf->numbones*12*frame1);
plerp[l] = (mlerp)*(lerp);
if (plerp[l]>0)
pose[l++] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*inf->numbones*12*frame2);
/*
pose[0] = (float *)((char *)g1 + g1->poseofs);
plerp[0] = 1;
plerp[1] = 0;
plerp[3] = 0;
plerp[4] = 0;
l = 1;
*/
R_BuildSkeletalMesh(mesh, plerp, pose, l, (galiasbone_t *)((char*)inf+inf->ofsbones), inf->numbones, (galisskeletaltransforms_t *)((char*)inf+inf->ofstransforms), inf->numtransforms);
return false;
}
#endif
if (g1 == g2) //lerping within group is only done if not changing group
{
lerp = cl.time*g1->rate;
frame1=lerp;
frame2=frame1+1;
lerp-=frame1;
frame1=frame1%g1->numposes;
frame2=frame2%g1->numposes;
}
else //don't bother with a four way lerp. Yeah, this will produce jerkyness with models with just framegroups.
{
frame1=0;
frame2=0;
}
R_LerpFrames(mesh, (galiaspose_t *)((char *)g1 + g1->poseofs + sizeof(galiaspose_t)*frame1),
(galiaspose_t *)((char *)g2 + g2->poseofs + sizeof(galiaspose_t)*frame2),
1-lerp, (qbyte)(alpha*255), currententity->fatness);//20*sin(cl.time));
return true; //to allow the mesh to be dlighted.
}
void GL_GAliasFlushSkinCache(void)
{
int i;
bucket_t *b;
for (i = 0; i < skincolourmapped.numbuckets; i++)
{
while((b = skincolourmapped.bucket[i]))
{
skincolourmapped.bucket[i] = b->next;
BZ_Free(b->data);
}
}
if (skincolourmapped.bucket)
BZ_Free(skincolourmapped.bucket);
skincolourmapped.bucket = NULL;
skincolourmapped.numbuckets = 0;
}
static galiastexnum_t *GL_ChooseSkin(galiasinfo_t *inf, char *modelname, entity_t *e)
{
galiasskin_t *skins;
galiastexnum_t *texnums;
int frame;
int tc, bc;
if (e->scoreboard)
{
if (!e->scoreboard->skin && !gl_nocolors.value)
Skin_Find(e->scoreboard);
tc = e->scoreboard->topcolor;
bc = e->scoreboard->bottomcolor;
//colour forcing
if (!cl.splitclients && !(cl.fpd & FPD_NO_FORCE_COLOR)) //no colour/skin forcing in splitscreen.
{
if (cl.teamplay && !strcmp(e->scoreboard->team, cl.players[cl.playernum[0]].team))
{
if (cl_teamtopcolor>=0)
tc = cl_teamtopcolor;
if (cl_teambottomcolor>=0)
bc = cl_teambottomcolor;
}
else
{
if (cl_enemytopcolor>=0)
tc = cl_enemytopcolor;
if (cl_enemybottomcolor>=0)
bc = cl_enemybottomcolor;
}
}
}
else
{
tc = 1;
bc = 1;
}
if (!gl_nocolors.value && (tc != 1 || bc != 1 || (e->scoreboard && e->scoreboard->skin)))
{
int inwidth, inheight;
int tinwidth, tinheight;
char *skinname;
qbyte *original;
int cc;
galiascolourmapped_t *cm;
cc = (tc<<4)|bc;
if (!strstr(modelname, "progs/player.mdl"))
skinname = modelname;
else
{
if (e->scoreboard && e->scoreboard->skin && !gl_nocolors.value)
skinname = e->scoreboard->skin->name;
else
skinname = modelname;
}
if (!skincolourmapped.numbuckets)
Hash_InitTable(&skincolourmapped, 256, BZ_Malloc(Hash_BytesForBuckets(256)));
for (cm = Hash_Get(&skincolourmapped, skinname); cm; cm = Hash_GetNext(&skincolourmapped, skinname, cm))
{
if (cm->colour == cc && cm->skinnum == e->skinnum)
{
return &cm->texnum;
}
}
skins = (galiasskin_t*)((char *)inf + inf->ofsskins);
if (!skins->texnums)
return NULL;
if (e->skinnum >= 0 && e->skinnum < inf->numskins)
skins += e->skinnum;
texnums = (galiastexnum_t*)((char *)skins + skins->ofstexnums);
//colourmap isn't present yet.
cm = BZ_Malloc(sizeof(*cm));
Q_strncpyz(cm->name, skinname, sizeof(cm->name));
Hash_Add2(&skincolourmapped, cm->name, cm, &cm->bucket);
cm->colour = cc;
cm->skinnum = e->skinnum;
cm->texnum.fullbright = 0;
cm->texnum.base = 0;
cm->texnum.bump = texnums[cm->skinnum].bump; //can't colour bumpmapping
if (skinname!=modelname && e->scoreboard && e->scoreboard->skin)
{
original = Skin_Cache8(e->scoreboard->skin);
inwidth = e->scoreboard->skin->width;
inheight = e->scoreboard->skin->height;
}
else
{
original = NULL;
inwidth = 0;
}
if (!original)
{
if (skins->ofstexels)
{
original = (qbyte *)skins + skins->ofstexels;
inwidth = skins->skinwidth;
inheight = skins->skinheight;
}
else
{
original = NULL;
inwidth = 0;
inheight = 0;
}
}
tinwidth = skins->skinwidth;
tinheight = skins->skinheight;
if (original)
{
int i, j;
qbyte translate[256];
unsigned translate32[256];
static unsigned pixels[512*512];
unsigned *out;
unsigned frac, fracstep;
unsigned scaled_width, scaled_height;
qbyte *inrow;
texnums = &cm->texnum;
texnums->base = 0;
texnums->fullbright = 0;
scaled_width = gl_max_size.value < 512 ? gl_max_size.value : 512;
scaled_height = gl_max_size.value < 512 ? gl_max_size.value : 512;
for (i=0 ; i<256 ; i++)
translate[i] = i;
tc<<=4;
bc<<=4;
for (i=0 ; i<16 ; i++)
{
if (tc < 128) // the artists made some backwards ranges. sigh.
translate[TOP_RANGE+i] = tc+i;
else
translate[TOP_RANGE+i] = tc+15-i;
if (bc < 128)
translate[BOTTOM_RANGE+i] = bc+i;
else
translate[BOTTOM_RANGE+i] = bc+15-i;
}
for (i=0 ; i<256 ; i++)
translate32[i] = d_8to24rgbtable[translate[i]];
out = pixels;
fracstep = tinwidth*0x10000/scaled_width;
for (i=0 ; i<scaled_height ; i++, out += scaled_width)
{
inrow = original + inwidth*(i*tinheight/scaled_height);
frac = fracstep >> 1;
for (j=0 ; j<scaled_width ; j+=4)
{
out[j] = translate32[inrow[frac>>16]];
frac += fracstep;
out[j+1] = translate32[inrow[frac>>16]];
frac += fracstep;
out[j+2] = translate32[inrow[frac>>16]];
frac += fracstep;
out[j+3] = translate32[inrow[frac>>16]];
frac += fracstep;
}
}
texnums->base = texture_extension_number++;
GL_Bind(texnums->base);
glTexImage2D (GL_TEXTURE_2D, 0, gl_solid_format, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
//now do the fullbrights.
out = pixels;
fracstep = tinwidth*0x10000/scaled_width;
for (i=0 ; i<scaled_height ; i++, out += scaled_width)
{
inrow = original + inwidth*(i*tinheight/scaled_height);
frac = fracstep >> 1;
for (j=0 ; j<scaled_width ; j+=1)
{
if (inrow[frac>>16] < 255-vid.fullbright)
((char *) (&out[j]))[3] = 0; //alpha 0
frac += fracstep;
}
}
texnums->fullbright = texture_extension_number++;
GL_Bind(texnums->fullbright);
glTexImage2D (GL_TEXTURE_2D, 0, gl_alpha_format, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
}
else
{
skins = (galiasskin_t*)((char *)inf + inf->ofsskins);
if (e->skinnum >= 0 && e->skinnum < inf->numskins)
skins += e->skinnum;
if (!skins->texnums)
return NULL;
frame = cl.time*skins->skinspeed;
frame = frame%skins->texnums;
texnums = (galiastexnum_t*)((char *)skins + skins->ofstexnums + frame*sizeof(galiastexnum_t));
memcpy(&cm->texnum, texnums, sizeof(cm->texnum));
}
return &cm->texnum;
}
skins = (galiasskin_t*)((char *)inf + inf->ofsskins);
if (e->skinnum >= 0 && e->skinnum < inf->numskins)
skins += e->skinnum;
if (!skins->texnums)
return NULL;
frame = cl.time*skins->skinspeed;
frame = frame%skins->texnums;
texnums = (galiastexnum_t*)((char *)skins + skins->ofstexnums + frame*sizeof(galiastexnum_t));
return texnums;
}
static int numFacing;
static qbyte *triangleFacing;
static void R_CalcFacing(mesh_t *mesh, vec3_t lightpos)
{
float *v1, *v2, *v3;
vec3_t d1, d2, norm;
int i;
index_t *indexes = mesh->indexes;
int numtris = mesh->numindexes/3;
if (numFacing < numtris)
{
if (triangleFacing)
BZ_Free(triangleFacing);
triangleFacing = BZ_Malloc(sizeof(*triangleFacing)*numtris);
numFacing = numtris;
}
for (i = 0; i < numtris; i++, indexes+=3)
{
v1 = (float *)(mesh->xyz_array + indexes[0]);
v2 = (float *)(mesh->xyz_array + indexes[1]);
v3 = (float *)(mesh->xyz_array + indexes[2]);
VectorSubtract(v1, v2, d1);
VectorSubtract(v3, v2, d2);
CrossProduct(d1, d2, norm);
triangleFacing[i] = (( lightpos[0] - v1[0] ) * norm[0] + ( lightpos[1] - v1[1] ) * norm[1] + ( lightpos[2] - v1[2] ) * norm[2]) > 0;
}
}
#define PROJECTION_DISTANCE 30000
static int numProjectedShadowVerts;
static vec3_t *ProjectedShadowVerts;
static void R_ProjectShadowVolume(mesh_t *mesh, vec3_t lightpos)
{
int numverts = mesh->numvertexes;
int i;
vec4_t *input = mesh->xyz_array;
vec3_t *projected;
if (numProjectedShadowVerts < numverts)
{
if (ProjectedShadowVerts)
BZ_Free(ProjectedShadowVerts);
ProjectedShadowVerts = BZ_Malloc(sizeof(*ProjectedShadowVerts)*numverts);
numProjectedShadowVerts = numverts;
}
projected = ProjectedShadowVerts;
for (i = 0; i < numverts; i++)
{
projected[i][0] = input[i][0] + (input[i][0]-lightpos[0])*PROJECTION_DISTANCE;
projected[i][1] = input[i][1] + (input[i][1]-lightpos[1])*PROJECTION_DISTANCE;
projected[i][2] = input[i][2] + (input[i][2]-lightpos[2])*PROJECTION_DISTANCE;
}
}
static void R_DrawShadowVolume(mesh_t *mesh)
{
int t;
vec3_t *proj = ProjectedShadowVerts;
vec4_t *verts = mesh->xyz_array;
index_t *indexes = mesh->indexes;
int *neighbours = mesh->trneighbors;
int numtris = mesh->numindexes/3;
glBegin(GL_TRIANGLES);
for (t = 0; t < numtris; t++)
{
if (triangleFacing[t])
{
//draw front
glVertex3fv(verts[indexes[t*3+0]]);
glVertex3fv(verts[indexes[t*3+1]]);
glVertex3fv(verts[indexes[t*3+2]]);
//draw back
glVertex3fv(proj[indexes[t*3+1]]);
glVertex3fv(proj[indexes[t*3+0]]);
glVertex3fv(proj[indexes[t*3+2]]);
//draw side caps
if (neighbours[t*3+0] < 0 || !triangleFacing[neighbours[t*3+0]])
{
glVertex3fv(verts[indexes[t*3+1]]);
glVertex3fv(verts[indexes[t*3+0]]);
glVertex3fv(proj [indexes[t*3+0]]);
glVertex3fv(verts[indexes[t*3+1]]);
glVertex3fv(proj [indexes[t*3+0]]);
glVertex3fv(proj [indexes[t*3+1]]);
}
if (neighbours[t*3+1] < 0 || !triangleFacing[neighbours[t*3+1]])
{
glVertex3fv(verts[indexes[t*3+2]]);
glVertex3fv(verts[indexes[t*3+1]]);
glVertex3fv(proj [indexes[t*3+1]]);
glVertex3fv(verts[indexes[t*3+2]]);
glVertex3fv(proj [indexes[t*3+1]]);
glVertex3fv(proj [indexes[t*3+2]]);
}
if (neighbours[t*3+2] < 0 || !triangleFacing[neighbours[t*3+2]])
{
glVertex3fv(verts[indexes[t*3+0]]);
glVertex3fv(verts[indexes[t*3+2]]);
glVertex3fv(proj [indexes[t*3+2]]);
glVertex3fv(verts[indexes[t*3+0]]);
glVertex3fv(proj [indexes[t*3+2]]);
glVertex3fv(proj [indexes[t*3+0]]);
}
}
}
glEnd();
}
void GL_DrawAliasMesh_Sketch (mesh_t *mesh, int texnum)
{
int i;
extern int gldepthfunc;
#ifdef Q3SHADERS
R_UnlockArrays();
#endif
glDepthFunc(gldepthfunc);
glDepthMask(1);
if (gldepthmin == 0.5)
qglCullFace ( GL_BACK );
else
qglCullFace ( GL_FRONT );
GL_TexEnv(GL_MODULATE);
glDisable(GL_TEXTURE_2D);
glVertexPointer(3, GL_FLOAT, 16, mesh->xyz_array);
glEnableClientState( GL_VERTEX_ARRAY );
if (mesh->normals_array && glNormalPointer) //d3d wrapper doesn't support normals, and this is only really needed for truform
{
glNormalPointer(GL_FLOAT, 0, mesh->normals_array);
glEnableClientState( GL_NORMAL_ARRAY );
}
if (mesh->colors_array)
{
glColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh->colors_array);
glEnableClientState( GL_COLOR_ARRAY );
}
else
glDisableClientState( GL_COLOR_ARRAY );
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
glTexCoordPointer(2, GL_FLOAT, 0, mesh->st_array);
glDrawElements(GL_TRIANGLES, mesh->numindexes, GL_UNSIGNED_INT, mesh->indexes);
glDisableClientState( GL_VERTEX_ARRAY );
glDisableClientState( GL_COLOR_ARRAY );
glDisableClientState( GL_NORMAL_ARRAY );
glDisableClientState( GL_TEXTURE_COORD_ARRAY );
glColor3f(0, 0, 0);
glBegin(GL_LINES);
for (i = 0; i < mesh->numindexes; i+=3)
{
float *v1, *v2, *v3;
int n;
v1 = mesh->xyz_array[mesh->indexes[i+0]];
v2 = mesh->xyz_array[mesh->indexes[i+1]];
v3 = mesh->xyz_array[mesh->indexes[i+2]];
for (n = 0; n < 3; n++) //rember we do this triangle AND the neighbours
{
glVertex3f( v1[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v1[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v1[2]+0.5*(rand()/(float)RAND_MAX-0.5));
glVertex3f( v2[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v2[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v2[2]+0.5*(rand()/(float)RAND_MAX-0.5));
glVertex3f( v2[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v2[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v2[2]+0.5*(rand()/(float)RAND_MAX-0.5));
glVertex3f( v3[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v3[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v3[2]+0.5*(rand()/(float)RAND_MAX-0.5));
glVertex3f( v3[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v3[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v3[2]+0.5*(rand()/(float)RAND_MAX-0.5));
glVertex3f( v1[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v1[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v1[2]+0.5*(rand()/(float)RAND_MAX-0.5));
}
}
glEnd();
#ifdef Q3SHADERS
R_IBrokeTheArrays();
#endif
}
void GL_DrawAliasMesh (mesh_t *mesh, int texnum)
{
extern int gldepthfunc;
#ifdef Q3SHADERS
R_UnlockArrays();
#endif
glDepthFunc(gldepthfunc);
glDepthMask(1);
GL_Bind(texnum);
if (gldepthmin == 0.5)
qglCullFace ( GL_BACK );
else
qglCullFace ( GL_FRONT );
GL_TexEnv(GL_MODULATE);
glVertexPointer(3, GL_FLOAT, 16, mesh->xyz_array);
glEnableClientState( GL_VERTEX_ARRAY );
if (mesh->normals_array && glNormalPointer) //d3d wrapper doesn't support normals, and this is only really needed for truform
{
glNormalPointer(GL_FLOAT, 0, mesh->normals_array);
glEnableClientState( GL_NORMAL_ARRAY );
}
if (mesh->colors_array)
{
glColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh->colors_array);
glEnableClientState( GL_COLOR_ARRAY );
}
else
glDisableClientState( GL_COLOR_ARRAY );
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
glTexCoordPointer(2, GL_FLOAT, 0, mesh->st_array);
glDrawElements(GL_TRIANGLES, mesh->numindexes, GL_UNSIGNED_INT, mesh->indexes);
glDisableClientState( GL_VERTEX_ARRAY );
glDisableClientState( GL_COLOR_ARRAY );
glDisableClientState( GL_NORMAL_ARRAY );
glDisableClientState( GL_TEXTURE_COORD_ARRAY );
#ifdef Q3SHADERS
R_IBrokeTheArrays();
#endif
}
void R_DrawGAliasModel (entity_t *e)
{
extern cvar_t r_drawflat;
model_t *clmodel;
vec3_t mins, maxs;
vec3_t dist;
vec_t add;
int i;
galiasinfo_t *inf;
mesh_t mesh;
galiastexnum_t *skin;
float entScale;
vec3_t lightdir;
float tmatrix[3][4];
currententity = e;
if (e->flags & Q2RF_VIEWERMODEL && e->keynum == cl.playernum[r_refdef.currentplayernum]+1)
return;
{
extern int cl_playerindex;
if (e->scoreboard && e->model == cl.model_precache[cl_playerindex])
{
clmodel = e->scoreboard->model;
if (!clmodel || clmodel->type != mod_alias)
clmodel = e->model;
}
else
clmodel = e->model;
}
VectorAdd (e->origin, clmodel->mins, mins);
VectorAdd (e->origin, clmodel->maxs, maxs);
if (!(e->flags & Q2RF_WEAPONMODEL))
if (R_CullBox (mins, maxs))
return;
if (!(r_refdef.flags & 1)) //RDF_NOWORLDMODEL
{
cl.worldmodel->funcs.LightPointValues(e->origin, shadelight, ambientlight, lightdir);
}
else
{
ambientlight[0] = ambientlight[1] = ambientlight[2] = shadelight[0] = shadelight[1] = shadelight[2] = 255;
lightdir[0] = 0;
lightdir[1] = 1;
lightdir[2] = 1;
}
if (!r_vertexdlights.value)
{
for (i=0 ; i<MAX_DLIGHTS ; i++)
{
if (cl_dlights[i].radius)
{
VectorSubtract (e->origin,
cl_dlights[i].origin,
dist);
add = cl_dlights[i].radius - Length(dist);
if (add > 0) {
add*=5;
ambientlight[0] += add * cl_dlights[i].color[0];
ambientlight[1] += add * cl_dlights[i].color[1];
ambientlight[2] += add * cl_dlights[i].color[2];
//ZOID models should be affected by dlights as well
shadelight[0] += add * cl_dlights[i].color[0];
shadelight[1] += add * cl_dlights[i].color[1];
shadelight[2] += add * cl_dlights[i].color[2];
}
}
}
}
else
{
}
for (i = 0; i < 3; i++) //clamp light so it doesn't get vulgar.
{
if (ambientlight[i] > 128)
ambientlight[i] = 128;
if (ambientlight[i] + shadelight[i] > 192)
shadelight[i] = 192 - ambientlight[i];
}
if (e->flags & Q2RF_WEAPONMODEL)
{
for (i = 0; i < 3; i++)
{
if (ambientlight[i] < 24)
ambientlight[i] = shadelight[i] = 24;
}
}
//MORE HUGE HACKS! WHEN WILL THEY CEASE!
// clamp lighting so it doesn't overbright as much
// ZOID: never allow players to go totally black
if (!strcmp(clmodel->name, "progs/player.mdl"))
{
float fb = r_fullbrightSkins.value;
if (fb > cls.allow_fbskins)
fb = cls.allow_fbskins;
if (fb < 0)
fb = 0;
if (fb)
{
for (i = 0; i < 3; i++)
{
ambientlight[i] = max(ambientlight[i], 8 + fb * 120);
shadelight[i] = max(shadelight[i], 8 + fb * 120);
}
}
for (i = 0; i < 3; i++)
{
if (ambientlight[i] < 8)
ambientlight[i] = shadelight[i] = 8;
}
}
for (i = 0; i < 3; i++)
{
if (ambientlight[i] > 128)
ambientlight[i] = 128;
shadelight[i] /= 200.0/255;
ambientlight[i] /= 200.0/255;
}
if ((e->drawflags & MLS_MASKIN) == MLS_ABSLIGHT)
{
shadelight[0] = shadelight[1] = shadelight[2] = e->abslight;
ambientlight[0] = ambientlight[1] = ambientlight[2] = 0;
}
//#define SHOWLIGHTDIR
{ //lightdir is absolute, shadevector is relative
vec3_t entaxis[3];
e->angles[0]*=-1;
AngleVectors(e->angles, entaxis[0], entaxis[1], entaxis[2]);
e->angles[0]*=-1;
entaxis[1][0]*=-1;
entaxis[1][1]*=-1;
entaxis[1][2]*=-1;
shadevector[0] = DotProduct(lightdir, entaxis[0]);
shadevector[1] = DotProduct(lightdir, entaxis[1]);
shadevector[2] = DotProduct(lightdir, entaxis[2]);
VectorNormalize(shadevector);
VectorCopy(shadevector, mesh.lightaxis[2]);
VectorVectors(mesh.lightaxis[2], mesh.lightaxis[1], mesh.lightaxis[0]);
mesh.lightaxis[0][0]*=-1;
mesh.lightaxis[0][1]*=-1;
mesh.lightaxis[0][2]*=-1;
}
/*
an = e->angles[1]/180*M_PI;
shadevector[0] = cos(-an);
shadevector[1] = sin(-an);
shadevector[2] = 1;
VectorNormalize (shadevector);
*/
GL_DisableMultitexture();
GL_TexEnv(GL_MODULATE);
if (gl_smoothmodels.value)
glShadeModel (GL_SMOOTH);
if (gl_affinemodels.value)
glHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
glDisable (GL_ALPHA_TEST);
if (e->flags & Q2RF_DEPTHHACK)
glDepthRange (gldepthmin, gldepthmin + 0.3*(gldepthmax-gldepthmin));
// glColor3f( 1,1,1);
if ((e->model->flags & EF_SPECIAL_TRANS)) //hexen2 flags.
{
glEnable (GL_BLEND);
glBlendFunc (GL_ONE_MINUS_SRC_ALPHA, GL_SRC_ALPHA);
// glColor3f( 1,1,1);
glDisable( GL_CULL_FACE );
}
else if (e->drawflags & DRF_TRANSLUCENT)
{
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
e->alpha = r_wateralpha.value;
// glColor4f( 1,1,1,r_wateralpha.value);
}
else if ((e->model->flags & EF_TRANSPARENT))
{
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// glColor3f( 1,1,1);
}
else if ((e->model->flags & EF_HOLEY))
{
glEnable (GL_ALPHA_TEST);
// glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// glColor3f( 1,1,1);
}
else if (e->alpha < 1)
{
glEnable(GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else
{
glDisable(GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
// glEnable (GL_ALPHA_TEST);
glPushMatrix();
R_RotateForEntity(e);
if (e->scale != 1 && e->scale != 0) //hexen 2 stuff
{
vec3_t scale;
vec3_t scale_origin;
float xyfact, zfact;
scale[0] = (clmodel->maxs[0]-clmodel->mins[0])/255;
scale[1] = (clmodel->maxs[1]-clmodel->mins[1])/255;
scale[2] = (clmodel->maxs[2]-clmodel->mins[2])/255;
scale_origin[0] = clmodel->mins[0];
scale_origin[1] = clmodel->mins[1];
scale_origin[2] = clmodel->mins[2];
/* glScalef( 1/scale[0],
1/scale[1],
1/scale[2]);
glTranslatef ( -scale_origin[0],
-scale_origin[1],
-scale_origin[2]);
*/
if(e->scale != 0 && e->scale != 1)
{
entScale = (float)e->scale;
switch(e->drawflags&SCALE_TYPE_MASKIN)
{
default:
case SCALE_TYPE_UNIFORM:
tmatrix[0][0] = scale[0]*entScale;
tmatrix[1][1] = scale[1]*entScale;
tmatrix[2][2] = scale[2]*entScale;
xyfact = zfact = (entScale-1.0)*127.95;
break;
case SCALE_TYPE_XYONLY:
tmatrix[0][0] = scale[0]*entScale;
tmatrix[1][1] = scale[1]*entScale;
tmatrix[2][2] = scale[2];
xyfact = (entScale-1.0)*127.95;
zfact = 1.0;
break;
case SCALE_TYPE_ZONLY:
tmatrix[0][0] = scale[0];
tmatrix[1][1] = scale[1];
tmatrix[2][2] = scale[2]*entScale;
xyfact = 1.0;
zfact = (entScale-1.0)*127.95;
break;
}
switch(currententity->drawflags&SCALE_ORIGIN_MASKIN)
{
default:
case SCALE_ORIGIN_CENTER:
tmatrix[0][3] = scale_origin[0]-scale[0]*xyfact;
tmatrix[1][3] = scale_origin[1]-scale[1]*xyfact;
tmatrix[2][3] = scale_origin[2]-scale[2]*zfact;
break;
case SCALE_ORIGIN_BOTTOM:
tmatrix[0][3] = scale_origin[0]-scale[0]*xyfact;
tmatrix[1][3] = scale_origin[1]-scale[1]*xyfact;
tmatrix[2][3] = scale_origin[2];
break;
case SCALE_ORIGIN_TOP:
tmatrix[0][3] = scale_origin[0]-scale[0]*xyfact;
tmatrix[1][3] = scale_origin[1]-scale[1]*xyfact;
tmatrix[2][3] = scale_origin[2]-scale[2]*zfact*2.0;
break;
}
}
else
{
tmatrix[0][0] = scale[0];
tmatrix[1][1] = scale[1];
tmatrix[2][2] = scale[2];
tmatrix[0][3] = scale_origin[0];
tmatrix[1][3] = scale_origin[1];
tmatrix[2][3] = scale_origin[2];
}
/* if(clmodel->flags&EF_ROTATE)
{ // Floating motion
tmatrix[2][3] += sin(currententity->origin[0]
+currententity->origin[1]+(cl.time*3))*5.5;
}*/
glTranslatef (tmatrix[0][3],tmatrix[1][3],tmatrix[2][3]);
glScalef (tmatrix[0][0],tmatrix[1][1],tmatrix[2][2]);
glScalef( 1/scale[0],
1/scale[1],
1/scale[2]);
glTranslatef ( -scale_origin[0],
-scale_origin[1],
-scale_origin[2]);
}
inf = GLMod_Extradata (clmodel);
if (qglPNTrianglesfATI && gl_ati_truform.value)
glEnable(GL_PN_TRIANGLES_ATI);
memset(&mesh, 0, sizeof(mesh));
while(inf)
{
if (R_GAliasBuildMesh(&mesh, inf, e->frame, e->oldframe, e->lerptime, e->alpha) && r_vertexdlights.value)
R_GAliasAddDlights(&mesh, e->origin, e->angles);
skin = GL_ChooseSkin(inf, clmodel->name, e);
c_alias_polys += mesh.numindexes/3;
if (r_drawflat.value == 2)
GL_DrawAliasMesh_Sketch(&mesh, skin->base);
else if (!skin)
{
glEnable(GL_TEXTURE_2D);
GL_DrawAliasMesh_Sketch(&mesh, 1);
}
#ifdef Q3SHADERS
else if (skin->shader)
{
meshbuffer_t mb;
mb.entity = &r_worldentity;
mb.shader = skin->shader;
mb.fog = NULL;
mb.mesh = &mesh;
mb.infokey = currententity->keynum;
mb.dlightbits = 0;
R_IBrokeTheArrays();
R_PushMesh(&mesh, skin->shader->features | MF_NONBATCHED | MF_COLORS);
R_RenderMeshBuffer ( &mb, false );
}
#endif
else
{
glEnable(GL_TEXTURE_2D);
// if (skin->bump)
// GL_DrawMeshBump(&mesh, skin->base, 0, skin->bump, 0);
// else
GL_DrawAliasMesh(&mesh, skin->base);
if (skin->fullbright && r_fb_models.value && cls.allow_luma)
{
mesh.colors_array = NULL;
glEnable(GL_BLEND);
glColor4f(1, 1, 1, e->alpha*r_fb_models.value);
c_alias_polys += mesh.numindexes/3;
GL_DrawAliasMesh(&mesh, skin->fullbright);
}
}
if (inf->nextsurf)
inf = (galiasinfo_t*)((char *)inf + inf->nextsurf);
else
inf = NULL;
}
if (qglPNTrianglesfATI && gl_ati_truform.value)
glDisable(GL_PN_TRIANGLES_ATI);
#ifdef SHOWLIGHTDIR //testing
glDisable(GL_TEXTURE_2D);
glBegin(GL_LINES);
glColor3f(1,0,0);
glVertex3f( 0,
0,
0);
glVertex3f( 100*mesh.lightaxis[0][0],
100*mesh.lightaxis[0][1],
100*mesh.lightaxis[0][2]);
glColor3f(0,1,0);
glVertex3f( 0,
0,
0);
glVertex3f( 100*mesh.lightaxis[1][0],
100*mesh.lightaxis[1][1],
100*mesh.lightaxis[1][2]);
glColor3f(0,0,1);
glVertex3f( 0,
0,
0);
glVertex3f( 100*mesh.lightaxis[2][0],
100*mesh.lightaxis[2][1],
100*mesh.lightaxis[2][2]);
glEnd();
glEnable(GL_TEXTURE_2D);
#endif
glPopMatrix();
glDisable(GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
GL_TexEnv(GL_REPLACE);
glEnable(GL_TEXTURE_2D);
glShadeModel (GL_FLAT);
if (gl_affinemodels.value)
glHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
if (e->flags & Q2RF_DEPTHHACK)
glDepthRange (gldepthmin, gldepthmax);
if ((currententity->model->flags & EF_SPECIAL_TRANS) && gl_cull.value)
glEnable( GL_CULL_FACE );
if ((currententity->model->flags & EF_HOLEY))
glDisable( GL_ALPHA_TEST );
#ifdef SHOWLIGHTDIR //testing
glDisable(GL_TEXTURE_2D);
glColor3f(1,1,1);
glBegin(GL_LINES);
glVertex3f( currententity->origin[0],
currententity->origin[1],
currententity->origin[2]);
glVertex3f( currententity->origin[0]+100*lightdir[0],
currententity->origin[1]+100*lightdir[1],
currententity->origin[2]+100*lightdir[2]);
glEnd();
glEnable(GL_TEXTURE_2D);
#endif
}
//returns result in the form of the result vector
void RotateLightVector(vec3_t angles, vec3_t origin, vec3_t lightpoint, vec3_t result)
{
vec3_t f, r, u, offs;
angles[0]*=-1;
AngleVectors(angles, f, r, u);
angles[0]*=-1;
offs[0] = lightpoint[0] - origin[0];
offs[1] = lightpoint[1] - origin[1];
offs[2] = lightpoint[2] - origin[2];
result[0] = DotProduct (offs, f);
result[1] = -DotProduct (offs, r);
result[2] = DotProduct (offs, u);
}
void GL_LightMesh (mesh_t *mesh, vec3_t lightpos, vec3_t colours, float radius)
{
vec3_t dir;
int i;
float dot;
vec4_t *xyz = mesh->xyz_array;
vec3_t *normals = mesh->normals_array;
byte_vec4_t *out = mesh->colors_array;
if (normals)
{
for (i = 0; i < mesh->numvertexes; i++)
{
VectorSubtract(lightpos, xyz[i], dir);
dot = DotProduct(dir, normals[i]);
out[i][0] = colours[0]*dot;
out[i][1] = colours[1]*dot;
out[i][2] = colours[2]*dot;
out[i][3] = 255;
}
}
else
{
for (i = 0; i < mesh->numvertexes; i++)
{
VectorSubtract(lightpos, xyz[i], dir);
out[i][0] = colours[0];
out[i][1] = colours[1];
out[i][2] = colours[2];
out[i][3] = 255;
}
}
}
void R_DrawGAliasModelLighting (entity_t *e, vec3_t lightpos, vec3_t colours, float radius)
{
return; //not ready yet
#if 0
model_t *clmodel = e->model;
vec3_t mins, maxs;
vec3_t lightdir;
galiasinfo_t *inf;
mesh_t mesh;
if (e->flags & Q2RF_VIEWERMODEL)
return;
//Total insanity with r_shadows 2...
// if (!strcmp (clmodel->name, "progs/flame2.mdl"))
// CL_NewDlight (e, e->origin[0]-1, e->origin[1]+1, e->origin[2]+24, 200 + (rand()&31), host_frametime*2, 3);
// if (!strcmp (clmodel->name, "progs/armor.mdl"))
// CL_NewDlight (e->keynum, e->origin[0]-1, e->origin[1]+1, e->origin[2]+25, 200 + (rand()&31), host_frametime*2, 3);
VectorAdd (e->origin, clmodel->mins, mins);
VectorAdd (e->origin, clmodel->maxs, maxs);
if (!(e->flags & Q2RF_WEAPONMODEL))
if (R_CullBox (mins, maxs))
return;
RotateLightVector(e->angles, e->origin, lightpos, lightdir);
GL_DisableMultitexture();
GL_TexEnv(GL_MODULATE);
if (gl_smoothmodels.value)
glShadeModel (GL_SMOOTH);
if (gl_affinemodels.value)
glHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
if (e->flags & Q2RF_DEPTHHACK)
glDepthRange (gldepthmin, gldepthmin + 0.3*(gldepthmax-gldepthmin));
glColor3f(colours[0], colours[1], colours[2]);
glPushMatrix();
R_RotateForEntity(e);
inf = GLMod_Extradata (clmodel);
if (gl_ati_truform.value)
glEnable(GL_PN_TRIANGLES_ATI);
while(inf)
{
R_GAliasBuildMesh(&mesh, inf, e->frame, e->oldframe, e->lerptime, e->alpha);
GL_LightMesh(&mesh, lightdir, colours, radius);
#ifdef Q3SHADERS
GL_DrawAliasMesh(&mesh, 0);
#else
GL_DrawMesh(&mesh, NULL, 0, 0);
#endif
if (inf->nextsurf)
inf = (galiasinfo_t*)((char *)inf + inf->nextsurf);
else
inf = NULL;
}
glPopMatrix();
if (gl_ati_truform.value)
glDisable(GL_PN_TRIANGLES_ATI);
GL_TexEnv(GL_REPLACE);
glShadeModel (GL_FLAT);
if (gl_affinemodels.value)
glHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
if (e->flags & Q2RF_DEPTHHACK)
glDepthRange (gldepthmin, gldepthmax);
#endif
}
//FIXME: Be less agressive.
//This function will have to be called twice (for geforce cards), with the same data, so do the building once and rendering twice.
void R_DrawGAliasShadowVolume(entity_t *e, vec3_t lightpos, float radius)
{
model_t *clmodel = e->model;
galiasinfo_t *inf;
mesh_t mesh;
vec3_t lightorg;
if (!strcmp (clmodel->name, "progs/flame2.mdl"))
return;
if (!strncmp (clmodel->name, "progs/bolt", 10))
return;
if (r_noaliasshadows.value)
return;
RotateLightVector(e->angles, e->origin, lightpos, lightorg);
if (Length(lightorg) > radius + clmodel->radius)
return;
glPushMatrix();
R_RotateForEntity(e);
inf = GLMod_Extradata (clmodel);
while(inf)
{
if (inf->ofs_trineighbours)
{
R_GAliasBuildMesh(&mesh, inf, e->frame, e->oldframe, e->lerptime, e->alpha);
R_CalcFacing(&mesh, lightorg);
R_ProjectShadowVolume(&mesh, lightorg);
R_DrawShadowVolume(&mesh);
}
if (inf->nextsurf)
inf = (galiasinfo_t*)((char *)inf + inf->nextsurf);
else
inf = NULL;
}
glPopMatrix();
}
static int R_FindTriangleWithEdge ( int *indexes, int numtris, int start, int end, int ignore)
{
int i;
int match, count;
count = 0;
match = -1;
for (i = 0; i < numtris; i++, indexes += 3)
{
if ( (indexes[0] == start && indexes[1] == end)
|| (indexes[1] == start && indexes[2] == end)
|| (indexes[2] == start && indexes[0] == end) ) {
if (i != ignore)
match = i;
count++;
} else if ( (indexes[1] == start && indexes[0] == end)
|| (indexes[2] == start && indexes[1] == end)
|| (indexes[0] == start && indexes[2] == end) ) {
count++;
}
}
// detect edges shared by three triangles and make them seams
if (count > 2)
match = -1;
return match;
}
static void R_BuildTriangleNeighbours ( int *neighbours, int *indexes, int numtris )
{
int i, *n;
int *index;
for (i = 0, index = indexes, n = neighbours; i < numtris; i++, index += 3, n += 3)
{
n[0] = R_FindTriangleWithEdge (indexes, numtris, index[1], index[0], i);
n[1] = R_FindTriangleWithEdge (indexes, numtris, index[2], index[1], i);
n[2] = R_FindTriangleWithEdge (indexes, numtris, index[0], index[2], i);
}
}
void GL_GenerateNormals(float *orgs, float *normals, int *indicies, int numtris, int numverts)
{
vec3_t d1, d2;
vec3_t norm;
int t, i, v1, v2, v3;
int tricounts[MD2MAX_VERTS];
vec3_t combined[MD2MAX_VERTS];
int triremap[MD2MAX_VERTS];
if (numverts > MD2MAX_VERTS)
return; //not an issue, you just loose the normals.
memset(triremap, 0, numverts*sizeof(triremap[0]));
v2=0;
for (i = 0; i < numverts; i++) //weld points
{
for (v1 = 0; v1 < v2; v1++)
{
if (orgs[i*3+0] == combined[v1][0] &&
orgs[i*3+1] == combined[v1][1] &&
orgs[i*3+2] == combined[v1][2])
{
triremap[i] = v1;
break;
}
}
if (v1 == v2)
{
combined[v1][0] = orgs[i*3+0];
combined[v1][1] = orgs[i*3+1];
combined[v1][2] = orgs[i*3+2];
v2++;
triremap[i] = v1;
}
}
memset(tricounts, 0, v2*sizeof(tricounts[0]));
memset(combined, 0, v2*sizeof(*combined));
for (t = 0; t < numtris; t++)
{
v1 = triremap[indicies[t*3]];
v2 = triremap[indicies[t*3+1]];
v3 = triremap[indicies[t*3+2]];
VectorSubtract((orgs+v2*3), (orgs+v1*3), d1);
VectorSubtract((orgs+v3*3), (orgs+v1*3), d2);
CrossProduct(d1, d2, norm);
VectorNormalize(norm);
VectorAdd(norm, combined[v1], combined[v1]);
VectorAdd(norm, combined[v2], combined[v2]);
VectorAdd(norm, combined[v3], combined[v3]);
tricounts[v1]++;
tricounts[v2]++;
tricounts[v3]++;
}
for (i = 0; i < numverts; i++)
{
if (tricounts[triremap[i]])
{
VectorScale(combined[triremap[i]], 1.0f/tricounts[triremap[i]], normals+i*3);
}
}
}
//Q1 model loading
#if 1
static galiasinfo_t *galias;
static model_t *loadmodel;
static dmdl_t *pq1inmodel;
#define NUMVERTEXNORMALS 162
extern float r_avertexnormals[NUMVERTEXNORMALS][3];
static void *Q1_LoadFrameGroup (daliasframetype_t *pframetype, int *seamremaps)
{
galiaspose_t *pose;
galiasgroup_t *frame;
dtrivertx_t *pinframe;
int i, j, k;
daliasgroup_t *ingroup;
daliasinterval_t *intervals;
vec3_t *normals;
vec3_t *verts;
frame = (galiasgroup_t*)((char *)galias + galias->groupofs);
for (i = 0; i < pq1inmodel->numframes; i++)
{
switch(LittleLong(pframetype->type))
{
case ALIAS_SINGLE:
pinframe = (dtrivertx_t*)((char *)(pframetype+1)+sizeof(daliasframe_t));
pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + sizeof(vec3_t)*2*galias->numverts);
frame->poseofs = (char *)pose - (char *)frame;
frame->numposes = 1;
galias->groups++;
verts = (vec3_t *)(pose+1);
normals = &verts[galias->numverts];
pose->ofsverts = (char *)verts - (char *)pose;
pose->ofsnormals = (char *)normals - (char *)pose;
for (j = 0; j < pq1inmodel->numverts; j++)
{
verts[j][0] = pinframe[j].v[0]*pq1inmodel->scale[0]+pq1inmodel->scale_origin[0];
verts[j][1] = pinframe[j].v[1]*pq1inmodel->scale[1]+pq1inmodel->scale_origin[1];
verts[j][2] = pinframe[j].v[2]*pq1inmodel->scale[2]+pq1inmodel->scale_origin[2];
VectorCopy(r_avertexnormals[pinframe[j].lightnormalindex], normals[j]);
if (seamremaps[j] != j)
{
VectorCopy(verts[j], verts[seamremaps[j]]);
VectorCopy(normals[j], normals[seamremaps[j]]);
}
}
// GL_GenerateNormals((float*)verts, (float*)normals, (int *)((char *)galias + galias->ofs_indexes), galias->numindexes/3, galias->numverts);
pframetype = (daliasframetype_t *)&pinframe[pq1inmodel->numverts];
break;
case ALIAS_GROUP:
ingroup = (daliasgroup_t *)(pframetype+1);
pose = (galiaspose_t *)Hunk_Alloc(ingroup->numframes*(sizeof(galiaspose_t) + sizeof(vec3_t)*2*galias->numverts));
frame->poseofs = (char *)pose - (char *)frame;
frame->numposes = LittleLong(ingroup->numframes);
galias->groups++;
verts = (vec3_t *)(pose+frame->numposes);
normals = &verts[galias->numverts];
intervals = (daliasinterval_t *)(ingroup+1);
frame->rate = 1/LittleFloat(intervals->interval);
pinframe = (dtrivertx_t *)(intervals+frame->numposes);
for (k = 0; k < frame->numposes; k++)
{
pose->ofsverts = (char *)verts - (char *)pose;
pose->ofsnormals = (char *)normals - (char *)pose;
pinframe = (dtrivertx_t *)((char *)pinframe + sizeof(daliasframe_t));
for (j = 0; j < pq1inmodel->numverts; j++)
{
verts[j][0] = pinframe[j].v[0]*pq1inmodel->scale[0]+pq1inmodel->scale_origin[0];
verts[j][1] = pinframe[j].v[1]*pq1inmodel->scale[1]+pq1inmodel->scale_origin[1];
verts[j][2] = pinframe[j].v[2]*pq1inmodel->scale[2]+pq1inmodel->scale_origin[2];
VectorCopy(r_avertexnormals[pinframe[j].lightnormalindex], normals[j]);
if (seamremaps[j] != j)
{
VectorCopy(verts[j], verts[seamremaps[j]]);
VectorCopy(normals[j], normals[seamremaps[j]]);
}
}
verts = &normals[galias->numverts];
normals = &verts[galias->numverts];
pose++;
pinframe += pq1inmodel->numverts;
}
// GL_GenerateNormals((float*)verts, (float*)normals, (int *)((char *)galias + galias->ofs_indexes), galias->numindexes/3, galias->numverts);
pframetype = (daliasframetype_t *)pinframe;
break;
default:
Sys_Error("Bad frame type\n");
}
frame++;
}
return pframetype;
}
static void *Q1_LoadSkins (daliasskintype_t *pskintype, qboolean alpha)
{
extern int gl_bumpmappingpossible;
galiastexnum_t *texnums;
char skinname[MAX_QPATH];
int i;
int s, t;
int *count;
float *intervals;
qbyte *data, *saved;
galiasskin_t *outskin = (galiasskin_t *)((char *)galias + galias->ofsskins);
int texture;
int fbtexture;
s = pq1inmodel->skinwidth*pq1inmodel->skinheight;
for (i = 0; i < pq1inmodel->numskins; i++)
{
switch(LittleLong(pskintype->type))
{
case ALIAS_SKIN_SINGLE:
outskin->skinwidth = pq1inmodel->skinwidth;
outskin->skinheight = pq1inmodel->skinheight;
sprintf(skinname, "%s_%i", loadname, i);
texture = Mod_LoadReplacementTexture(skinname, true, false, true);
if (!texture)
{
sprintf(skinname, "textures/models/%s_%i", loadname, i);
texture = Mod_LoadReplacementTexture(skinname, true, false, true);
if (texture && r_fb_models.value)
{
sprintf(skinname, "textures/models/%s_%i_luma", loadname, i);
fbtexture = Mod_LoadReplacementTexture(skinname, true, true, true);
}
else
fbtexture = 0;
}
else if (texture && r_fb_models.value)
{
sprintf(skinname, "%s_%i_luma", loadname, i);
fbtexture = Mod_LoadReplacementTexture(skinname, true, true, true);
}
else
fbtexture = 0;
if (!texture)
{
texnums = Hunk_Alloc(sizeof(*texnums)+s);
saved = (qbyte*)(texnums+1);
outskin->ofstexels = (qbyte *)(saved) - (qbyte *)outskin;
memcpy(saved, pskintype+1, s);
GLMod_FloodFillSkin(saved, outskin->skinwidth, outskin->skinheight);
sprintf(skinname, "%s_%i", loadname, i);
texture = GL_LoadTexture(skinname, outskin->skinwidth, outskin->skinheight, saved, true, alpha);
if (r_fb_models.value)
{
sprintf(skinname, "%s_%i_luma", loadname, i);
fbtexture = GL_LoadTextureFB(skinname, outskin->skinwidth, outskin->skinheight, saved, true, true);
}
}
else
{
texnums = Hunk_Alloc(sizeof(*texnums));
outskin->ofstexels = 0;
}
outskin->texnums=1;
outskin->ofstexnums = (char *)texnums - (char *)outskin;
texnums->base = texture;
texnums->fullbright = fbtexture;
pskintype = (daliasskintype_t *)((char *)(pskintype+1)+s);
break;
default:
outskin->skinwidth = pq1inmodel->skinwidth;
outskin->skinheight = pq1inmodel->skinheight;
count = (int *)(pskintype+1);
intervals = (float *)(count+1);
outskin->texnums = LittleLong(*count);
data = (qbyte *)(intervals + outskin->texnums);
texnums = Hunk_Alloc(sizeof(*texnums)*outskin->texnums);
outskin->ofstexnums = (char *)texnums - (char *)outskin;
outskin->ofstexels = 0;
for (t = 0; t < outskin->texnums; t++,data+=s, texnums++)
{
sprintf(skinname, "%s_%i%c", loadname, i, t+'a');
texture = Mod_LoadReplacementTexture(skinname, true, false, true);
if (texture)
{
texnums->base = texture;
if (r_fb_models.value)
{
sprintf(skinname, "%s_%i%c_luma", loadname, i, t+'a');
texnums->fullbright = Mod_LoadReplacementTexture(skinname, true, true, true);
}
}
else
{
if (t == 0)
{
saved = Hunk_Alloc(s);
outskin->ofstexels = (qbyte *)(saved) - (qbyte *)outskin;
}
else
saved = BZ_Malloc(s);
memcpy(saved, pskintype+1, s);
GLMod_FloodFillSkin(saved, outskin->skinwidth, outskin->skinheight);
sprintf(skinname, "%s_%i%c", loadname, i, t+'a');
texnums->base = GL_LoadTexture(skinname, outskin->skinwidth, outskin->skinheight, saved, true, alpha);
if (gl_bumpmappingpossible)
{
char name[MAX_QPATH];
COM_StripExtension(skinname, name); //go for the normalmap
strcat(name, "_norm");
texnums->bump = Mod_LoadHiResTexture(name, true, true, false);
if (!texnums->bump)
{
strcpy(name, loadmodel->name);
COM_StripExtension(COM_SkipPath(skinname), COM_SkipPath(name));
strcat(name, "_norm");
texnums->bump = Mod_LoadHiResTexture(name, true, true, false);
if (!texnums->bump)
{
COM_StripExtension(skinname, name); //bother, go for heightmap and convert
strcat(name, "_bump");
texnums->bump = Mod_LoadBumpmapTexture(name);
if (!texnums->bump)
{
strcpy(name, loadmodel->name);
strcpy(COM_SkipPath(name), COM_SkipPath(skinname)); //eviile eh?
COM_StripExtension(name, name);
strcat(name, "_bump");
texnums->bump = Mod_LoadBumpmapTexture(name);
}
}
}
}
if (r_fb_models.value)
{
sprintf(skinname, "%s_%i%c_luma", loadname, i, t+'a');
texnums->fullbright = GL_LoadTextureFB(skinname, outskin->skinwidth, outskin->skinheight, saved, true, true);
}
if (t != 0) //only keep the first.
BZ_Free(saved);
}
}
pskintype = (daliasskintype_t *)data;
break;
}
outskin++;
}
galias->numskins=pq1inmodel->numskins;
return pskintype;
}
void GL_LoadQ1Model (model_t *mod, void *buffer)
{
vec2_t *st_array;
int hunkstart, hunkend, hunktotal;
int version;
int i, j, onseams;
dstvert_t *pinstverts;
dtriangle_t *pintriangles;
int *seamremap;
index_t *indexes;
int size;
loadmodel=mod;
//we've got to have this bit
if (!strcmp(loadmodel->name, "progs/player.mdl") ||
!strcmp(loadmodel->name, "progs/eyes.mdl"))
{
unsigned short crc;
qbyte *p;
int len;
char st[40];
CRC_Init(&crc);
for (len = com_filesize, p = buffer; len; len--, p++)
CRC_ProcessByte(&crc, *p);
sprintf(st, "%d", (int) crc);
Info_SetValueForKey (cls.userinfo,
!strcmp(loadmodel->name, "progs/player.mdl") ? pmodel_name : emodel_name,
st, MAX_INFO_STRING);
if (cls.state >= ca_connected) {
MSG_WriteByte (&cls.netchan.message, clc_stringcmd);
sprintf(st, "setinfo %s %d",
!strcmp(loadmodel->name, "progs/player.mdl") ? pmodel_name : emodel_name,
(int)crc);
SZ_Print (&cls.netchan.message, st);
}
}
hunkstart = Hunk_LowMark ();
pq1inmodel = (dmdl_t *)buffer;
seamremap = (int*)pq1inmodel; //I like overloading locals.
for (i = 0; i < sizeof(dmdl_t)/4; i++)
seamremap[i] = LittleLong(seamremap[i]);
version = pq1inmodel->version;
if (version != ALIAS_VERSION)
Sys_Error ("%s has wrong version number (%i should be %i)",
mod->name, version, ALIAS_VERSION);
if (pq1inmodel->numframes < 1 ||
pq1inmodel->numskins < 1 ||
pq1inmodel->numtris < 1 ||
pq1inmodel->numverts < 3 ||
pq1inmodel->skinheight < 1 ||
pq1inmodel->skinwidth < 1)
Sys_Error("Model %s has an invalid quantity\n", mod->name);
mod->flags = pq1inmodel->flags;
size = sizeof(galiasinfo_t)
+ pq1inmodel->numframes*sizeof(galiasgroup_t)
+ pq1inmodel->numskins*sizeof(galiasskin_t);
galias = Hunk_Alloc(size);
galias->groupofs = sizeof(*galias);
galias->ofsskins = sizeof(*galias)+pq1inmodel->numframes*sizeof(galiasgroup_t);
galias->nextsurf = 0;
//skins
if( mod->flags & EF_HOLEY )
pinstverts = (dstvert_t *)Q1_LoadSkins((daliasskintype_t *)(pq1inmodel+1), 3);
else if( mod->flags & EF_TRANSPARENT )
pinstverts = (dstvert_t *)Q1_LoadSkins((daliasskintype_t *)(pq1inmodel+1), 2);
else if( mod->flags & EF_SPECIAL_TRANS )
pinstverts = (dstvert_t *)Q1_LoadSkins((daliasskintype_t *)(pq1inmodel+1), 4);
else
pinstverts = (dstvert_t *)Q1_LoadSkins((daliasskintype_t *)(pq1inmodel+1), 0);
// pinstverts = (dstvert_t *)Q1_LoadSkins((daliasskintype_t *)(pq1inmodel+1));
//count number of verts that are onseam.
for (onseams=0,i = 0; i < pq1inmodel->numverts; i++)
{
if (pinstverts[i].onseam)
onseams++;
}
seamremap = BZ_Malloc(sizeof(int)*pq1inmodel->numverts);
galias->numverts = pq1inmodel->numverts+onseams;
//st
st_array = Hunk_Alloc(sizeof(*st_array)*(pq1inmodel->numverts+onseams));
galias->ofs_st_array = (char *)st_array - (char *)galias;
for (j=pq1inmodel->numverts,i = 0; i < pq1inmodel->numverts; i++)
{
st_array[i][0] = LittleLong(pinstverts[i].s)/(float)pq1inmodel->skinwidth;
st_array[i][1] = LittleLong(pinstverts[i].t)/(float)pq1inmodel->skinheight;
if (pinstverts[i].onseam)
{
st_array[j][0] = st_array[i][0]+0.5;
st_array[j][1] = st_array[i][1];
seamremap[i] = j;
j++;
}
else
seamremap[i] = i;
}
//trianglelists;
pintriangles = (dtriangle_t *)&pinstverts[pq1inmodel->numverts];
galias->numindexes = pq1inmodel->numtris*3;
indexes = Hunk_Alloc(galias->numindexes*sizeof(*indexes));
galias->ofs_indexes = (char *)indexes - (char *)galias;
for (i=0 ; i<pq1inmodel->numtris ; i++)
{
if (!pintriangles[i].facesfront)
{
indexes[i*3+0] = seamremap[LittleLong(pintriangles[i].vertindex[0])];
indexes[i*3+1] = seamremap[LittleLong(pintriangles[i].vertindex[1])];
indexes[i*3+2] = seamremap[LittleLong(pintriangles[i].vertindex[2])];
}
else
{
indexes[i*3+0] = LittleLong(pintriangles[i].vertindex[0]);
indexes[i*3+1] = LittleLong(pintriangles[i].vertindex[1]);
indexes[i*3+2] = LittleLong(pintriangles[i].vertindex[2]);
}
}
//frames
Q1_LoadFrameGroup((daliasframetype_t *)&pintriangles[pq1inmodel->numtris], seamremap);
BZ_Free(seamremap);
if (r_shadows.value)
{
int *neighbours;
neighbours = Hunk_Alloc(sizeof(int)*3*pq1inmodel->numtris);
galias->ofs_trineighbours = (qbyte *)neighbours - (qbyte *)galias;
R_BuildTriangleNeighbours(neighbours, indexes, pq1inmodel->numtris);
}
VectorCopy (pq1inmodel->scale_origin, mod->mins);
VectorMA (mod->mins, 255, pq1inmodel->scale, mod->maxs);
//
// move the complete, relocatable alias model to the cache
//
hunkend = Hunk_LowMark ();
Hunk_Alloc(0);
hunktotal = hunkend - hunkstart;
Cache_Alloc (&mod->cache, hunktotal, loadname);
mod->type = mod_alias;
if (!mod->cache.data)
{
Hunk_FreeToLowMark (hunkstart);
return;
}
memcpy (mod->cache.data, galias, hunktotal);
Hunk_FreeToLowMark (hunkstart);
}
#endif
int Mod_ReadFlagsFromMD1(char *name, int md3version)
{
dmdl_t *pinmodel;
char fname[MAX_QPATH];
COM_StripExtension(name, fname);
COM_DefaultExtension(fname, ".mdl");
if (strcmp(name, fname)) //md3 renamed as mdl
{
COM_StripExtension(name, fname); //seeing as the md3 is named over the mdl,
COM_DefaultExtension(fname, ".md1");//read from a file with md1 (one, not an ell)
return 0;
}
pinmodel = (dmdl_t *)COM_LoadTempFile(fname);
if (!pinmodel) //not found
return 0;
if (LittleLong(pinmodel->ident) != IDPOLYHEADER)
return 0;
if (LittleLong(pinmodel->version) != ALIAS_VERSION)
return 0;
return LittleLong(pinmodel->flags);
}
#ifdef MD2MODELS
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//Q2 model loading
static galiasinfo_t *galias;
static model_t *loadmodel;
static md2_t *pq2inmodel;
#define Q2NUMVERTEXNORMALS 162
extern vec3_t bytedirs[Q2NUMVERTEXNORMALS];
static void Q2_LoadSkins(char *skins)
{
int i;
galiastexnum_t *texnums;
galiasskin_t *outskin = (galiasskin_t *)((char *)galias + galias->ofsskins);
for (i = 0; i < pq2inmodel->num_skins; i++)
{
texnums = Hunk_Alloc(sizeof(*texnums));
outskin->ofstexnums = (char *)texnums - (char *)outskin;
outskin->texnums=1;
texnums->base = Mod_LoadReplacementTexture(skins, true, false, true);
outskin->skinwidth = 0;
outskin->skinheight = 0;
outskin->skinspeed = 0;
skins += MD2MAX_SKINNAME;
}
}
#define MD2_MAX_TRIANGLES 4096
void GL_LoadQ2Model (model_t *mod, void *buffer)
{
int hunkstart, hunkend, hunktotal;
int version;
int i, j;
dmd2stvert_t *pinstverts;
dmd2triangle_t *pintri;
index_t *indexes;
int numindexes;
vec3_t min;
vec3_t max;
galiaspose_t *pose;
galiasgroup_t *poutframe;
dmd2aliasframe_t *pinframe;
int framesize;
vec3_t *verts;
vec3_t *normals;
vec2_t *st_array;
int indremap[MD2_MAX_TRIANGLES*3];
unsigned short ptempindex[MD2_MAX_TRIANGLES*3], ptempstindex[MD2_MAX_TRIANGLES*3];
int numverts;
int size;
loadmodel=mod;
hunkstart = Hunk_LowMark ();
pq2inmodel = (md2_t *)buffer;
version = LittleLong (pq2inmodel->version);
if (version != MD2ALIAS_VERSION)
Sys_Error ("%s has wrong version number (%i should be %i)",
mod->name, version, MD2ALIAS_VERSION);
if (pq2inmodel->num_frames < 1 ||
pq2inmodel->num_skins < 0 ||
pq2inmodel->num_tris < 1 ||
pq2inmodel->num_xyz < 3 ||
pq2inmodel->num_st < 3 ||
pq2inmodel->skinheight < 1 ||
pq2inmodel->skinwidth < 1)
Sys_Error("Model %s has an invalid quantity\n", mod->name);
mod->flags = 0;
size = sizeof(galiasinfo_t)
+ pq2inmodel->num_frames*sizeof(galiasgroup_t)
+ pq2inmodel->num_skins*sizeof(galiasskin_t);
galias = Hunk_Alloc(size);
galias->groupofs = sizeof(*galias);
galias->ofsskins = sizeof(*galias)+pq2inmodel->num_frames*sizeof(galiasgroup_t);
galias->nextsurf = 0;
//skins
Q2_LoadSkins(((char *)pq2inmodel+pq2inmodel->ofs_skins));
//trianglelists;
pintri = (dmd2triangle_t *)((char *)pq2inmodel + pq2inmodel->ofs_tris);
for (i=0 ; i<pq2inmodel->num_tris ; i++, pintri++)
{
for (j=0 ; j<3 ; j++)
{
ptempindex[i*3+j] = ( unsigned short )LittleShort ( pintri->xyz_index[j] );
ptempstindex[i*3+j] = ( unsigned short )LittleShort ( pintri->st_index[j] );
}
}
numindexes = galias->numindexes = pq2inmodel->num_tris*3;
indexes = Hunk_Alloc(galias->numindexes*sizeof(*indexes));
galias->ofs_indexes = (char *)indexes - (char *)galias;
memset ( indremap, -1, sizeof(indremap) );
numverts=0;
for ( i = 0; i < numindexes; i++ )
{
if ( indremap[i] != -1 ) {
continue;
}
for ( j = 0; j < numindexes; j++ )
{
if ( j == i ) {
continue;
}
if ( (ptempindex[i] == ptempindex[j]) && (ptempstindex[i] == ptempstindex[j]) ) {
indremap[j] = i;
}
}
}
// count unique vertexes
for ( i = 0; i < numindexes; i++ )
{
if ( indremap[i] != -1 ) {
continue;
}
indexes[i] = numverts++;
indremap[i] = i;
}
Con_DPrintf ( "%s: remapped %i verts to %i\n", mod->name, pq2inmodel->num_xyz, numverts );
galias->numverts = numverts;
// remap remaining indexes
for ( i = 0; i < numindexes; i++ )
{
if ( indremap[i] != i ) {
indexes[i] = indexes[indremap[i]];
}
}
// s and t vertices
pinstverts = ( dmd2stvert_t * ) ( ( qbyte * )pq2inmodel + LittleLong (pq2inmodel->ofs_st) );
st_array = Hunk_Alloc(sizeof(*st_array)*(numverts));
galias->ofs_st_array = (char *)st_array - (char *)galias;
for (j=0 ; j<numindexes; j++)
{
st_array[indexes[j]][0] = (float)(((double)LittleShort (pinstverts[ptempstindex[indremap[j]]].s) + 0.5f) /pq2inmodel->skinwidth);
st_array[indexes[j]][1] = (float)(((double)LittleShort (pinstverts[ptempstindex[indremap[j]]].t) + 0.5f) /pq2inmodel->skinheight);
}
//frames
ClearBounds ( mod->mins, mod->maxs );
poutframe = (galiasgroup_t*)((char *)galias + galias->groupofs);
framesize = LittleLong (pq2inmodel->framesize);
for (i=0 ; i<pq2inmodel->num_frames ; i++)
{
pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + sizeof(vec3_t)*2*numverts);
poutframe->poseofs = (char *)pose - (char *)poutframe;
poutframe->numposes = 1;
galias->groups++;
verts = (vec3_t *)(pose+1);
normals = &verts[galias->numverts];
pose->ofsverts = (char *)verts - (char *)pose;
pose->ofsnormals = (char *)normals - (char *)pose;
pinframe = ( dmd2aliasframe_t * )( ( qbyte * )pq2inmodel + LittleLong (pq2inmodel->ofs_frames) + i * framesize );
for (j=0 ; j<3 ; j++)
{
pose->scale[j] = LittleFloat (pinframe->scale[j]);
pose->scale_origin[j] = LittleFloat (pinframe->translate[j]);
}
for (j=0 ; j<numindexes; j++)
{
// verts are all 8 bit, so no swapping needed
verts[indexes[j]][0] = pose->scale_origin[0]+pose->scale[0]*pinframe->verts[ptempindex[indremap[j]]].v[0];
verts[indexes[j]][1] = pose->scale_origin[1]+pose->scale[1]*pinframe->verts[ptempindex[indremap[j]]].v[1];
verts[indexes[j]][2] = pose->scale_origin[2]+pose->scale[2]*pinframe->verts[ptempindex[indremap[j]]].v[2];
VectorCopy(bytedirs[pinframe->verts[ptempindex[indremap[j]]].lightnormalindex], normals[indexes[j]]);
}
// Mod_AliasCalculateVertexNormals ( numindexes, poutindex, numverts, poutvertex, qfalse );
VectorCopy ( pose->scale_origin, min );
VectorMA ( pose->scale_origin, 255, pose->scale, max );
// poutframe->radius = RadiusFromBounds ( min, max );
// mod->radius = max ( mod->radius, poutframe->radius );
AddPointToBounds ( min, mod->mins, mod->maxs );
AddPointToBounds ( max, mod->mins, mod->maxs );
// GL_GenerateNormals((float*)verts, (float*)normals, indexes, numindexes/3, numverts);
poutframe++;
}
if (r_shadows.value)
{
int *neighbours;
neighbours = Hunk_Alloc(sizeof(int)*3*pq2inmodel->num_tris);
galias->ofs_trineighbours = (qbyte *)neighbours - (qbyte *)galias;
R_BuildTriangleNeighbours(neighbours, indexes, pq2inmodel->num_tris);
}
/*
VectorCopy (pq2inmodel->scale_origin, mod->mins);
VectorMA (mod->mins, 255, pq2inmodel->scale, mod->maxs);
*/
//
// move the complete, relocatable alias model to the cache
//
hunkend = Hunk_LowMark ();
Hunk_Alloc(0);
hunktotal = hunkend - hunkstart;
Cache_Alloc (&mod->cache, hunktotal, loadname);
mod->type = mod_alias;
if (!mod->cache.data)
{
Hunk_FreeToLowMark (hunkstart);
return;
}
memcpy (mod->cache.data, galias, hunktotal);
Hunk_FreeToLowMark (hunkstart);
}
#endif
typedef struct {
char name[MAX_QPATH];
vec3_t org;
float ang[3][3];
} md3tag_t;
void GLMod_GetTag(model_t *model, int tagnum, int frame, float **org, float **axis)
{
galiasinfo_t *inf;
md3tag_t *t;
*org = NULL;
*axis = NULL;
if (!model || model->type != mod_alias)
return;
inf = Mod_Extradata(model);
t = (md3tag_t*)((char*)inf + inf->ofstags);
if (tagnum <= 0 || tagnum > inf->numtags)
return;
tagnum--; //tagnum 0 is 'use my angles/org'
t += tagnum;
t += inf->numtags*frame;
*org = t->org;
*axis = (float*)t->ang;
}
int GLMod_TagNumForName(model_t *model, char *name)
{
int i;
galiasinfo_t *inf;
md3tag_t *t;
if (!model || model->type != mod_alias)
return 0;
inf = Mod_Extradata(model);
t = (md3tag_t*)((char*)inf + inf->ofstags);
for (i = 0; i < inf->numtags; i++)
{
if (!strcmp(t->name, name))
return i+1;
}
return 0;
}
#ifdef MD3MODELS
//structures from Tenebrae
typedef struct {
int ident;
int version;
char name[MAX_QPATH];
int flags; //Does anyone know what these are?
int numFrames;
int numTags;
int numSurfaces;
int numSkins;
int ofsFrames;
int ofsTags;
int ofsSurfaces;
int ofsEnd;
} md3Header_t;
//then has header->numFrames of these at header->ofs_Frames
typedef struct md3Frame_s {
vec3_t bounds[2];
vec3_t localOrigin;
float radius;
char name[16];
} md3Frame_t;
//there are header->numSurfaces of these at header->ofsSurfaces, following from ofsEnd
typedef struct {
int ident; //
char name[MAX_QPATH]; // polyset name
int flags;
int numFrames; // all surfaces in a model should have the same
int numShaders; // all surfaces in a model should have the same
int numVerts;
int numTriangles;
int ofsTriangles;
int ofsShaders; // offset from start of md3Surface_t
int ofsSt; // texture coords are common for all frames
int ofsXyzNormals; // numVerts * numFrames
int ofsEnd; // next surface follows
} md3Surface_t;
//at surf+surf->ofsXyzNormals
typedef struct {
short xyz[3];
qbyte latlong[2];
} md3XyzNormal_t;
//surf->numTriangles at surf+surf->ofsTriangles
typedef struct {
int indexes[3];
} md3Triangle_t;
//surf->numVerts at surf+surf->ofsSt
typedef struct {
float s;
float t;
} md3St_t;
typedef struct {
char name[MAX_QPATH];
int shaderIndex;
} md3Shader_t;
//End of Tenebrae 'assistance'
void GL_LoadQ3Model(model_t *mod, void *buffer)
{
int hunkstart, hunkend, hunktotal;
// int version;
int s, i, j, d;
index_t *indexes;
vec3_t min;
vec3_t max;
galiaspose_t *pose;
galiasinfo_t *parent, *root;
galiasgroup_t *group;
galiasskin_t *skin;
galiastexnum_t *texnum;
vec3_t *verts;
vec3_t *normals;
vec2_t *st_array;
float lat, lng;
md3St_t *inst;
md3Triangle_t *intris;
md3XyzNormal_t *invert;
md3Shader_t *inshader;
int size;
md3Header_t *header;
md3Surface_t *surf;
loadmodel=mod;
hunkstart = Hunk_LowMark ();
header = buffer;
// if (header->version != sdfs)
// Sys_Error("GL_LoadQ3Model: Bad version\n");
if (header->numSurfaces < 1)
{
mod->type = mod_alias;
return;
}
parent = NULL;
root = NULL;
min[0] = min[1] = min[2] = 0;
max[0] = max[1] = max[2] = 0;
surf = (md3Surface_t *)((qbyte *)header + header->ofsSurfaces);
for (s = 0; s < header->numSurfaces; s++)
{
size = sizeof(galiasinfo_t) + sizeof(galiasgroup_t)*header->numFrames;
galias = Hunk_Alloc(size);
galias->groupofs = sizeof(*galias); //frame groups
galias->groups = header->numFrames;
galias->numverts = surf->numVerts;
galias->numindexes = surf->numTriangles*3;
galias->numskins = 1;
if (parent)
parent->nextsurf = (qbyte *)galias - (qbyte *)parent;
else
root = galias;
parent = galias;
st_array = Hunk_Alloc(sizeof(vec2_t)*galias->numindexes);
galias->ofs_st_array = (qbyte*)st_array - (qbyte*)galias;
inst = (md3St_t*)((qbyte*)surf + surf->ofsSt);
for (i = 0; i < galias->numverts; i++)
{
st_array[i][0] = inst[i].s;
st_array[i][1] = inst[i].t;
}
indexes = Hunk_Alloc(sizeof(*indexes)*galias->numindexes);
galias->ofs_indexes = (qbyte*)indexes - (qbyte*)galias;
intris = (md3Triangle_t *)((qbyte*)surf + surf->ofsTriangles);
for (i = 0; i < surf->numTriangles; i++)
{
indexes[i*3+0] = intris[i].indexes[0];
indexes[i*3+1] = intris[i].indexes[1];
indexes[i*3+2] = intris[i].indexes[2];
}
group = (galiasgroup_t *)(galias+1);
invert = (md3XyzNormal_t *)((qbyte*)surf + surf->ofsXyzNormals);
for (i = 0; i < surf->numFrames; i++)
{
pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + sizeof(vec3_t)*2*surf->numVerts);
normals = (vec3_t*)(pose+1);
verts = normals + surf->numVerts;
pose->ofsnormals = (qbyte*)normals - (qbyte*)pose;
pose->ofsverts = (qbyte*)verts - (qbyte*)pose;
for (j = 0; j < surf->numVerts; j++)
{
lat = (float)invert[j].latlong[0] * (2 * M_PI)*(1.0 / 255.0);
lng = (float)invert[j].latlong[1] * (2 * M_PI)*(1.0 / 255.0);
normals[j][0] = cos ( lng ) * sin ( lat );
normals[j][1] = sin ( lng ) * sin ( lat );
normals[j][2] = cos ( lat );
for (d = 0; d < 3; d++)
{
verts[j][d] = invert[j].xyz[d]/64.0f;
if (verts[j][d]<min[d])
min[d] = verts[j][d];
if (verts[j][d]>max[d])
max[d] = verts[j][d];
}
}
pose->scale[0] = 1;
pose->scale[1] = 1;
pose->scale[2] = 1;
pose->scale_origin[0] = 0;
pose->scale_origin[1] = 0;
pose->scale_origin[2] = 0;
group->numposes = 1;
group->rate = 1;
group->poseofs = (qbyte*)pose - (qbyte*)group;
group++;
invert += surf->numVerts;
}
if (surf->numShaders)
{
#ifndef Q3SHADERS
char name[1024];
extern int gl_bumpmappingpossible;
#endif
skin = Hunk_Alloc(surf->numShaders*(sizeof(galiasskin_t)+sizeof(galiastexnum_t)));
galias->ofsskins = (qbyte *)skin - (qbyte *)galias;
texnum = (galiastexnum_t *)(skin + surf->numShaders);
inshader = (md3Shader_t *)((qbyte *)surf + surf->ofsShaders);
for (i = 0; i < surf->numShaders; i++)
{
skin->texnums = 1;
skin->ofstexnums = (qbyte *)texnum - (qbyte *)skin;
skin->ofstexels = 0;
skin->skinwidth = 0;
skin->skinheight = 0;
skin->skinspeed = 0;
#ifdef Q3SHADERS
texnum->shader = R_RegisterSkin(inshader->name);
#else
texnum->base = Mod_LoadHiResTexture(inshader->name, true, true, true);
if (!texnum->base)
{
strcpy(name, loadmodel->name);
strcpy(COM_SkipPath(name), COM_SkipPath(inshader->name)); //eviile eh?
texnum->base = Mod_LoadHiResTexture(name, true, true, true);
}
texnum->bump = 0;
if (gl_bumpmappingpossible)
{
COM_StripExtension(inshader->name, name); //go for the normalmap
strcat(name, "_norm");
texnum->bump = Mod_LoadHiResTexture(name, true, true, false);
if (!texnum->bump)
{
strcpy(name, loadmodel->name);
COM_StripExtension(COM_SkipPath(inshader->name), COM_SkipPath(name));
strcat(name, "_norm");
texnum->bump = Mod_LoadHiResTexture(name, true, true, false);
if (!texnum->bump)
{
COM_StripExtension(inshader->name, name); //bother, go for heightmap and convert
strcat(name, "_bump");
texnum->bump = Mod_LoadBumpmapTexture(name);
if (!texnum->bump)
{
strcpy(name, loadmodel->name);
strcpy(COM_SkipPath(name), COM_SkipPath(inshader->name)); //eviile eh?
COM_StripExtension(name, name);
strcat(name, "_bump");
texnum->bump = Mod_LoadBumpmapTexture(name);
}
}
}
}
if (r_fb_models.value)
{
COM_StripExtension(inshader->name, name); //go for the normalmap
strcat(name, "_luma");
texnum->fullbright = Mod_LoadHiResTexture(name, true, true, true);
if (!texnum->base)
{
strcpy(name, loadmodel->name);
strcpy(COM_SkipPath(name), COM_SkipPath(inshader->name)); //eviile eh?
COM_StripExtension(name, name);
strcat(name, "_luma");
texnum->fullbright = Mod_LoadBumpmapTexture(name);
}
}
#endif
skin++;
texnum++;
}
}
VectorCopy(min, loadmodel->mins);
VectorCopy(max, loadmodel->maxs);
if (r_shadows.value)
{
int *neighbours;
neighbours = Hunk_Alloc(sizeof(int)*3*surf->numTriangles);
galias->ofs_trineighbours = (qbyte *)neighbours - (qbyte *)galias;
R_BuildTriangleNeighbours(neighbours, indexes, surf->numTriangles);
}
surf = (md3Surface_t *)((qbyte *)surf + surf->ofsEnd);
}
root->numtags = header->numTags;
root->ofstags = (char*)Hunk_Alloc(header->numTags*sizeof(md3tag_t)*header->numFrames) - (char*)root;
memcpy((char*)root+root->ofstags, (char*)header+header->ofsTags, header->numTags*sizeof(md3tag_t)*header->numFrames);
//
// move the complete, relocatable alias model to the cache
//
hunkend = Hunk_LowMark ();
mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0);
Hunk_Alloc(0);
hunktotal = hunkend - hunkstart;
Cache_Alloc (&mod->cache, hunktotal, loadname);
mod->type = mod_alias;
if (!mod->cache.data)
{
Hunk_FreeToLowMark (hunkstart);
return;
}
memcpy (mod->cache.data, root, hunktotal);
Hunk_FreeToLowMark (hunkstart);
}
#endif
#ifdef ZYMOTICMODELS
typedef struct zymlump_s
{
int start;
int length;
} zymlump_t;
typedef struct zymtype1header_s
{
char id[12]; // "ZYMOTICMODEL", length 12, no termination
int type; // 0 (vertex morph) 1 (skeletal pose) or 2 (skeletal scripted)
int filesize; // size of entire model file
float mins[3], maxs[3], radius; // for clipping uses
int numverts;
int numtris;
int numshaders;
int numbones; // this may be zero in the vertex morph format (undecided)
int numscenes; // 0 in skeletal scripted models
// skeletal pose header
// lump offsets are relative to the file
zymlump_t lump_scenes; // zymscene_t scene[numscenes]; // name and other information for each scene (see zymscene struct)
zymlump_t lump_poses; // float pose[numposes][numbones][6]; // animation data
zymlump_t lump_bones; // zymbone_t bone[numbones];
zymlump_t lump_vertbonecounts; // int vertbonecounts[numvertices]; // how many bones influence each vertex (separate mainly to make this compress better)
zymlump_t lump_verts; // zymvertex_t vert[numvertices]; // see vertex struct
zymlump_t lump_texcoords; // float texcoords[numvertices][2];
zymlump_t lump_render; // int renderlist[rendersize]; // sorted by shader with run lengths (int count), shaders are sequentially used, each run can be used with glDrawElements (each triangle is 3 int indices)
zymlump_t lump_shaders; // char shadername[numshaders][32]; // shaders used on this model
zymlump_t lump_trizone; // byte trizone[numtris]; // see trizone explanation
} zymtype1header_t;
typedef struct zymbone_s
{
char name[32];
int flags;
int parent; // parent bone number
} zymbone_t;
typedef struct zymscene_s
{
char name[32];
float mins[3], maxs[3], radius; // for clipping
float framerate; // the scene will animate at this framerate (in frames per second)
int flags;
int start, length; // range of poses
} zymscene_t;
typedef struct zymvertex_s
{
int bonenum;
float origin[3];
} zymvertex_t;
//this can generate multiple meshes (one for each shader).
//but only one set of transforms are ever generated.
void GLMod_LoadZymoticModel(model_t *mod, void *buffer)
{
int i;
int hunkstart, hunkend, hunktotal;
zymtype1header_t *header;
galiasinfo_t *root;
galisskeletaltransforms_t *transforms;
zymvertex_t *intrans;
galiasskin_t *skin;
galiastexnum_t *texnums;
galiasbone_t *bone;
zymbone_t *inbone;
int v;
float multiplier;
float *matrix, *inmatrix;
vec2_t *stcoords;
vec2_t *inst;
int *vertbonecounts;
galiasgroup_t *grp;
zymscene_t *inscene;
int *renderlist, count;
index_t *indexes;
char *shadername;
loadmodel=mod;
hunkstart = Hunk_LowMark ();
header = buffer;
if (memcmp(header->id, "ZYMOTICMODEL", 12))
Sys_Error("GLMod_LoadZymoticModel: doesn't appear to BE a zymotic!\n");
if (BigLong(header->type) != 1)
Sys_Error("GLMod_LoadZymoticModel: only type 1 is supported\n");
for (i = 0; i < sizeof(zymtype1header_t)/4; i++)
((int*)header)[i] = BigLong(((int*)header)[i]);
if (!header->numverts)
Sys_Error("GLMod_LoadZymoticModel: no vertexes\n");
if (!header->numshaders)
Sys_Error("GLMod_LoadZymoticModel: no textures\n");
root = Hunk_AllocName(sizeof(galiasinfo_t)*header->numshaders, loadname);
root->numtransforms = header->lump_verts.length/sizeof(zymvertex_t);
transforms = Hunk_Alloc(root->numtransforms*sizeof(*transforms));
root->ofstransforms = (char*)transforms - (char*)root;
vertbonecounts = (int *)((char*)header + header->lump_vertbonecounts.start);
intrans = (zymvertex_t *)((char*)header + header->lump_verts.start);
vertbonecounts[0] = BigLong(vertbonecounts[0]);
multiplier = 1.0f / vertbonecounts[0];
for (i = 0, v=0; i < root->numtransforms; i++)
{
while(!vertbonecounts[v])
{
v++;
if (v == header->numverts)
Sys_Error("GLMod_LoadZymoticModel: Too many transformations\n");
vertbonecounts[v] = BigLong(vertbonecounts[v]);
multiplier = 1.0f / vertbonecounts[v];
}
transforms[i].vertexindex = v;
transforms[i].boneindex = BigLong(intrans[i].bonenum);
transforms[i].org[0] = multiplier*BigFloat(intrans[i].origin[0]);
transforms[i].org[1] = multiplier*BigFloat(intrans[i].origin[1]);
transforms[i].org[2] = multiplier*BigFloat(intrans[i].origin[2]);
transforms[i].org[3] = multiplier*1;
vertbonecounts[v]--;
}
if (intrans != (zymvertex_t *)((char*)header + header->lump_verts.start))
Sys_Error("Vertex transforms list appears corrupt.");
if (vertbonecounts != (int *)((char*)header + header->lump_vertbonecounts.start))
Sys_Error("Vertex bone counts list appears corrupt.");
root->numverts = v+1;
root->numbones = header->numbones;
bone = Hunk_Alloc(root->numtransforms*sizeof(*transforms));
inbone = (zymbone_t*)((char*)header + header->lump_bones.start);
for (i = 0; i < root->numbones; i++)
bone[i].parent = BigLong(inbone[i].parent);
root->ofsbones = (char *)bone - (char *)root;
renderlist = (int*)((char*)header + header->lump_render.start);
for (i = 0;i < header->numshaders; i++)
{
count = BigLong(*renderlist++);
count *= 3;
indexes = Hunk_Alloc(count*sizeof(*indexes));
root[i].ofs_indexes = (char *)indexes - (char*)&root[i];
root[i].numindexes = count;
while(count)
{ //invert
indexes[count-1] = BigLong(renderlist[count-3]);
indexes[count-2] = BigLong(renderlist[count-2]);
indexes[count-3] = BigLong(renderlist[count-1]);
count-=3;
}
renderlist += root[i].numindexes;
}
if (renderlist != (int*)((char*)header + header->lump_render.start + header->lump_render.length))
Sys_Error("Render list appears corrupt.");
grp = Hunk_Alloc(sizeof(*grp)*header->numscenes*header->numshaders);
matrix = Hunk_Alloc(header->lump_poses.length);
inmatrix = (float*)((char*)header + header->lump_poses.start);
for (i = 0; i < header->lump_poses.length/4; i++)
matrix[i] = BigFloat(inmatrix[i]);
inscene = (zymscene_t*)((char*)header + header->lump_scenes.start);
shadername = ((char*)header + header->lump_shaders.start);
stcoords = Hunk_Alloc(root[0].numverts*sizeof(vec2_t));
inst = (vec2_t *)((char *)header + header->lump_texcoords.start);
for (i = 0; i < header->lump_texcoords.length/8; i++)
{
stcoords[i][0] = BigFloat(inst[i][0]);
stcoords[i][1] = 1-BigFloat(inst[i][1]); //hmm. upside down skin coords?
}
for (i = 0; i < header->numshaders; i++, shadername+=32)
{
root[i].ofs_st_array = (char*)stcoords - (char*)&root[i];
root[i].groups = header->numscenes;
root[i].groupofs = (char*)grp - (char*)&root[i];
skin = Hunk_Alloc(sizeof(*skin)+sizeof(*texnums));
texnums = (galiastexnum_t *)(skin+1); //texnums is seperate for skingroups/animating skins... Which this format doesn't support.
root[i].ofsskins = (char *)skin - (char *)&root[i];
root[i].numskins = 1;
skin->ofstexnums = (char *)texnums - (char *)skin;
skin->texnums = 1;
texnums->base = Mod_LoadHiResTexture(shadername, true, true, true);
}
for (i = 0; i < header->numscenes; i++, grp++, inscene++)
{
grp->isskeletal = 1;
grp->rate = BigFloat(inscene->framerate);
grp->numposes = BigLong(inscene->length);
grp->poseofs = (char*)matrix - (char*)grp;
grp->poseofs += BigLong(inscene->start)*12*sizeof(float)*root->numbones;
}
if (inscene != (zymscene_t*)((char*)header + header->lump_scenes.start+header->lump_scenes.length))
Sys_Error("scene list appears corrupt.");
for (i = 0; i < header->numshaders-1; i++)
root[i].nextsurf = sizeof(galiasinfo_t);
for (i = 1; i < header->numshaders; i++)
{
root[i].sharesverts = true;
root[i].numbones = root[0].numbones;
root[i].numindexes = root[0].numindexes;
root[i].numverts = root[0].numverts;
root[i].ofsbones = root[0].ofsbones;
}
//
// move the complete, relocatable alias model to the cache
//
hunkend = Hunk_LowMark ();
mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0); //file replacement - inherit flags from any defunc mdl files.
Hunk_Alloc(0);
hunktotal = hunkend - hunkstart;
Cache_Alloc (&mod->cache, hunktotal, loadname);
mod->type = mod_alias;
if (!mod->cache.data)
{
Hunk_FreeToLowMark (hunkstart);
return;
}
memcpy (mod->cache.data, root, hunktotal);
Hunk_FreeToLowMark (hunkstart);
}
#endif
#endif