mirror of
https://github.com/nzp-team/fteqw.git
synced 2024-11-14 08:21:05 +00:00
6e3f69f504
fte particle scripts are disabled (classic works). I'll fix these in the new year. Redid framestate stuff again. Slightly better now, but this is the bulk of the changes here. Reworked the renderqueue to provide batches of items instead of individual items. This cleans up the particle rendering code significantly, and is a step towards multiple concurrent particle systems. fte's scripted particles are broken as I'm trying to find a way to rework them to batch types together, rather than having to restart each batch after each particle when you have two particles in a trail. I'll fix it some time. Reworked some alias model code regarding skeletal models. Added some conceptual skeletal bone control builtins available to csqc. Currently it can query the bone names and save off animation states, but can't animate - its just not complete. Added more info to glsl custom shaders. Updated surface sorting on halflife maps to properly cope with alphaed entities, rather than just texture-based blends (q2-style). git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@3095 fc73d0e0-1445-4013-8a0c-d673dee63da5
1224 lines
28 KiB
C
1224 lines
28 KiB
C
/*
|
|
Copyright (C) 1996-1997 Id Software, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
// mathlib.c -- math primitives
|
|
|
|
#include "quakedef.h"
|
|
#include <math.h>
|
|
|
|
vec3_t vec3_origin = {0,0,0};
|
|
int nanmask = 255<<23;
|
|
|
|
/*-----------------------------------------------------------------*/
|
|
|
|
#define DEG2RAD( a ) ( a * M_PI ) / 180.0F
|
|
|
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = 1.0F / DotProduct( normal, normal );
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - d * n[0];
|
|
dst[1] = p[1] - d * n[1];
|
|
dst[2] = p[2] - d * n[2];
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
void PerpendicularVector( vec3_t dst, const vec3_t src )
|
|
{
|
|
int pos;
|
|
int i;
|
|
float minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
*/
|
|
for ( pos = 0, i = 0; i < 3; i++ )
|
|
{
|
|
if ( fabs( src[i] ) < minelem )
|
|
{
|
|
pos = i;
|
|
minelem = fabs( src[i] );
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src
|
|
*/
|
|
ProjectPointOnPlane( dst, tempvec, src );
|
|
|
|
/*
|
|
** normalize the result
|
|
*/
|
|
VectorNormalize( dst );
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize( "", off )
|
|
#endif
|
|
|
|
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
|
|
{
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
zrot[0][0] = cos( DEG2RAD( degrees ) );
|
|
zrot[0][1] = sin( DEG2RAD( degrees ) );
|
|
zrot[1][0] = -sin( DEG2RAD( degrees ) );
|
|
zrot[1][1] = cos( DEG2RAD( degrees ) );
|
|
|
|
R_ConcatRotations( m, zrot, tmpmat );
|
|
R_ConcatRotations( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ )
|
|
{
|
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
|
}
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize( "", on )
|
|
#endif
|
|
|
|
/*-----------------------------------------------------------------*/
|
|
|
|
float anglemod(float a)
|
|
{
|
|
#if 0
|
|
if (a >= 0)
|
|
a -= 360*(int)(a/360);
|
|
else
|
|
a += 360*( 1 + (int)(-a/360) );
|
|
#endif
|
|
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
BOPS_Error
|
|
|
|
Split out like this for ASM to call.
|
|
==================
|
|
*/
|
|
void VARGS BOPS_Error (void)
|
|
{
|
|
Sys_Error ("BoxOnPlaneSide: Bad signbits");
|
|
}
|
|
|
|
#if !id386
|
|
|
|
/*
|
|
==================
|
|
BoxOnPlaneSide
|
|
|
|
Returns 1, 2, or 1 + 2
|
|
==================
|
|
*/
|
|
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, mplane_t *p)
|
|
{
|
|
float dist1, dist2;
|
|
int sides;
|
|
|
|
#if 0 // this is done by the BOX_ON_PLANE_SIDE macro before calling this
|
|
// function
|
|
// fast axial cases
|
|
if (p->type < 3)
|
|
{
|
|
if (p->dist <= emins[p->type])
|
|
return 1;
|
|
if (p->dist >= emaxs[p->type])
|
|
return 2;
|
|
return 3;
|
|
}
|
|
#endif
|
|
|
|
// general case
|
|
switch (p->signbits)
|
|
{
|
|
case 0:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 1:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 2:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 3:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 4:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 5:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 6:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 7:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
default:
|
|
dist1 = dist2 = 0; // shut up compiler
|
|
BOPS_Error ();
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
int i;
|
|
vec3_t corners[2];
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
if (plane->normal[i] < 0)
|
|
{
|
|
corners[0][i] = emins[i];
|
|
corners[1][i] = emaxs[i];
|
|
}
|
|
else
|
|
{
|
|
corners[1][i] = emins[i];
|
|
corners[0][i] = emaxs[i];
|
|
}
|
|
}
|
|
dist = DotProduct (plane->normal, corners[0]) - plane->dist;
|
|
dist2 = DotProduct (plane->normal, corners[1]) - plane->dist;
|
|
sides = 0;
|
|
if (dist1 >= 0)
|
|
sides = 1;
|
|
if (dist2 < 0)
|
|
sides |= 2;
|
|
|
|
#endif
|
|
|
|
sides = 0;
|
|
if (dist1 >= p->dist)
|
|
sides = 1;
|
|
if (dist2 < p->dist)
|
|
sides |= 2;
|
|
|
|
#ifdef PARANOID
|
|
if (sides == 0)
|
|
Sys_Error ("BoxOnPlaneSide: sides==0");
|
|
#endif
|
|
|
|
return sides;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
void VVPerpendicularVector(vec3_t dst, const vec3_t src)
|
|
{
|
|
if (!src[0])
|
|
{
|
|
dst[0] = 1;
|
|
dst[1] = dst[2] = 0;
|
|
}
|
|
else if (!src[1])
|
|
{
|
|
dst[1] = 1;
|
|
dst[0] = dst[2] = 0;
|
|
}
|
|
else if (!src[2])
|
|
{
|
|
dst[2] = 1;
|
|
dst[0] = dst[1] = 0;
|
|
}
|
|
else
|
|
{
|
|
dst[0] = -src[1];
|
|
dst[1] = src[0];
|
|
dst[2] = 0;
|
|
VectorNormalize(dst);
|
|
}
|
|
}
|
|
void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
VVPerpendicularVector(right, forward);
|
|
CrossProduct(right, forward, up);
|
|
}
|
|
|
|
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
|
|
forward[0] = cp*cy;
|
|
forward[1] = cp*sy;
|
|
forward[2] = -sp;
|
|
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
|
|
right[1] = (-1*sr*sp*sy+-1*cr*cy);
|
|
right[2] = -1*sr*cp;
|
|
up[0] = (cr*sp*cy+-sr*-sy);
|
|
up[1] = (cr*sp*sy+-sr*cy);
|
|
up[2] = cr*cp;
|
|
}
|
|
|
|
int VectorCompare (vec3_t v1, vec3_t v2)
|
|
{
|
|
int i;
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
if (v1[i] != v2[i])
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void VectorMA (const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc)
|
|
{
|
|
vecc[0] = veca[0] + scale*vecb[0];
|
|
vecc[1] = veca[1] + scale*vecb[1];
|
|
vecc[2] = veca[2] + scale*vecb[2];
|
|
}
|
|
|
|
|
|
vec_t _DotProduct (vec3_t v1, vec3_t v2)
|
|
{
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out)
|
|
{
|
|
out[0] = veca[0]-vecb[0];
|
|
out[1] = veca[1]-vecb[1];
|
|
out[2] = veca[2]-vecb[2];
|
|
}
|
|
|
|
void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out)
|
|
{
|
|
out[0] = veca[0]+vecb[0];
|
|
out[1] = veca[1]+vecb[1];
|
|
out[2] = veca[2]+vecb[2];
|
|
}
|
|
|
|
void _VectorCopy (vec3_t in, vec3_t out)
|
|
{
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross)
|
|
{
|
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
|
|
vec_t Length(vec3_t v)
|
|
{
|
|
int i;
|
|
float length;
|
|
|
|
length = 0;
|
|
for (i=0 ; i< 3 ; i++)
|
|
length += v[i]*v[i];
|
|
length = sqrt (length); // FIXME
|
|
|
|
return length;
|
|
}
|
|
|
|
float Q_rsqrt(float number)
|
|
{
|
|
int i;
|
|
float x2, y;
|
|
const float threehalfs = 1.5F;
|
|
|
|
x2 = number * 0.5F;
|
|
y = number;
|
|
i = * (int *) &y; // evil floating point bit level hacking
|
|
i = 0x5f3759df - (i >> 1); // what the fuck?
|
|
y = * (float *) &i;
|
|
y = y * (threehalfs - (x2 * y * y)); // 1st iteration
|
|
// y = y * (threehalfs - (x2 * y * y)); // 2nd iteration, this can be removed
|
|
|
|
return y;
|
|
}
|
|
|
|
float VectorNormalize (vec3_t v)
|
|
{
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrt (length); // FIXME
|
|
|
|
if (length)
|
|
{
|
|
ilength = 1/length;
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
void VectorNormalizeFast(vec3_t v)
|
|
{
|
|
float ilength;
|
|
|
|
ilength = Q_rsqrt(DotProduct(v, v));
|
|
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
void VectorInverse (vec3_t v)
|
|
{
|
|
v[0] = -v[0];
|
|
v[1] = -v[1];
|
|
v[2] = -v[2];
|
|
}
|
|
|
|
void VectorScale (vec3_t in, vec_t scale, vec3_t out)
|
|
{
|
|
out[0] = in[0]*scale;
|
|
out[1] = in[1]*scale;
|
|
out[2] = in[2]*scale;
|
|
}
|
|
|
|
|
|
int Q_log2(int val)
|
|
{
|
|
int answer=0;
|
|
while ((val>>=1) != 0)
|
|
answer++;
|
|
return answer;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_ConcatRotations
|
|
================
|
|
*/
|
|
void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_ConcatTransforms
|
|
================
|
|
*/
|
|
void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] +
|
|
in1[0][2] * in2[2][3] + in1[0][3];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] +
|
|
in1[1][2] * in2[2][3] + in1[1][3];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] +
|
|
in1[2][2] * in2[2][3] + in1[2][3];
|
|
}
|
|
|
|
void R_ConcatRotationsPad (float in1[3][4], float in2[3][4], float out[3][4])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
/*
|
|
===================
|
|
FloorDivMod
|
|
|
|
Returns mathematically correct (floor-based) quotient and remainder for
|
|
numer and denom, both of which should contain no fractional part. The
|
|
quotient must fit in 32 bits.
|
|
====================
|
|
*/
|
|
|
|
void FloorDivMod (double numer, double denom, int *quotient,
|
|
int *rem)
|
|
{
|
|
int q, r;
|
|
double x;
|
|
|
|
#ifndef PARANOID
|
|
if (denom <= 0.0)
|
|
Sys_Error ("FloorDivMod: bad denominator %d\n", denom);
|
|
|
|
// if ((floor(numer) != numer) || (floor(denom) != denom))
|
|
// Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n",
|
|
// numer, denom);
|
|
#endif
|
|
|
|
if (numer >= 0.0)
|
|
{
|
|
|
|
x = floor(numer / denom);
|
|
q = (int)x;
|
|
r = (int)floor(numer - (x * denom));
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// perform operations with positive values, and fix mod to make floor-based
|
|
//
|
|
x = floor(-numer / denom);
|
|
q = -(int)x;
|
|
r = (int)floor(-numer - (x * denom));
|
|
if (r != 0)
|
|
{
|
|
q--;
|
|
r = (int)denom - r;
|
|
}
|
|
}
|
|
|
|
*quotient = q;
|
|
*rem = r;
|
|
}
|
|
|
|
|
|
/*
|
|
===================
|
|
GreatestCommonDivisor
|
|
====================
|
|
*/
|
|
int GreatestCommonDivisor (int i1, int i2)
|
|
{
|
|
if (i1 > i2)
|
|
{
|
|
if (i2 == 0)
|
|
return (i1);
|
|
return GreatestCommonDivisor (i2, i1 % i2);
|
|
}
|
|
else
|
|
{
|
|
if (i1 == 0)
|
|
return (i2);
|
|
return GreatestCommonDivisor (i1, i2 % i1);
|
|
}
|
|
}
|
|
|
|
|
|
#if !id386
|
|
|
|
// TODO: move to nonintel.c
|
|
|
|
/*
|
|
===================
|
|
Invert24To16
|
|
|
|
Inverts an 8.24 value to a 16.16 value
|
|
====================
|
|
*/
|
|
|
|
fixed16_t Invert24To16(fixed16_t val)
|
|
{
|
|
if (val < 256)
|
|
return (0xFFFFFFFF);
|
|
|
|
return (fixed16_t)
|
|
(((double)0x10000 * (double)0x1000000 / (double)val) + 0.5);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void VectorTransform (const vec3_t in1, matrix3x4 in2, vec3_t out)
|
|
{
|
|
out[0] = DotProduct(in1, in2[0]) + in2[0][3];
|
|
out[1] = DotProduct(in1, in2[1]) + in2[1][3];
|
|
out[2] = DotProduct(in1, in2[2]) + in2[2][3];
|
|
}
|
|
|
|
#ifdef HALFLIFEMODELS
|
|
|
|
void AngleQuaternion( const vec3_t angles, vec4_t quaternion )
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
// FIXME: rescale the inputs to 1/2 angle
|
|
angle = angles[2] * 0.5;
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
angle = angles[1] * 0.5;
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
angle = angles[0] * 0.5;
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
|
|
quaternion[0] = sr*cp*cy-cr*sp*sy; // X
|
|
quaternion[1] = cr*sp*cy+sr*cp*sy; // Y
|
|
quaternion[2] = cr*cp*sy-sr*sp*cy; // Z
|
|
quaternion[3] = cr*cp*cy+sr*sp*sy; // W
|
|
}
|
|
|
|
void QuaternionMatrix( const vec4_t quaternion, float (*matrix)[4] )
|
|
{
|
|
|
|
matrix[0][0] = 1.0 - 2.0 * quaternion[1] * quaternion[1] - 2.0 * quaternion[2] * quaternion[2];
|
|
matrix[1][0] = 2.0 * quaternion[0] * quaternion[1] + 2.0 * quaternion[3] * quaternion[2];
|
|
matrix[2][0] = 2.0 * quaternion[0] * quaternion[2] - 2.0 * quaternion[3] * quaternion[1];
|
|
|
|
matrix[0][1] = 2.0 * quaternion[0] * quaternion[1] - 2.0 * quaternion[3] * quaternion[2];
|
|
matrix[1][1] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[2] * quaternion[2];
|
|
matrix[2][1] = 2.0 * quaternion[1] * quaternion[2] + 2.0 * quaternion[3] * quaternion[0];
|
|
|
|
matrix[0][2] = 2.0 * quaternion[0] * quaternion[2] + 2.0 * quaternion[3] * quaternion[1];
|
|
matrix[1][2] = 2.0 * quaternion[1] * quaternion[2] - 2.0 * quaternion[3] * quaternion[0];
|
|
matrix[2][2] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[1] * quaternion[1];
|
|
}
|
|
|
|
void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt )
|
|
{
|
|
int i;
|
|
float omega, cosom, sinom, sclp, sclq;
|
|
|
|
// decide if one of the quaternions is backwards
|
|
float a = 0;
|
|
float b = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
a += (p[i]-q[i])*(p[i]-q[i]);
|
|
b += (p[i]+q[i])*(p[i]+q[i]);
|
|
}
|
|
if (a > b) {
|
|
for (i = 0; i < 4; i++) {
|
|
q[i] = -q[i];
|
|
}
|
|
}
|
|
|
|
cosom = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3];
|
|
|
|
if ((1.0 + cosom) > 0.00000001) {
|
|
if ((1.0 - cosom) > 0.00000001) {
|
|
omega = acos( cosom );
|
|
sinom = sin( omega );
|
|
sclp = sin( (1.0 - t)*omega) / sinom;
|
|
sclq = sin( t*omega ) / sinom;
|
|
}
|
|
else {
|
|
sclp = 1.0 - t;
|
|
sclq = t;
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
qt[i] = sclp * p[i] + sclq * q[i];
|
|
}
|
|
}
|
|
else {
|
|
qt[0] = -p[1];
|
|
qt[1] = p[0];
|
|
qt[2] = -p[3];
|
|
qt[3] = p[2];
|
|
sclp = sin( (1.0 - t) * 0.5 * M_PI);
|
|
sclq = sin( t * 0.5 * M_PI);
|
|
for (i = 0; i < 3; i++) {
|
|
qt[i] = sclp * p[i] + sclq * qt[i];
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//This function is GL stylie (use as 2nd arg to ML_MultMatrix4).
|
|
float *Matrix4_NewRotation(float a, float x, float y, float z)
|
|
{
|
|
static float ret[16];
|
|
float c = cos(a* M_PI / 180.0);
|
|
float s = sin(a* M_PI / 180.0);
|
|
|
|
ret[0] = x*x*(1-c)+c;
|
|
ret[4] = x*y*(1-c)-z*s;
|
|
ret[8] = x*z*(1-c)+y*s;
|
|
ret[12] = 0;
|
|
|
|
ret[1] = y*x*(1-c)+z*s;
|
|
ret[5] = y*y*(1-c)+c;
|
|
ret[9] = y*z*(1-c)-x*s;
|
|
ret[13] = 0;
|
|
|
|
ret[2] = x*z*(1-c)-y*s;
|
|
ret[6] = y*z*(1-c)+x*s;
|
|
ret[10] = z*z*(1-c)+c;
|
|
ret[14] = 0;
|
|
|
|
ret[3] = 0;
|
|
ret[7] = 0;
|
|
ret[11] = 0;
|
|
ret[15] = 1;
|
|
return ret;
|
|
}
|
|
|
|
//This function is GL stylie (use as 2nd arg to ML_MultMatrix4).
|
|
float *Matrix4_NewTranslation(float x, float y, float z)
|
|
{
|
|
static float ret[16];
|
|
ret[0] = 1;
|
|
ret[4] = 0;
|
|
ret[8] = 0;
|
|
ret[12] = x;
|
|
|
|
ret[1] = 0;
|
|
ret[5] = 1;
|
|
ret[9] = 0;
|
|
ret[13] = y;
|
|
|
|
ret[2] = 0;
|
|
ret[6] = 0;
|
|
ret[10] = 1;
|
|
ret[14] = z;
|
|
|
|
ret[3] = 0;
|
|
ret[7] = 0;
|
|
ret[11] = 0;
|
|
ret[15] = 1;
|
|
return ret;
|
|
}
|
|
|
|
//be aware that this generates two sorts of matricies depending on order of a+b
|
|
void Matrix4_Multiply(float *a, float *b, float *out)
|
|
{
|
|
out[0] = a[0] * b[0] + a[4] * b[1] + a[8] * b[2] + a[12] * b[3];
|
|
out[1] = a[1] * b[0] + a[5] * b[1] + a[9] * b[2] + a[13] * b[3];
|
|
out[2] = a[2] * b[0] + a[6] * b[1] + a[10] * b[2] + a[14] * b[3];
|
|
out[3] = a[3] * b[0] + a[7] * b[1] + a[11] * b[2] + a[15] * b[3];
|
|
|
|
out[4] = a[0] * b[4] + a[4] * b[5] + a[8] * b[6] + a[12] * b[7];
|
|
out[5] = a[1] * b[4] + a[5] * b[5] + a[9] * b[6] + a[13] * b[7];
|
|
out[6] = a[2] * b[4] + a[6] * b[5] + a[10] * b[6] + a[14] * b[7];
|
|
out[7] = a[3] * b[4] + a[7] * b[5] + a[11] * b[6] + a[15] * b[7];
|
|
|
|
out[8] = a[0] * b[8] + a[4] * b[9] + a[8] * b[10] + a[12] * b[11];
|
|
out[9] = a[1] * b[8] + a[5] * b[9] + a[9] * b[10] + a[13] * b[11];
|
|
out[10] = a[2] * b[8] + a[6] * b[9] + a[10] * b[10] + a[14] * b[11];
|
|
out[11] = a[3] * b[8] + a[7] * b[9] + a[11] * b[10] + a[15] * b[11];
|
|
|
|
out[12] = a[0] * b[12] + a[4] * b[13] + a[8] * b[14] + a[12] * b[15];
|
|
out[13] = a[1] * b[12] + a[5] * b[13] + a[9] * b[14] + a[13] * b[15];
|
|
out[14] = a[2] * b[12] + a[6] * b[13] + a[10] * b[14] + a[14] * b[15];
|
|
out[15] = a[3] * b[12] + a[7] * b[13] + a[11] * b[14] + a[15] * b[15];
|
|
}
|
|
|
|
//transform 4d vector by a 4d matrix.
|
|
void Matrix4_Transform4(float *matrix, float *vector, float *product)
|
|
{
|
|
product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2] + matrix[12]*vector[3];
|
|
product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2] + matrix[13]*vector[3];
|
|
product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2] + matrix[14]*vector[3];
|
|
product[3] = matrix[3]*vector[0] + matrix[7]*vector[1] + matrix[11]*vector[2] + matrix[15]*vector[3];
|
|
}
|
|
|
|
void Matrix4_Transform3(float *matrix, float *vector, float *product)
|
|
{
|
|
product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2] + matrix[12];
|
|
product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2] + matrix[13];
|
|
product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2] + matrix[14];
|
|
}
|
|
|
|
void Matrix4_ModelViewMatrix(float *modelview, vec3_t viewangles, vec3_t vieworg)
|
|
{
|
|
float tempmat[16];
|
|
//load identity.
|
|
memset(modelview, 0, sizeof(*modelview)*16);
|
|
#if FULLYGL
|
|
modelview[0] = 1;
|
|
modelview[5] = 1;
|
|
modelview[10] = 1;
|
|
modelview[15] = 1;
|
|
|
|
Matrix4_Multiply(modelview, Matrix4_NewRotation(-90, 1, 0, 0), tempmat); // put Z going up
|
|
Matrix4_Multiply(tempmat, Matrix4_NewRotation(90, 0, 0, 1), modelview); // put Z going up
|
|
#else
|
|
//use this lame wierd and crazy identity matrix..
|
|
modelview[2] = -1;
|
|
modelview[4] = -1;
|
|
modelview[9] = 1;
|
|
modelview[15] = 1;
|
|
#endif
|
|
//figure out the current modelview matrix
|
|
|
|
//I would if some of these, but then I'd still need a couple of copys
|
|
Matrix4_Multiply(modelview, Matrix4_NewRotation(-viewangles[2], 1, 0, 0), tempmat);
|
|
Matrix4_Multiply(tempmat, Matrix4_NewRotation(-viewangles[0], 0, 1, 0), modelview);
|
|
Matrix4_Multiply(modelview, Matrix4_NewRotation(-viewangles[1], 0, 0, 1), tempmat);
|
|
|
|
Matrix4_Multiply(tempmat, Matrix4_NewTranslation(-vieworg[0], -vieworg[1], -vieworg[2]), modelview); // put Z going up
|
|
}
|
|
|
|
void Matrix4x4_CreateTranslate (matrix4x4_t *out, float x, float y, float z)
|
|
{
|
|
memcpy(out, Matrix4_NewTranslation(x, y, z), sizeof(*out));
|
|
}
|
|
|
|
void Matrix4_ModelViewMatrixFromAxis(float *modelview, vec3_t pn, vec3_t right, vec3_t up, vec3_t vieworg)
|
|
{
|
|
float tempmat[16];
|
|
|
|
tempmat[ 0] = right[0];
|
|
tempmat[ 1] = up[0];
|
|
tempmat[ 2] = -pn[0];
|
|
tempmat[ 3] = 0;
|
|
tempmat[ 4] = right[1];
|
|
tempmat[ 5] = up[1];
|
|
tempmat[ 6] = -pn[1];
|
|
tempmat[ 7] = 0;
|
|
tempmat[ 8] = right[2];
|
|
tempmat[ 9] = up[2];
|
|
tempmat[10] = -pn[2];
|
|
tempmat[11] = 0;
|
|
tempmat[12] = 0;
|
|
tempmat[13] = 0;
|
|
tempmat[14] = 0;
|
|
tempmat[15] = 1;
|
|
|
|
Matrix4_Multiply(tempmat, Matrix4_NewTranslation(-vieworg[0], -vieworg[1], -vieworg[2]), modelview); // put Z going up
|
|
}
|
|
|
|
|
|
void Matrix4_ModelMatrixFromAxis(float *modelview, vec3_t pn, vec3_t right, vec3_t up, vec3_t vieworg)
|
|
{
|
|
float tempmat[16];
|
|
|
|
tempmat[ 0] = pn[0];
|
|
tempmat[ 1] = pn[1];
|
|
tempmat[ 2] = pn[2];
|
|
tempmat[ 3] = 0;
|
|
tempmat[ 4] = right[0];
|
|
tempmat[ 5] = right[1];
|
|
tempmat[ 6] = right[2];
|
|
tempmat[ 7] = 0;
|
|
tempmat[ 8] = up[0];
|
|
tempmat[ 9] = up[1];
|
|
tempmat[10] = up[2];
|
|
tempmat[11] = 0;
|
|
tempmat[12] = 0;
|
|
tempmat[13] = 0;
|
|
tempmat[14] = 0;
|
|
tempmat[15] = 1;
|
|
|
|
Matrix4_Multiply(Matrix4_NewTranslation(vieworg[0], vieworg[1], vieworg[2]), tempmat, modelview); // put Z going up
|
|
}
|
|
|
|
void Matrix4_Identity(float *outm)
|
|
{
|
|
outm[ 0] = 1;
|
|
outm[ 1] = 0;
|
|
outm[ 2] = 0;
|
|
outm[ 3] = 0;
|
|
outm[ 4] = 0;
|
|
outm[ 5] = 1;
|
|
outm[ 6] = 0;
|
|
outm[ 7] = 0;
|
|
outm[ 8] = 0;
|
|
outm[ 9] = 0;
|
|
outm[10] = 1;
|
|
outm[11] = 0;
|
|
outm[12] = 0;
|
|
outm[13] = 0;
|
|
outm[14] = 0;
|
|
outm[15] = 1;
|
|
}
|
|
|
|
void Matrix4_Projection(float *proj, float wdivh, float fovy, float neard)
|
|
{
|
|
float xmin, xmax, ymin, ymax;
|
|
float nudge = 1;
|
|
|
|
//proj
|
|
ymax = neard * tan( fovy * M_PI / 360.0 );
|
|
ymin = -ymax;
|
|
|
|
xmin = ymin * wdivh;
|
|
xmax = ymax * wdivh;
|
|
|
|
proj[0] = (2*neard) / (xmax - xmin);
|
|
proj[4] = 0;
|
|
proj[8] = (xmax + xmin) / (xmax - xmin);
|
|
proj[12] = 0;
|
|
|
|
proj[1] = 0;
|
|
proj[5] = (2*neard) / (ymax - ymin);
|
|
proj[9] = (ymax + ymin) / (ymax - ymin);
|
|
proj[13] = 0;
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = -1 * nudge;
|
|
proj[14] = -2*neard * nudge;
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = -1;
|
|
proj[15] = 0;
|
|
}
|
|
void Matrix4_Projection2(float *proj, float fovx, float fovy, float neard)
|
|
{
|
|
float xmin, xmax, ymin, ymax;
|
|
float nudge = 1;
|
|
|
|
//proj
|
|
ymax = neard * tan( fovy * M_PI / 360.0 );
|
|
ymin = -ymax;
|
|
|
|
xmax = neard * tan( fovx * M_PI / 360.0 );
|
|
xmin = -xmax;
|
|
|
|
proj[0] = (2*neard) / (xmax - xmin);
|
|
proj[4] = 0;
|
|
proj[8] = (xmax + xmin) / (xmax - xmin);
|
|
proj[12] = 0;
|
|
|
|
proj[1] = 0;
|
|
proj[5] = (2*neard) / (ymax - ymin);
|
|
proj[9] = (ymax + ymin) / (ymax - ymin);
|
|
proj[13] = 0;
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = -1 * nudge;
|
|
proj[14] = -2*neard * nudge;
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = -1;
|
|
proj[15] = 0;
|
|
}
|
|
|
|
void Matrix4_Orthographic(float *proj, float xmin, float xmax, float ymax, float ymin,
|
|
float znear, float zfar)
|
|
{
|
|
proj[0] = 2/(xmax-xmin);
|
|
proj[4] = 0;
|
|
proj[8] = 0;
|
|
proj[12] = (xmax+xmin)/(xmax-xmin);
|
|
|
|
proj[1] = 0;
|
|
proj[5] = 2/(ymax-ymin);
|
|
proj[9] = 0;
|
|
proj[13] = (ymax+ymin)/(ymax-ymin);
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = -2/(zfar-znear);
|
|
proj[14] = (zfar+znear)/(zfar-znear);
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = 0;
|
|
proj[15] = 1;
|
|
}
|
|
|
|
void Matrix4_Invert_Simple (matrix4x4_t *out, const matrix4x4_t *in1)
|
|
{
|
|
// we only support uniform scaling, so assume the first row is enough
|
|
// (note the lack of sqrt here, because we're trying to undo the scaling,
|
|
// this means multiplying by the inverse scale twice - squaring it, which
|
|
// makes the sqrt a waste of time)
|
|
#if 1
|
|
double scale = 1.0 / (in1->m[0][0] * in1->m[0][0] + in1->m[0][1] * in1->m[0][1] + in1->m[0][2] * in1->m[0][2]);
|
|
#else
|
|
double scale = 3.0 / sqrt
|
|
(in1->m[0][0] * in1->m[0][0] + in1->m[0][1] * in1->m[0][1] + in1->m[0][2] * in1->m[0][2]
|
|
+ in1->m[1][0] * in1->m[1][0] + in1->m[1][1] * in1->m[1][1] + in1->m[1][2] * in1->m[1][2]
|
|
+ in1->m[2][0] * in1->m[2][0] + in1->m[2][1] * in1->m[2][1] + in1->m[2][2] * in1->m[2][2]);
|
|
scale *= scale;
|
|
#endif
|
|
|
|
// invert the rotation by transposing and multiplying by the squared
|
|
// recipricol of the input matrix scale as described above
|
|
out->m[0][0] = (float)(in1->m[0][0] * scale);
|
|
out->m[0][1] = (float)(in1->m[1][0] * scale);
|
|
out->m[0][2] = (float)(in1->m[2][0] * scale);
|
|
out->m[1][0] = (float)(in1->m[0][1] * scale);
|
|
out->m[1][1] = (float)(in1->m[1][1] * scale);
|
|
out->m[1][2] = (float)(in1->m[2][1] * scale);
|
|
out->m[2][0] = (float)(in1->m[0][2] * scale);
|
|
out->m[2][1] = (float)(in1->m[1][2] * scale);
|
|
out->m[2][2] = (float)(in1->m[2][2] * scale);
|
|
|
|
// invert the translate
|
|
out->m[0][3] = -(in1->m[0][3] * out->m[0][0] + in1->m[1][3] * out->m[0][1] + in1->m[2][3] * out->m[0][2]);
|
|
out->m[1][3] = -(in1->m[0][3] * out->m[1][0] + in1->m[1][3] * out->m[1][1] + in1->m[2][3] * out->m[1][2]);
|
|
out->m[2][3] = -(in1->m[0][3] * out->m[2][0] + in1->m[1][3] * out->m[2][1] + in1->m[2][3] * out->m[2][2]);
|
|
|
|
// don't know if there's anything worth doing here
|
|
out->m[3][0] = 0;
|
|
out->m[3][1] = 0;
|
|
out->m[3][2] = 0;
|
|
out->m[3][3] = 1;
|
|
}
|
|
|
|
//screen->3d
|
|
|
|
void Matrix4_UnProject(vec3_t in, vec3_t out, vec3_t viewangles, vec3_t vieworg, float wdivh, float fovy)
|
|
{
|
|
float modelview[16];
|
|
float proj[16];
|
|
float tempm[16];
|
|
|
|
Matrix4_ModelViewMatrix(modelview, viewangles, vieworg);
|
|
Matrix4_Projection(proj, wdivh, fovy, 4);
|
|
Matrix4_Multiply(proj, modelview, tempm);
|
|
|
|
Matrix4_Invert_Simple((void*)proj, (void*)tempm);
|
|
|
|
{
|
|
float v[4], tempv[4];
|
|
v[0] = in[0]*2-1;
|
|
v[1] = in[1]*2-1;
|
|
v[2] = in[2]*2-1;
|
|
v[3] = 1;
|
|
|
|
Matrix4_Transform4(proj, v, tempv);
|
|
|
|
out[0] = tempv[0];
|
|
out[1] = tempv[1];
|
|
out[2] = tempv[2];
|
|
}
|
|
}
|
|
|
|
//returns fractions of screen.
|
|
//uses GL style rotations and translations and stuff.
|
|
//3d -> screen (fixme: offscreen return values needed)
|
|
void Matrix4_Project (vec3_t in, vec3_t out, vec3_t viewangles, vec3_t vieworg, float wdivh, float fovy)
|
|
{
|
|
float modelview[16];
|
|
float proj[16];
|
|
|
|
Matrix4_ModelViewMatrix(modelview, viewangles, vieworg);
|
|
Matrix4_Projection(proj, wdivh, fovy, 4);
|
|
|
|
{
|
|
float v[4], tempv[4];
|
|
v[0] = in[0];
|
|
v[1] = in[1];
|
|
v[2] = in[2];
|
|
v[3] = 1;
|
|
|
|
Matrix4_Transform4(modelview, v, tempv);
|
|
Matrix4_Transform4(proj, tempv, v);
|
|
|
|
v[0] /= v[3];
|
|
v[1] /= v[3];
|
|
v[2] /= v[3];
|
|
|
|
out[0] = (1+v[0])/2;
|
|
out[1] = (1+v[1])/2;
|
|
out[2] = (1+v[2])/2;
|
|
}
|
|
}
|
|
|
|
|
|
//I much prefer it to take float*...
|
|
void Matrix3_Multiply (vec3_t *in1, vec3_t *in2, vec3_t *out)
|
|
{
|
|
out[0][0] = in1[0][0]*in2[0][0] + in1[0][1]*in2[1][0] + in1[0][2]*in2[2][0];
|
|
out[0][1] = in1[0][0]*in2[0][1] + in1[0][1]*in2[1][1] + in1[0][2]*in2[2][1];
|
|
out[0][2] = in1[0][0]*in2[0][2] + in1[0][1]*in2[1][2] + in1[0][2]*in2[2][2];
|
|
out[1][0] = in1[1][0]*in2[0][0] + in1[1][1]*in2[1][0] + in1[1][2]*in2[2][0];
|
|
out[1][1] = in1[1][0]*in2[0][1] + in1[1][1]*in2[1][1] + in1[1][2]*in2[2][1];
|
|
out[1][2] = in1[1][0]*in2[0][2] + in1[1][1]*in2[1][2] + in1[1][2]*in2[2][2];
|
|
out[2][0] = in1[2][0]*in2[0][0] + in1[2][1]*in2[1][0] + in1[2][2]*in2[2][0];
|
|
out[2][1] = in1[2][0]*in2[0][1] + in1[2][1]*in2[1][1] + in1[2][2]*in2[2][1];
|
|
out[2][2] = in1[2][0]*in2[0][2] + in1[2][1]*in2[1][2] + in1[2][2]*in2[2][2];
|
|
}
|
|
|
|
vec_t VectorNormalize2 (vec3_t v, vec3_t out)
|
|
{
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
|
|
if (length)
|
|
{
|
|
length = sqrt (length); // FIXME
|
|
ilength = 1/length;
|
|
out[0] = v[0]*ilength;
|
|
out[1] = v[1]*ilength;
|
|
out[2] = v[2]*ilength;
|
|
}
|
|
else
|
|
{
|
|
VectorClear (out);
|
|
}
|
|
|
|
return length;
|
|
}
|
|
float ColorNormalize (vec3_t in, vec3_t out)
|
|
{
|
|
float f = max (max (in[0], in[1]), in[2]);
|
|
|
|
if ( f > 1.0 ) {
|
|
f = 1.0 / f;
|
|
out[0] = in[0] * f;
|
|
out[1] = in[1] * f;
|
|
out[2] = in[2] * f;
|
|
} else {
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
return f;
|
|
}
|
|
|
|
void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
float d;
|
|
|
|
// this rotate and negat guarantees a vector
|
|
// not colinear with the original
|
|
right[1] = -forward[0];
|
|
right[2] = forward[1];
|
|
right[0] = forward[2];
|
|
|
|
d = DotProduct (right, forward);
|
|
VectorMA (right, -d, forward, right);
|
|
VectorNormalize (right);
|
|
CrossProduct (right, forward, up);
|
|
}
|
|
|