mirror of
https://github.com/nzp-team/fteqw.git
synced 2024-11-15 00:42:06 +00:00
1614b75142
git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@5934 fc73d0e0-1445-4013-8a0c-d673dee63da5
2050 lines
51 KiB
C
2050 lines
51 KiB
C
/*
|
|
Copyright (C) 1996-1997 Id Software, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
// mathlib.c -- math primitives
|
|
|
|
#include "quakedef.h"
|
|
#include <math.h>
|
|
|
|
vec3_t vec3_origin = {0,0,0};
|
|
|
|
/*-----------------------------------------------------------------*/
|
|
|
|
#define DEG2RAD( a ) ( a * M_PI ) / 180.0F
|
|
|
|
static void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = 1.0F / DotProduct( normal, normal );
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - d * n[0];
|
|
dst[1] = p[1] - d * n[1];
|
|
dst[2] = p[2] - d * n[2];
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
void PerpendicularVector( vec3_t dst, const vec3_t src )
|
|
{
|
|
int pos;
|
|
int i;
|
|
float minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
*/
|
|
for ( pos = 0, i = 0; i < 3; i++ )
|
|
{
|
|
if ( fabs( src[i] ) < minelem )
|
|
{
|
|
pos = i;
|
|
minelem = fabs( src[i] );
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src
|
|
*/
|
|
ProjectPointOnPlane( dst, tempvec, src );
|
|
|
|
/*
|
|
** normalize the result
|
|
*/
|
|
VectorNormalize( dst );
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize( "", off )
|
|
#endif
|
|
|
|
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
|
|
{
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
zrot[0][0] = cos( DEG2RAD( degrees ) );
|
|
zrot[0][1] = sin( DEG2RAD( degrees ) );
|
|
zrot[1][0] = -sin( DEG2RAD( degrees ) );
|
|
zrot[1][1] = cos( DEG2RAD( degrees ) );
|
|
|
|
R_ConcatRotations( m, zrot, tmpmat );
|
|
R_ConcatRotations( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ )
|
|
{
|
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
|
}
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize( "", on )
|
|
#endif
|
|
|
|
/*-----------------------------------------------------------------*/
|
|
|
|
float anglemod(float a)
|
|
{
|
|
#if 0
|
|
if (a >= 0)
|
|
a -= 360*(int)(a/360);
|
|
else
|
|
a += 360*( 1 + (int)(-a/360) );
|
|
#endif
|
|
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
BoxOnPlaneSide
|
|
|
|
Returns 1, 2, or 1 + 2
|
|
==================
|
|
*/
|
|
int VARGS BoxOnPlaneSide (const vec3_t emins, const vec3_t emaxs, const mplane_t *p)
|
|
{
|
|
float dist1, dist2;
|
|
int sides;
|
|
|
|
#if 0 // this is done by the BOX_ON_PLANE_SIDE macro before calling this
|
|
// function
|
|
// fast axial cases
|
|
if (p->type < 3)
|
|
{
|
|
if (p->dist <= emins[p->type])
|
|
return 1;
|
|
if (p->dist >= emaxs[p->type])
|
|
return 2;
|
|
return 3;
|
|
}
|
|
#endif
|
|
|
|
// general case
|
|
switch (p->signbits)
|
|
{
|
|
default:
|
|
case 0:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 1:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 2:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 3:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 4:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 5:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 6:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 7:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
int i;
|
|
vec3_t corners[2];
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
if (plane->normal[i] < 0)
|
|
{
|
|
corners[0][i] = emins[i];
|
|
corners[1][i] = emaxs[i];
|
|
}
|
|
else
|
|
{
|
|
corners[1][i] = emins[i];
|
|
corners[0][i] = emaxs[i];
|
|
}
|
|
}
|
|
dist = DotProduct (plane->normal, corners[0]) - plane->dist;
|
|
dist2 = DotProduct (plane->normal, corners[1]) - plane->dist;
|
|
sides = 0;
|
|
if (dist1 >= 0)
|
|
sides = 1;
|
|
if (dist2 < 0)
|
|
sides |= 2;
|
|
|
|
#endif
|
|
|
|
sides = 0;
|
|
if (dist1 >= p->dist)
|
|
sides = 1;
|
|
if (dist2 < p->dist)
|
|
sides |= 2;
|
|
|
|
#ifdef PARANOID
|
|
if (sides == 0)
|
|
Sys_Error ("BoxOnPlaneSide: sides==0");
|
|
#endif
|
|
|
|
return sides;
|
|
}
|
|
|
|
|
|
|
|
|
|
static void VVPerpendicularVector(vec3_t dst, const vec3_t src)
|
|
{
|
|
if (!src[0] && !src[1])
|
|
{
|
|
if (src[2])
|
|
dst[1] = -1;
|
|
else
|
|
dst[1] = 0;
|
|
dst[0] = dst[2] = 0;
|
|
}
|
|
else
|
|
{
|
|
dst[0] = src[1];
|
|
dst[1] = -src[0];
|
|
dst[2] = 0;
|
|
VectorNormalize(dst);
|
|
}
|
|
}
|
|
void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
VVPerpendicularVector(right, forward);
|
|
CrossProduct(right, forward, up);
|
|
}
|
|
|
|
void QDECL VectorAngles(const float *forward, const float *up, float *result, qboolean meshpitch) //up may be NULL
|
|
{
|
|
float yaw, pitch, roll;
|
|
|
|
if (forward[1] == 0 && forward[0] == 0)
|
|
{
|
|
if (forward[2] > 0)
|
|
{
|
|
pitch = -M_PI * 0.5;
|
|
yaw = up ? atan2(-up[1], -up[0]) : 0;
|
|
}
|
|
else
|
|
{
|
|
pitch = M_PI * 0.5;
|
|
yaw = up ? atan2(up[1], up[0]) : 0;
|
|
}
|
|
roll = 0;
|
|
}
|
|
else
|
|
{
|
|
yaw = atan2(forward[1], forward[0]);
|
|
pitch = -atan2(forward[2], sqrt (forward[0]*forward[0] + forward[1]*forward[1]));
|
|
|
|
if (up)
|
|
{
|
|
vec_t cp = cos(pitch), sp = sin(pitch);
|
|
vec_t cy = cos(yaw), sy = sin(yaw);
|
|
vec3_t tleft, tup;
|
|
tleft[0] = -sy;
|
|
tleft[1] = cy;
|
|
tleft[2] = 0;
|
|
tup[0] = sp*cy;
|
|
tup[1] = sp*sy;
|
|
tup[2] = cp;
|
|
roll = -atan2(DotProduct(up, tleft), DotProduct(up, tup));
|
|
}
|
|
else
|
|
roll = 0;
|
|
}
|
|
|
|
pitch *= 180 / M_PI;
|
|
yaw *= 180 / M_PI;
|
|
roll *= 180 / M_PI;
|
|
if (meshpitch)
|
|
{
|
|
pitch *= r_meshpitch.value;
|
|
roll *= r_meshroll.value;
|
|
}
|
|
if (pitch < 0)
|
|
pitch += 360;
|
|
if (yaw < 0)
|
|
yaw += 360;
|
|
if (roll < 0)
|
|
roll += 360;
|
|
|
|
result[0] = pitch;
|
|
result[1] = yaw;
|
|
result[2] = roll;
|
|
}
|
|
|
|
void QDECL AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
|
|
if (forward)
|
|
{
|
|
forward[0] = cp*cy;
|
|
forward[1] = cp*sy;
|
|
forward[2] = -sp;
|
|
}
|
|
if (right)
|
|
{
|
|
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
|
|
right[1] = (-1*sr*sp*sy+-1*cr*cy);
|
|
right[2] = -1*sr*cp;
|
|
}
|
|
if (up)
|
|
{
|
|
up[0] = (cr*sp*cy+-sr*-sy);
|
|
up[1] = (cr*sp*sy+-sr*cy);
|
|
up[2] = cr*cp;
|
|
}
|
|
}
|
|
void AngleVectorsMesh (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
vec3_t ang;
|
|
ang[0] = angles[0] * r_meshpitch.value;
|
|
ang[1] = angles[1];
|
|
ang[2] = angles[2] * r_meshroll.value;
|
|
AngleVectors (ang, forward, right, up);
|
|
}
|
|
|
|
int VectorCompare (const vec3_t v1, const vec3_t v2)
|
|
{
|
|
int i;
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
if (v1[i] != v2[i])
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
int Vector4Compare (const vec4_t v1, const vec4_t v2)
|
|
{
|
|
int i;
|
|
|
|
for (i=0 ; i<4 ; i++)
|
|
if (v1[i] != v2[i])
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
/*
|
|
void _VectorMA (const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc)
|
|
{
|
|
vecc[0] = veca[0] + scale*vecb[0];
|
|
vecc[1] = veca[1] + scale*vecb[1];
|
|
vecc[2] = veca[2] + scale*vecb[2];
|
|
}
|
|
|
|
|
|
vec_t _DotProduct (vec3_t v1, vec3_t v2)
|
|
{
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out)
|
|
{
|
|
out[0] = veca[0]-vecb[0];
|
|
out[1] = veca[1]-vecb[1];
|
|
out[2] = veca[2]-vecb[2];
|
|
}
|
|
|
|
void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out)
|
|
{
|
|
out[0] = veca[0]+vecb[0];
|
|
out[1] = veca[1]+vecb[1];
|
|
out[2] = veca[2]+vecb[2];
|
|
}
|
|
|
|
void _VectorCopy (vec3_t in, vec3_t out)
|
|
{
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
*/
|
|
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross)
|
|
{
|
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
|
|
vec_t Length(const vec3_t v)
|
|
{
|
|
int i;
|
|
float length;
|
|
|
|
length = 0;
|
|
for (i=0 ; i< 3 ; i++)
|
|
length += v[i]*v[i];
|
|
length = sqrt (length); // FIXME
|
|
|
|
return length;
|
|
}
|
|
|
|
float Q_rsqrt(float number)
|
|
{
|
|
int i;
|
|
float x2, y;
|
|
const float threehalfs = 1.5F;
|
|
|
|
x2 = number * 0.5F;
|
|
y = number;
|
|
i = * (int *) &y; // evil floating point bit level hacking
|
|
i = 0x5f3759df - (i >> 1); // what the fuck?
|
|
y = * (float *) &i;
|
|
y = y * (threehalfs - (x2 * y * y)); // 1st iteration
|
|
// y = y * (threehalfs - (x2 * y * y)); // 2nd iteration, this can be removed
|
|
|
|
return y;
|
|
}
|
|
|
|
float QDECL VectorNormalize (vec3_t v)
|
|
{
|
|
float length;
|
|
float ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrt (length); // FIXME
|
|
|
|
if (length)
|
|
{
|
|
ilength = 1.0/length;
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
void VectorNormalizeFast(vec3_t v)
|
|
{
|
|
float ilength;
|
|
|
|
ilength = Q_rsqrt(DotProduct(v, v));
|
|
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
void VectorInverse (vec3_t v)
|
|
{
|
|
v[0] = -v[0];
|
|
v[1] = -v[1];
|
|
v[2] = -v[2];
|
|
}
|
|
|
|
|
|
int Q_log2(int val)
|
|
{
|
|
int answer=0;
|
|
while ((val>>=1) != 0)
|
|
answer++;
|
|
return answer;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_ConcatRotations
|
|
================
|
|
*/
|
|
void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_ConcatTransforms
|
|
================
|
|
*/
|
|
void QDECL R_ConcatTransforms (const float in1[3][4], const float in2[3][4], float out[3][4])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] +
|
|
in1[0][2] * in2[2][3] + in1[0][3];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] +
|
|
in1[1][2] * in2[2][3] + in1[1][3];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] +
|
|
in1[2][2] * in2[2][3] + in1[2][3];
|
|
}
|
|
|
|
//R_ConcatTransforms where there's no offset values, and a transposed axis
|
|
void R_ConcatTransformsAxis (const float in1[3][3], const float in2[3][4], float out[3][4])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[1][0] * in2[1][0] +
|
|
in1[2][0] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[1][0] * in2[1][1] +
|
|
in1[2][0] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[2][0] * in2[2][2];
|
|
out[0][3] = in1[0][0] * in2[0][3] + in1[1][1] * in2[1][3] +
|
|
in1[2][0] * in2[2][3];
|
|
out[1][0] = in1[0][1] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[2][1] * in2[2][0];
|
|
out[1][1] = in1[0][1] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[2][1] * in2[2][1];
|
|
out[1][2] = in1[0][1] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[2][1] * in2[2][2];
|
|
out[1][3] = in1[0][1] * in2[0][3] + in1[1][1] * in2[1][3] +
|
|
in1[2][1] * in2[2][3];
|
|
out[2][0] = in1[0][2] * in2[0][0] + in1[1][2] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[0][2] * in2[0][1] + in1[1][2] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[0][2] * in2[0][2] + in1[1][2] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
out[2][3] = in1[0][2] * in2[0][3] + in1[1][2] * in2[1][3] +
|
|
in1[2][2] * in2[2][3];
|
|
}
|
|
|
|
//R_ConcatTransforms where we don't care about the resulting offsets.
|
|
void R_ConcatRotationsPad (float in1[3][4], float in2[3][4], float out[3][4])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
void Matrix3x4_Multiply(const float *a, const float *b, float *out)
|
|
{
|
|
out[0] = a[0] * b[0] + a[4] * b[1] + a[8] * b[2];
|
|
out[1] = a[1] * b[0] + a[5] * b[1] + a[9] * b[2];
|
|
out[2] = a[2] * b[0] + a[6] * b[1] + a[10] * b[2];
|
|
out[3] = a[3] * b[0] + a[7] * b[1] + a[11] * b[2] + b[3];
|
|
|
|
out[4] = a[0] * b[4] + a[4] * b[5] + a[8] * b[6];
|
|
out[5] = a[1] * b[4] + a[5] * b[5] + a[9] * b[6];
|
|
out[6] = a[2] * b[4] + a[6] * b[5] + a[10] * b[6];
|
|
out[7] = a[3] * b[4] + a[7] * b[5] + a[11] * b[6] + b[7];
|
|
|
|
out[8] = a[0] * b[8] + a[4] * b[9] + a[8] * b[10];
|
|
out[9] = a[1] * b[8] + a[5] * b[9] + a[9] * b[10];
|
|
out[10] = a[2] * b[8] + a[6] * b[9] + a[10] * b[10];
|
|
out[11] = a[3] * b[8] + a[7] * b[9] + a[11] * b[10] + b[11];
|
|
}
|
|
|
|
/*
|
|
===================
|
|
FloorDivMod
|
|
|
|
Returns mathematically correct (floor-based) quotient and remainder for
|
|
numer and denom, both of which should contain no fractional part. The
|
|
quotient must fit in 32 bits.
|
|
====================
|
|
*/
|
|
|
|
void FloorDivMod (double numer, double denom, int *quotient,
|
|
int *rem)
|
|
{
|
|
int q, r;
|
|
double x;
|
|
|
|
#ifdef PARANOID
|
|
if (denom <= 0.0)
|
|
Sys_Error ("FloorDivMod: bad denominator %f\n", denom);
|
|
|
|
// if ((floor(numer) != numer) || (floor(denom) != denom))
|
|
// Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n",
|
|
// numer, denom);
|
|
#endif
|
|
|
|
if (numer >= 0.0)
|
|
{
|
|
|
|
x = floor(numer / denom);
|
|
q = (int)x;
|
|
r = (int)floor(numer - (x * denom));
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// perform operations with positive values, and fix mod to make floor-based
|
|
//
|
|
x = floor(-numer / denom);
|
|
q = -(int)x;
|
|
r = (int)floor(-numer - (x * denom));
|
|
if (r != 0)
|
|
{
|
|
q--;
|
|
r = (int)denom - r;
|
|
}
|
|
}
|
|
|
|
*quotient = q;
|
|
*rem = r;
|
|
}
|
|
|
|
|
|
/*
|
|
===================
|
|
GreatestCommonDivisor
|
|
====================
|
|
*/
|
|
int GreatestCommonDivisor (int i1, int i2)
|
|
{
|
|
if (i1 > i2)
|
|
{
|
|
if (i2 == 0)
|
|
return (i1);
|
|
return GreatestCommonDivisor (i2, i1 % i2);
|
|
}
|
|
else
|
|
{
|
|
if (i1 == 0)
|
|
return (i2);
|
|
return GreatestCommonDivisor (i1, i2 % i1);
|
|
}
|
|
}
|
|
|
|
|
|
// TODO: move to nonintel.c
|
|
|
|
/*
|
|
===================
|
|
Invert24To16
|
|
|
|
Inverts an 8.24 value to a 16.16 value
|
|
====================
|
|
*/
|
|
|
|
fixed16_t Invert24To16(fixed16_t val)
|
|
{
|
|
if (val < 256)
|
|
return (0xFFFFFFFF);
|
|
|
|
return (fixed16_t)
|
|
(((double)0x10000 * (double)0x1000000 / (double)val) + 0.5);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void VectorTransform (const vec3_t in1, const matrix3x4 in2, vec3_t out)
|
|
{
|
|
out[0] = DotProduct(in1, in2[0]) + in2[0][3];
|
|
out[1] = DotProduct(in1, in2[1]) + in2[1][3];
|
|
out[2] = DotProduct(in1, in2[2]) + in2[2][3];
|
|
}
|
|
|
|
void Bones_To_PosQuat4(int numbones, const float *matrix, short *result)
|
|
{ //I ripped this function out of DP. tweaked slightly.
|
|
//http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
|
|
float origininvscale = 64;
|
|
float origin[3];
|
|
float quat[4];
|
|
float quatscale;
|
|
while (numbones --> 0)
|
|
{
|
|
float trace = matrix[0*4+0] + matrix[1*4+1] + matrix[2*4+2];
|
|
origin[0] = matrix[0*4+3];
|
|
origin[1] = matrix[1*4+3];
|
|
origin[2] = matrix[2*4+3];
|
|
if(trace > 0)
|
|
{
|
|
float r = sqrt(1.0f + trace), inv = 0.5f / r;
|
|
quat[0] = (matrix[2*4+1] - matrix[1*4+2]) * inv;
|
|
quat[1] = (matrix[0*4+2] - matrix[2*4+0]) * inv;
|
|
quat[2] = (matrix[1*4+0] - matrix[0*4+1]) * inv;
|
|
quat[3] = 0.5f * r;
|
|
}
|
|
else if(matrix[0*4+0] > matrix[1*4+1] && matrix[0*4+0] > matrix[2*4+2])
|
|
{
|
|
float r = sqrt(1.0f + matrix[0*4+0] - matrix[1*4+1] - matrix[2*4+2]), inv = 0.5f / r;
|
|
quat[0] = 0.5f * r;
|
|
quat[1] = (matrix[1*4+0] + matrix[0*4+1]) * inv;
|
|
quat[2] = (matrix[0*4+2] + matrix[2*4+0]) * inv;
|
|
quat[3] = (matrix[2*4+1] - matrix[1*4+2]) * inv;
|
|
}
|
|
else if(matrix[1*4+1] > matrix[2*4+2])
|
|
{
|
|
float r = sqrt(1.0f + matrix[1*4+1] - matrix[0*4+0] - matrix[2*4+2]), inv = 0.5f / r;
|
|
quat[0] = (matrix[1*4+0] + matrix[0*4+1]) * inv;
|
|
quat[1] = 0.5f * r;
|
|
quat[2] = (matrix[2*4+1] + matrix[1*4+2]) * inv;
|
|
quat[3] = (matrix[0*4+2] - matrix[2*4+0]) * inv;
|
|
}
|
|
else
|
|
{
|
|
float r = sqrt(1.0f + matrix[2*4+2] - matrix[0*4+0] - matrix[1*4+1]), inv = 0.5f / r;
|
|
quat[0] = (matrix[0*4+2] + matrix[2*4+0]) * inv;
|
|
quat[1] = (matrix[2*4+1] + matrix[1*4+2]) * inv;
|
|
quat[2] = 0.5f * r;
|
|
quat[3] = (matrix[1*4+0] - matrix[0*4+1]) * inv;
|
|
}
|
|
// normalize quaternion so that it is unit length
|
|
quatscale = quat[0]*quat[0]+quat[1]*quat[1]+quat[2]*quat[2]+quat[3]*quat[3];
|
|
if (quatscale)
|
|
quatscale = (quat[3] >= 0 ? -32767.0f : 32767.0f) / sqrt(quatscale);
|
|
// use a negative scale on the quat because the above function produces a
|
|
// positive quat[3] and canonical quaternions have negative quat[3]
|
|
result[0] = origin[0] * origininvscale;
|
|
result[1] = origin[1] * origininvscale;
|
|
result[2] = origin[2] * origininvscale;
|
|
result[3] = quat[0] * quatscale;
|
|
result[4] = quat[1] * quatscale;
|
|
result[5] = quat[2] * quatscale;
|
|
result[6] = quat[3] * quatscale;
|
|
|
|
matrix += 12;
|
|
result += 7;
|
|
}
|
|
}
|
|
|
|
void QDECL GenMatrixPosQuat4Scale(const vec3_t pos, const vec4_t quat, const vec3_t scale, float result[12])
|
|
{
|
|
float xx, xy, xz, xw, yy, yz, yw, zz, zw;
|
|
float x2, y2, z2;
|
|
float s;
|
|
x2 = quat[0] + quat[0];
|
|
y2 = quat[1] + quat[1];
|
|
z2 = quat[2] + quat[2];
|
|
|
|
xx = quat[0] * x2; xy = quat[0] * y2; xz = quat[0] * z2;
|
|
yy = quat[1] * y2; yz = quat[1] * z2; zz = quat[2] * z2;
|
|
xw = quat[3] * x2; yw = quat[3] * y2; zw = quat[3] * z2;
|
|
|
|
s = scale[0];
|
|
result[0*4+0] = s*(1.0f - (yy + zz));
|
|
result[1*4+0] = s*(xy + zw);
|
|
result[2*4+0] = s*(xz - yw);
|
|
|
|
s = scale[1];
|
|
result[0*4+1] = s*(xy - zw);
|
|
result[1*4+1] = s*(1.0f - (xx + zz));
|
|
result[2*4+1] = s*(yz + xw);
|
|
|
|
s = scale[2];
|
|
result[0*4+2] = s*(xz + yw);
|
|
result[1*4+2] = s*(yz - xw);
|
|
result[2*4+2] = s*(1.0f - (xx + yy));
|
|
|
|
result[0*4+3] = pos[0];
|
|
result[1*4+3] = pos[1];
|
|
result[2*4+3] = pos[2];
|
|
}
|
|
#if 0//def HALFLIFEMODELS
|
|
|
|
static void AngleQuaternion( const vec3_t angles, vec4_t quaternion )
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
// FIXME: rescale the inputs to 1/2 angle
|
|
angle = angles[2] * 0.5;
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
angle = angles[1] * 0.5;
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
angle = angles[0] * 0.5;
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
|
|
quaternion[0] = sr*cp*cy-cr*sp*sy; // X
|
|
quaternion[1] = cr*sp*cy+sr*cp*sy; // Y
|
|
quaternion[2] = cr*cp*sy-sr*sp*cy; // Z
|
|
quaternion[3] = cr*cp*cy+sr*sp*sy; // W
|
|
}
|
|
|
|
static void QuaternionMatrix( const vec4_t quaternion, float (*matrix)[4] )
|
|
{
|
|
|
|
matrix[0][0] = 1.0 - 2.0 * quaternion[1] * quaternion[1] - 2.0 * quaternion[2] * quaternion[2];
|
|
matrix[1][0] = 2.0 * quaternion[0] * quaternion[1] + 2.0 * quaternion[3] * quaternion[2];
|
|
matrix[2][0] = 2.0 * quaternion[0] * quaternion[2] - 2.0 * quaternion[3] * quaternion[1];
|
|
|
|
matrix[0][1] = 2.0 * quaternion[0] * quaternion[1] - 2.0 * quaternion[3] * quaternion[2];
|
|
matrix[1][1] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[2] * quaternion[2];
|
|
matrix[2][1] = 2.0 * quaternion[1] * quaternion[2] + 2.0 * quaternion[3] * quaternion[0];
|
|
|
|
matrix[0][2] = 2.0 * quaternion[0] * quaternion[2] + 2.0 * quaternion[3] * quaternion[1];
|
|
matrix[1][2] = 2.0 * quaternion[1] * quaternion[2] - 2.0 * quaternion[3] * quaternion[0];
|
|
matrix[2][2] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[1] * quaternion[1];
|
|
}
|
|
#endif
|
|
void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt )
|
|
{
|
|
int i;
|
|
float omega, cosom, sinom, sclp, sclq;
|
|
|
|
// decide if one of the quaternions is backwards
|
|
float a = 0;
|
|
float b = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
a += (p[i]-q[i])*(p[i]-q[i]);
|
|
b += (p[i]+q[i])*(p[i]+q[i]);
|
|
}
|
|
if (a > b) {
|
|
for (i = 0; i < 4; i++) {
|
|
q[i] = -q[i];
|
|
}
|
|
}
|
|
|
|
cosom = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3];
|
|
|
|
if ((1.0 + cosom) > 0.00000001) {
|
|
if ((1.0 - cosom) > 0.00000001) {
|
|
omega = acos( cosom );
|
|
sinom = sin( omega );
|
|
sclp = sin( (1.0 - t)*omega) / sinom;
|
|
sclq = sin( t*omega ) / sinom;
|
|
}
|
|
else {
|
|
sclp = 1.0 - t;
|
|
sclq = t;
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
qt[i] = sclp * p[i] + sclq * q[i];
|
|
}
|
|
}
|
|
else {
|
|
qt[0] = -p[1];
|
|
qt[1] = p[0];
|
|
qt[2] = -p[3];
|
|
qt[3] = p[2];
|
|
sclp = sin( (1.0 - t) * 0.5 * M_PI);
|
|
sclq = sin( t * 0.5 * M_PI);
|
|
for (i = 0; i < 4; i++) {
|
|
qt[i] = sclp * p[i] + sclq * qt[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
//This function is GL stylie (use as 2nd arg to ML_MultMatrix4).
|
|
float *Matrix4x4_CM_NewRotation(float a, float x, float y, float z)
|
|
{
|
|
static float ret[16];
|
|
float c = cos(a* M_PI / 180.0);
|
|
float s = sin(a* M_PI / 180.0);
|
|
|
|
ret[0] = x*x*(1-c)+c;
|
|
ret[4] = x*y*(1-c)-z*s;
|
|
ret[8] = x*z*(1-c)+y*s;
|
|
ret[12] = 0;
|
|
|
|
ret[1] = y*x*(1-c)+z*s;
|
|
ret[5] = y*y*(1-c)+c;
|
|
ret[9] = y*z*(1-c)-x*s;
|
|
ret[13] = 0;
|
|
|
|
ret[2] = x*z*(1-c)-y*s;
|
|
ret[6] = y*z*(1-c)+x*s;
|
|
ret[10] = z*z*(1-c)+c;
|
|
ret[14] = 0;
|
|
|
|
ret[3] = 0;
|
|
ret[7] = 0;
|
|
ret[11] = 0;
|
|
ret[15] = 1;
|
|
return ret;
|
|
}
|
|
|
|
//This function is GL stylie (use as 2nd arg to ML_MultMatrix4).
|
|
float *Matrix4x4_CM_NewTranslation(float x, float y, float z)
|
|
{
|
|
static float ret[16];
|
|
ret[0] = 1;
|
|
ret[4] = 0;
|
|
ret[8] = 0;
|
|
ret[12] = x;
|
|
|
|
ret[1] = 0;
|
|
ret[5] = 1;
|
|
ret[9] = 0;
|
|
ret[13] = y;
|
|
|
|
ret[2] = 0;
|
|
ret[6] = 0;
|
|
ret[10] = 1;
|
|
ret[14] = z;
|
|
|
|
ret[3] = 0;
|
|
ret[7] = 0;
|
|
ret[11] = 0;
|
|
ret[15] = 1;
|
|
return ret;
|
|
}
|
|
|
|
//be aware that this generates two sorts of matricies depending on order of a+b
|
|
void Matrix4_Multiply(const float *a, const float *b, float *out)
|
|
{
|
|
out[0] = a[0] * b[0] + a[4] * b[1] + a[8] * b[2] + a[12] * b[3];
|
|
out[1] = a[1] * b[0] + a[5] * b[1] + a[9] * b[2] + a[13] * b[3];
|
|
out[2] = a[2] * b[0] + a[6] * b[1] + a[10] * b[2] + a[14] * b[3];
|
|
out[3] = a[3] * b[0] + a[7] * b[1] + a[11] * b[2] + a[15] * b[3];
|
|
|
|
out[4] = a[0] * b[4] + a[4] * b[5] + a[8] * b[6] + a[12] * b[7];
|
|
out[5] = a[1] * b[4] + a[5] * b[5] + a[9] * b[6] + a[13] * b[7];
|
|
out[6] = a[2] * b[4] + a[6] * b[5] + a[10] * b[6] + a[14] * b[7];
|
|
out[7] = a[3] * b[4] + a[7] * b[5] + a[11] * b[6] + a[15] * b[7];
|
|
|
|
out[8] = a[0] * b[8] + a[4] * b[9] + a[8] * b[10] + a[12] * b[11];
|
|
out[9] = a[1] * b[8] + a[5] * b[9] + a[9] * b[10] + a[13] * b[11];
|
|
out[10] = a[2] * b[8] + a[6] * b[9] + a[10] * b[10] + a[14] * b[11];
|
|
out[11] = a[3] * b[8] + a[7] * b[9] + a[11] * b[10] + a[15] * b[11];
|
|
|
|
out[12] = a[0] * b[12] + a[4] * b[13] + a[8] * b[14] + a[12] * b[15];
|
|
out[13] = a[1] * b[12] + a[5] * b[13] + a[9] * b[14] + a[13] * b[15];
|
|
out[14] = a[2] * b[12] + a[6] * b[13] + a[10] * b[14] + a[14] * b[15];
|
|
out[15] = a[3] * b[12] + a[7] * b[13] + a[11] * b[14] + a[15] * b[15];
|
|
}
|
|
|
|
void Matrix3x4_RM_Transform3(const float *matrix, const float *vector, float *product)
|
|
{
|
|
product[0] = matrix[0]*vector[0] + matrix[1]*vector[1] + matrix[2]*vector[2] + matrix[3];
|
|
product[1] = matrix[4]*vector[0] + matrix[5]*vector[1] + matrix[6]*vector[2] + matrix[7];
|
|
product[2] = matrix[8]*vector[0] + matrix[9]*vector[1] + matrix[10]*vector[2] + matrix[11];
|
|
}
|
|
void Matrix3x4_RM_Transform3x3(const float *matrix, const float *vector, float *product)
|
|
{
|
|
product[0] = matrix[0]*vector[0] + matrix[1]*vector[1] + matrix[2]*vector[2];
|
|
product[1] = matrix[4]*vector[0] + matrix[5]*vector[1] + matrix[6]*vector[2];
|
|
product[2] = matrix[8]*vector[0] + matrix[9]*vector[1] + matrix[10]*vector[2];
|
|
}
|
|
|
|
//transform 4d vector by a 4d matrix.
|
|
void Matrix4x4_CM_Transform4(const float *matrix, const float *vector, float *product)
|
|
{
|
|
product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2] + matrix[12]*vector[3];
|
|
product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2] + matrix[13]*vector[3];
|
|
product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2] + matrix[14]*vector[3];
|
|
product[3] = matrix[3]*vector[0] + matrix[7]*vector[1] + matrix[11]*vector[2] + matrix[15]*vector[3];
|
|
}
|
|
|
|
//ignore the entire right+bottom row/column of the 4*4 matrix
|
|
void Matrix4x4_CM_Transform3x3(const float *matrix, const float *vector, float *product)
|
|
{
|
|
product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2];
|
|
product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2];
|
|
product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2];
|
|
}
|
|
|
|
//disregard the extra bit of the matrix
|
|
void Matrix4x4_CM_Transform3(const float *matrix, const float *vector, float *product)
|
|
{
|
|
product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2] + matrix[12];
|
|
product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2] + matrix[13];
|
|
product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2] + matrix[14];
|
|
}
|
|
void Matrix4x4_CM_Transform34(const float *matrix, const vec3_t vector, vec4_t product)
|
|
{
|
|
//transform as though vector[3] == 1
|
|
product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2] + matrix[12];
|
|
product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2] + matrix[13];
|
|
product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2] + matrix[14];
|
|
product[3] = matrix[3]*vector[0] + matrix[7]*vector[1] + matrix[11]*vector[2] + matrix[15];
|
|
}
|
|
|
|
void Matrix4x4_CM_ModelViewMatrix(float *modelview, const vec3_t viewangles, const vec3_t vieworg)
|
|
{
|
|
#if 1
|
|
float *out = modelview;
|
|
float cp = cos(-viewangles[0] * M_PI / 180.0);
|
|
float sp = sin(-viewangles[0] * M_PI / 180.0);
|
|
float cy = cos(-viewangles[1] * M_PI / 180.0);
|
|
float sy = sin(-viewangles[1] * M_PI / 180.0);
|
|
float cr = cos(-viewangles[2] * M_PI / 180.0);
|
|
float sr = sin(-viewangles[2] * M_PI / 180.0);
|
|
|
|
out[0] = -sr*sp*cy - cr*sy;
|
|
out[1] = -cr*sp*cy + sr*sy;
|
|
out[2] = -cp*cy;
|
|
out[3] = 0;
|
|
out[4] = sr*sp*sy - cr*cy;
|
|
out[5] = cr*sp*sy + sr*cy;
|
|
out[6] = cp*sy;
|
|
out[7] = 0;
|
|
out[8] = sr*cp;
|
|
out[9] = cr*cp;
|
|
out[10] = -sp;
|
|
out[11] = 0;
|
|
out[12] = - out[0]*vieworg[0] - out[4]*vieworg[1] - out[ 8]*vieworg[2];
|
|
out[13] = - out[1]*vieworg[0] - out[5]*vieworg[1] - out[ 9]*vieworg[2];
|
|
out[14] = - out[2]*vieworg[0] - out[6]*vieworg[1] - out[10]*vieworg[2];
|
|
out[15] = 1 - out[3]*vieworg[0] - out[7]*vieworg[1] - out[11]*vieworg[2];
|
|
#else
|
|
float tempmat[16];
|
|
//load identity.
|
|
memset(modelview, 0, sizeof(*modelview)*16);
|
|
#if FULLYGL
|
|
modelview[0] = 1;
|
|
modelview[5] = 1;
|
|
modelview[10] = 1;
|
|
modelview[15] = 1;
|
|
|
|
Matrix4_Multiply(modelview, Matrix4_CM_NewRotation(-90, 1, 0, 0), tempmat); // put Z going up
|
|
Matrix4_Multiply(tempmat, Matrix4_CM_NewRotation(90, 0, 0, 1), modelview); // put Z going up
|
|
#else
|
|
//use this lame wierd and crazy identity matrix..
|
|
modelview[2] = -1;
|
|
modelview[4] = -1;
|
|
modelview[9] = 1;
|
|
modelview[15] = 1;
|
|
#endif
|
|
//figure out the current modelview matrix
|
|
|
|
//I would if some of these, but then I'd still need a couple of copys
|
|
Matrix4_Multiply(modelview, Matrix4x4_CM_NewRotation(-viewangles[2], 1, 0, 0), tempmat);
|
|
Matrix4_Multiply(tempmat, Matrix4x4_CM_NewRotation(-viewangles[0], 0, 1, 0), modelview);
|
|
Matrix4_Multiply(modelview, Matrix4x4_CM_NewRotation(-viewangles[1], 0, 0, 1), tempmat);
|
|
|
|
Matrix4_Multiply(tempmat, Matrix4x4_CM_NewTranslation(-vieworg[0], -vieworg[1], -vieworg[2]), modelview); // put Z going up
|
|
#endif
|
|
}
|
|
|
|
void Matrix4x4_CM_CreateTranslate (float *out, float x, float y, float z)
|
|
{
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
|
|
out[4] = 0;
|
|
out[5] = 1;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
|
|
out[8] = 0;
|
|
out[9] = 0;
|
|
out[10] = 1;
|
|
out[11] = 0;
|
|
|
|
out[12] = x;
|
|
out[13] = y;
|
|
out[14] = z;
|
|
out[15] = 1;
|
|
}
|
|
|
|
void Matrix4x4_RM_CreateTranslate (float *out, float x, float y, float z)
|
|
{
|
|
out[0] = 1;
|
|
out[4] = 0;
|
|
out[8] = 0;
|
|
out[12] = 0;
|
|
|
|
out[1] = 0;
|
|
out[5] = 1;
|
|
out[9] = 0;
|
|
out[13] = 0;
|
|
|
|
out[2] = 0;
|
|
out[6] = 0;
|
|
out[10] = 1;
|
|
out[14] = 0;
|
|
|
|
out[3] = x;
|
|
out[7] = y;
|
|
out[11] = z;
|
|
out[15] = 1;
|
|
}
|
|
|
|
void Matrix4x4_CM_LightMatrixFromAxis(float *modelview, const vec3_t px, const vec3_t py, const vec3_t pz, const vec3_t org)
|
|
{
|
|
modelview[ 0] = px[0];
|
|
modelview[ 1] = py[0];
|
|
modelview[ 2] = pz[0];
|
|
modelview[ 3] = 0;
|
|
modelview[ 4] = px[1];
|
|
modelview[ 5] = py[1];
|
|
modelview[ 6] = pz[1];
|
|
modelview[ 7] = 0;
|
|
modelview[ 8] = px[2];
|
|
modelview[ 9] = py[2];
|
|
modelview[10] = pz[2];
|
|
modelview[11] = 0;
|
|
modelview[12] = -(px[0]*org[0] + px[1]*org[1] + px[2]*org[2]);
|
|
modelview[13] = -(py[0]*org[0] + py[1]*org[1] + py[2]*org[2]);
|
|
modelview[14] = -(pz[0]*org[0] + pz[1]*org[1] + pz[2]*org[2]);
|
|
modelview[15] = 1;
|
|
}
|
|
|
|
void Matrix4x4_CM_ModelViewMatrixFromAxis(float *modelview, const vec3_t pn, const vec3_t right, const vec3_t up, const vec3_t vieworg)
|
|
{
|
|
float tempmat[16];
|
|
|
|
tempmat[ 0] = right[0];
|
|
tempmat[ 1] = up[0];
|
|
tempmat[ 2] = -pn[0];
|
|
tempmat[ 3] = 0;
|
|
tempmat[ 4] = right[1];
|
|
tempmat[ 5] = up[1];
|
|
tempmat[ 6] = -pn[1];
|
|
tempmat[ 7] = 0;
|
|
tempmat[ 8] = right[2];
|
|
tempmat[ 9] = up[2];
|
|
tempmat[10] = -pn[2];
|
|
tempmat[11] = 0;
|
|
tempmat[12] = 0;
|
|
tempmat[13] = 0;
|
|
tempmat[14] = 0;
|
|
tempmat[15] = 1;
|
|
|
|
Matrix4_Multiply(tempmat, Matrix4x4_CM_NewTranslation(-vieworg[0], -vieworg[1], -vieworg[2]), modelview); // put Z going up
|
|
}
|
|
|
|
|
|
void Matrix3x4_RM_FromAngles(const vec3_t angles, const vec3_t origin, float *out)
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
|
|
out[0] = cp*cy;
|
|
out[1] = (sr*sp*cy+cr*-sy);
|
|
out[2] = (cr*sp*cy+-sr*-sy);
|
|
out[3] = origin[0];
|
|
|
|
out[4] = cp*sy;
|
|
out[5] = (sr*sp*sy+cr*cy);
|
|
out[6] = (cr*sp*sy+-sr*cy);
|
|
out[7] = origin[1];
|
|
|
|
out[8] = -sp;
|
|
out[9] = sr*cp;
|
|
out[10] = cr*cp;
|
|
out[11] = origin[2];
|
|
}
|
|
void Matrix3x4_RM_ToVectors(const float *in, float vx[3], float vy[3], float vz[3], float t[3])
|
|
{
|
|
vx[0] = in[0];
|
|
vx[1] = in[4];
|
|
vx[2] = in[8];
|
|
|
|
vy[0] = in[1];
|
|
vy[1] = in[5];
|
|
vy[2] = in[9];
|
|
|
|
vz[0] = in[2];
|
|
vz[1] = in[6];
|
|
vz[2] = in[10];
|
|
|
|
t [0] = in[3];
|
|
t [1] = in[7];
|
|
t [2] = in[11];
|
|
}
|
|
|
|
void Matrix4x4_RM_FromVectors(float *out, const float vx[3], const float vy[3], const float vz[3], const float t[3])
|
|
{
|
|
out[0] = vx[0];
|
|
out[1] = vy[0];
|
|
out[2] = vz[0];
|
|
out[3] = t[0];
|
|
out[4] = vx[1];
|
|
out[5] = vy[1];
|
|
out[6] = vz[1];
|
|
out[7] = t[1];
|
|
out[8] = vx[2];
|
|
out[9] = vy[2];
|
|
out[10] = vz[2];
|
|
out[11] = t[2];
|
|
out[12] = 0.0f;
|
|
out[13] = 0.0f;
|
|
out[14] = 0.0f;
|
|
out[15] = 1.0f;
|
|
}
|
|
|
|
void Matrix3x4_RM_FromVectors(float *out, const float vx[3], const float vy[3], const float vz[3], const float t[3])
|
|
{
|
|
out[0] = vx[0];
|
|
out[1] = vy[0];
|
|
out[2] = vz[0];
|
|
out[3] = t[0];
|
|
out[4] = vx[1];
|
|
out[5] = vy[1];
|
|
out[6] = vz[1];
|
|
out[7] = t[1];
|
|
out[8] = vx[2];
|
|
out[9] = vy[2];
|
|
out[10] = vz[2];
|
|
out[11] = t[2];
|
|
}
|
|
|
|
void Matrix4x4_CM_ModelMatrixFromAxis(float *modelview, const vec3_t pn, const vec3_t right, const vec3_t up, const vec3_t vieworg)
|
|
{
|
|
float tempmat[16];
|
|
|
|
tempmat[ 0] = pn[0];
|
|
tempmat[ 1] = pn[1];
|
|
tempmat[ 2] = pn[2];
|
|
tempmat[ 3] = 0;
|
|
tempmat[ 4] = right[0];
|
|
tempmat[ 5] = right[1];
|
|
tempmat[ 6] = right[2];
|
|
tempmat[ 7] = 0;
|
|
tempmat[ 8] = up[0];
|
|
tempmat[ 9] = up[1];
|
|
tempmat[10] = up[2];
|
|
tempmat[11] = 0;
|
|
tempmat[12] = 0;
|
|
tempmat[13] = 0;
|
|
tempmat[14] = 0;
|
|
tempmat[15] = 1;
|
|
|
|
Matrix4_Multiply(Matrix4x4_CM_NewTranslation(vieworg[0], vieworg[1], vieworg[2]), tempmat, modelview); // put Z going up
|
|
}
|
|
|
|
void Matrix4x4_CM_ModelMatrix(float *modelview, vec_t x, vec_t y, vec_t z, vec_t pitch, vec_t yaw, vec_t roll, vec_t scale)
|
|
{
|
|
float tempmat[16];
|
|
//load identity.
|
|
memset(modelview, 0, sizeof(*modelview)*16);
|
|
#if FULLYGL
|
|
modelview[0] = 1;
|
|
modelview[5] = 1;
|
|
modelview[10] = 1;
|
|
modelview[15] = 1;
|
|
|
|
Matrix4_Multiply(modelview, Matrix4x4_CM_NewRotation(-90, 1, 0, 0), tempmat); // put Z going up
|
|
Matrix4_Multiply(tempmat, Matrix4x4_CM_NewRotation(90, 0, 0, 1), modelview); // put Z going up
|
|
#else
|
|
//use this lame wierd and crazy identity matrix..
|
|
modelview[2] = -1;
|
|
modelview[4] = -1;
|
|
modelview[9] = 1;
|
|
modelview[15] = 1;
|
|
#endif
|
|
//figure out the current modelview matrix
|
|
|
|
//I would if some of these, but then I'd still need a couple of copys
|
|
Matrix4_Multiply(modelview, Matrix4x4_CM_NewRotation(-roll, 1, 0, 0), tempmat);
|
|
Matrix4_Multiply(tempmat, Matrix4x4_CM_NewRotation(-pitch, 0, 1, 0), modelview);
|
|
Matrix4_Multiply(modelview, Matrix4x4_CM_NewRotation(-yaw, 0, 0, 1), tempmat);
|
|
|
|
Matrix4_Multiply(tempmat, Matrix4x4_CM_NewTranslation(x, y, z), modelview);
|
|
}
|
|
|
|
void Matrix4x4_Identity(float *outm)
|
|
{
|
|
outm[ 0] = 1;
|
|
outm[ 1] = 0;
|
|
outm[ 2] = 0;
|
|
outm[ 3] = 0;
|
|
outm[ 4] = 0;
|
|
outm[ 5] = 1;
|
|
outm[ 6] = 0;
|
|
outm[ 7] = 0;
|
|
outm[ 8] = 0;
|
|
outm[ 9] = 0;
|
|
outm[10] = 1;
|
|
outm[11] = 0;
|
|
outm[12] = 0;
|
|
outm[13] = 0;
|
|
outm[14] = 0;
|
|
outm[15] = 1;
|
|
}
|
|
|
|
void Matrix4x4_CM_Projection_Offset(float *proj, float fovl, float fovr, float fovd, float fovu, float neard, float fard, qboolean d3d)
|
|
{
|
|
double xmin, xmax, ymin, ymax;
|
|
double dn = (d3d?0:-1), df = 1; //d3d outputs near as 0, opengl has near as -1. that's the only difference.
|
|
|
|
float fovy = fovu-fovd;
|
|
float fovx = fovr-fovl;
|
|
|
|
//proj
|
|
ymax = neard * tan( fovy * M_PI / 360.0 );
|
|
ymin = -ymax;
|
|
|
|
if (fovx == fovy)
|
|
{
|
|
xmax = ymax;
|
|
xmin = ymin;
|
|
}
|
|
else
|
|
{
|
|
xmax = neard * tan( fovx * M_PI / 360.0 );
|
|
xmin = -xmax;
|
|
}
|
|
|
|
proj[0] = (2*neard) / (xmax - xmin);
|
|
proj[4] = 0;
|
|
proj[8] = (xmax + xmin) / (xmax - xmin);
|
|
proj[12] = 0;
|
|
|
|
proj[1] = 0;
|
|
proj[5] = (2*neard) / (ymax - ymin);
|
|
proj[9] = (ymax + ymin) / (ymax - ymin);
|
|
proj[13] = 0;
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = (fard*df-neard*dn)/(neard-fard);
|
|
proj[14] = ((df-dn)*fard*neard)/(neard-fard);
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = -1;
|
|
proj[15] = 0;
|
|
}
|
|
|
|
void Matrix4x4_CM_Projection_Far(float *proj, float fovx, float fovy, float neard, float fard, qboolean d3d)
|
|
{
|
|
double xmin, xmax, ymin, ymax;
|
|
double dn = (d3d?0:-1), df = 1;
|
|
|
|
//proj
|
|
ymax = neard * tan( fovy * M_PI / 360.0 );
|
|
ymin = -ymax;
|
|
|
|
if (fovx == fovy)
|
|
{
|
|
xmax = ymax;
|
|
xmin = ymin;
|
|
}
|
|
else
|
|
{
|
|
xmax = neard * tan( fovx * M_PI / 360.0 );
|
|
xmin = -xmax;
|
|
}
|
|
|
|
proj[0] = (2*neard) / (xmax - xmin);
|
|
proj[4] = 0;
|
|
proj[8] = (xmax + xmin) / (xmax - xmin);
|
|
proj[12] = 0;
|
|
|
|
proj[1] = 0;
|
|
proj[5] = (2*neard) / (ymax - ymin);
|
|
proj[9] = (ymax + ymin) / (ymax - ymin);
|
|
proj[13] = 0;
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = (fard*df-neard*dn)/(neard-fard);
|
|
proj[14] = ((df-dn)*fard*neard)/(neard-fard);
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = -1;
|
|
proj[15] = 0;
|
|
}
|
|
|
|
void Matrix4x4_CM_Projection_Inf(float *proj, float fovx, float fovy, float neard, qboolean d3d)
|
|
{
|
|
//FIXME: glDepthRange(1,0) for reverse-z (with cull flipped). combine with arb_clip_control for 0-1. this should give much better depth precision with floating point depth buffers.
|
|
float xmin, xmax, ymin, ymax;
|
|
double dn = (d3d?0:-1), df = 1;
|
|
|
|
//proj
|
|
ymax = neard * tan( fovy * M_PI / 360.0 );
|
|
ymin = -ymax;
|
|
|
|
if (fovx == fovy)
|
|
{
|
|
xmax = ymax;
|
|
xmin = ymin;
|
|
}
|
|
else
|
|
{
|
|
xmax = neard * tan( fovx * M_PI / 360.0 );
|
|
xmin = -xmax;
|
|
}
|
|
|
|
proj[0] = (2*neard) / (xmax - xmin);
|
|
proj[4] = 0;
|
|
proj[8] = (xmax + xmin) / (xmax - xmin);
|
|
proj[12] = 0;
|
|
|
|
proj[1] = 0;
|
|
proj[5] = (2*neard) / (ymax - ymin);
|
|
proj[9] = (ymax + ymin) / (ymax - ymin);
|
|
proj[13] = 0;
|
|
|
|
#if 1
|
|
{
|
|
const double epsilon = 1.0/(1<<22);
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = epsilon-1;
|
|
proj[14] = (epsilon-(df-dn))*neard;
|
|
}
|
|
#elif 1
|
|
{ //mathematical target
|
|
const float fard = (1<<22);
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = (fard*df-neard*dn)/(neard-fard);
|
|
proj[14] = ((df-dn)*fard*neard)/(neard-fard);
|
|
}
|
|
#else
|
|
//old logic
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = -1 * ((float)(1<<21)/(1<<22));
|
|
proj[14] = -2*neard;
|
|
#endif
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = -1;
|
|
proj[15] = 0;
|
|
}
|
|
void Matrix4x4_CM_Projection2(float *proj, float fovx, float fovy, float neard)
|
|
{
|
|
float xmin, xmax, ymin, ymax;
|
|
float nudge = 1;
|
|
|
|
//proj
|
|
ymax = neard * tan( fovy * M_PI / 360.0 );
|
|
ymin = -ymax;
|
|
|
|
xmax = neard * tan( fovx * M_PI / 360.0 );
|
|
xmin = -xmax;
|
|
|
|
proj[0] = (2*neard) / (xmax - xmin);
|
|
proj[4] = 0;
|
|
proj[8] = (xmax + xmin) / (xmax - xmin);
|
|
proj[12] = 0;
|
|
|
|
proj[1] = 0;
|
|
proj[5] = (2*neard) / (ymax - ymin);
|
|
proj[9] = (ymax + ymin) / (ymax - ymin);
|
|
proj[13] = 0;
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = -1 * nudge;
|
|
proj[14] = -2*neard * nudge;
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = -1;
|
|
proj[15] = 0;
|
|
}
|
|
|
|
void Matrix4x4_CM_Orthographic(float *proj, float xmin, float xmax, float ymin, float ymax,
|
|
float znear, float zfar)
|
|
{
|
|
proj[0] = 2/(xmax-xmin);
|
|
proj[4] = 0;
|
|
proj[8] = 0;
|
|
proj[12] = -(xmax+xmin)/(xmax-xmin);
|
|
|
|
proj[1] = 0;
|
|
proj[5] = 2/(ymax-ymin);
|
|
proj[9] = 0;
|
|
proj[13] = -(ymax+ymin)/(ymax-ymin);
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = -2/(zfar-znear);
|
|
proj[14] = -(zfar+znear)/(zfar-znear);
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = 0;
|
|
proj[15] = 1;
|
|
}
|
|
void Matrix4x4_CM_OrthographicD3D(float *proj, float xmin, float xmax, float ymax, float ymin,
|
|
float znear, float zfar)
|
|
{
|
|
proj[0] = 2/(xmax-xmin);
|
|
proj[4] = 0;
|
|
proj[8] = 0;
|
|
proj[12] = (xmax+xmin)/(xmin-xmax);
|
|
|
|
proj[1] = 0;
|
|
proj[5] = 2/(ymax-ymin);
|
|
proj[9] = 0;
|
|
proj[13] = (ymax+ymin)/(ymin-ymax);
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = 1/(znear-zfar);
|
|
proj[14] = znear/(znear-zfar);
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = 0;
|
|
proj[15] = 1;
|
|
}
|
|
/*
|
|
* Compute inverse of 4x4 transformation matrix.
|
|
* Code contributed by Jacques Leroy jle@star.be
|
|
* Return true for success, false for failure (singular matrix)
|
|
* This came to FTE via mesa's GLU.
|
|
*/
|
|
qboolean Matrix4_Invert(const float *m, float *out)
|
|
{
|
|
/* NB. OpenGL Matrices are COLUMN major. */
|
|
#define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; }
|
|
#define MAT(m,r,c) (m)[(c)*4+(r)]
|
|
|
|
float wtmp[4][8];
|
|
float m0, m1, m2, m3, s;
|
|
float *r0, *r1, *r2, *r3;
|
|
|
|
r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
|
|
|
|
r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1),
|
|
r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3),
|
|
r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
|
|
r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1),
|
|
r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3),
|
|
r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
|
|
r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1),
|
|
r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3),
|
|
r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
|
|
r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1),
|
|
r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3),
|
|
r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
|
|
|
|
/* choose pivot - or die */
|
|
if (fabs(r3[0]) > fabs(r2[0]))
|
|
SWAP_ROWS(r3, r2);
|
|
if (fabs(r2[0]) > fabs(r1[0]))
|
|
SWAP_ROWS(r2, r1);
|
|
if (fabs(r1[0]) > fabs(r0[0]))
|
|
SWAP_ROWS(r1, r0);
|
|
if (0.0 == r0[0])
|
|
return false;
|
|
|
|
/* eliminate first variable */
|
|
m1 = r1[0] / r0[0];
|
|
m2 = r2[0] / r0[0];
|
|
m3 = r3[0] / r0[0];
|
|
s = r0[1];
|
|
r1[1] -= m1 * s;
|
|
r2[1] -= m2 * s;
|
|
r3[1] -= m3 * s;
|
|
s = r0[2];
|
|
r1[2] -= m1 * s;
|
|
r2[2] -= m2 * s;
|
|
r3[2] -= m3 * s;
|
|
s = r0[3];
|
|
r1[3] -= m1 * s;
|
|
r2[3] -= m2 * s;
|
|
r3[3] -= m3 * s;
|
|
s = r0[4];
|
|
if (s != 0.0) {
|
|
r1[4] -= m1 * s;
|
|
r2[4] -= m2 * s;
|
|
r3[4] -= m3 * s;
|
|
}
|
|
s = r0[5];
|
|
if (s != 0.0) {
|
|
r1[5] -= m1 * s;
|
|
r2[5] -= m2 * s;
|
|
r3[5] -= m3 * s;
|
|
}
|
|
s = r0[6];
|
|
if (s != 0.0) {
|
|
r1[6] -= m1 * s;
|
|
r2[6] -= m2 * s;
|
|
r3[6] -= m3 * s;
|
|
}
|
|
s = r0[7];
|
|
if (s != 0.0) {
|
|
r1[7] -= m1 * s;
|
|
r2[7] -= m2 * s;
|
|
r3[7] -= m3 * s;
|
|
}
|
|
|
|
/* choose pivot - or die */
|
|
if (fabs(r3[1]) > fabs(r2[1]))
|
|
SWAP_ROWS(r3, r2);
|
|
if (fabs(r2[1]) > fabs(r1[1]))
|
|
SWAP_ROWS(r2, r1);
|
|
if (0.0 == r1[1])
|
|
return false;
|
|
|
|
/* eliminate second variable */
|
|
m2 = r2[1] / r1[1];
|
|
m3 = r3[1] / r1[1];
|
|
r2[2] -= m2 * r1[2];
|
|
r3[2] -= m3 * r1[2];
|
|
r2[3] -= m2 * r1[3];
|
|
r3[3] -= m3 * r1[3];
|
|
s = r1[4];
|
|
if (0.0 != s) {
|
|
r2[4] -= m2 * s;
|
|
r3[4] -= m3 * s;
|
|
}
|
|
s = r1[5];
|
|
if (0.0 != s) {
|
|
r2[5] -= m2 * s;
|
|
r3[5] -= m3 * s;
|
|
}
|
|
s = r1[6];
|
|
if (0.0 != s) {
|
|
r2[6] -= m2 * s;
|
|
r3[6] -= m3 * s;
|
|
}
|
|
s = r1[7];
|
|
if (0.0 != s) {
|
|
r2[7] -= m2 * s;
|
|
r3[7] -= m3 * s;
|
|
}
|
|
|
|
/* choose pivot - or die */
|
|
if (fabs(r3[2]) > fabs(r2[2]))
|
|
SWAP_ROWS(r3, r2);
|
|
if (0.0 == r2[2])
|
|
return false;
|
|
|
|
/* eliminate third variable */
|
|
m3 = r3[2] / r2[2];
|
|
r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
|
|
r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7];
|
|
|
|
/* last check */
|
|
if (0.0 == r3[3])
|
|
return false;
|
|
|
|
s = 1.0 / r3[3]; /* now back substitute row 3 */
|
|
r3[4] *= s;
|
|
r3[5] *= s;
|
|
r3[6] *= s;
|
|
r3[7] *= s;
|
|
|
|
m2 = r2[3]; /* now back substitute row 2 */
|
|
s = 1.0 / r2[2];
|
|
r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
|
|
r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
|
|
m1 = r1[3];
|
|
r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
|
|
r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
|
|
m0 = r0[3];
|
|
r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
|
|
r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
|
|
|
|
m1 = r1[2]; /* now back substitute row 1 */
|
|
s = 1.0 / r1[1];
|
|
r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
|
|
r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
|
|
m0 = r0[2];
|
|
r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
|
|
r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
|
|
|
|
m0 = r0[1]; /* now back substitute row 0 */
|
|
s = 1.0 / r0[0];
|
|
r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
|
|
r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
|
|
|
|
MAT(out, 0, 0) = r0[4];
|
|
MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6];
|
|
MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4];
|
|
MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6];
|
|
MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4];
|
|
MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6];
|
|
MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4];
|
|
MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6];
|
|
MAT(out, 3, 3) = r3[7];
|
|
|
|
return true;
|
|
|
|
#undef MAT
|
|
#undef SWAP_ROWS
|
|
}
|
|
|
|
void Matrix3x3_RM_Invert_Simple (const vec3_t in1[3], vec3_t out[3])
|
|
{
|
|
// we only support uniform scaling, so assume the first row is enough
|
|
// (note the lack of sqrt here, because we're trying to undo the scaling,
|
|
// this means multiplying by the inverse scale twice - squaring it, which
|
|
// makes the sqrt a waste of time)
|
|
#if 1
|
|
double scale = 1.0 / (in1[0][0] * in1[0][0] + in1[0][1] * in1[0][1] + in1[0][2] * in1[0][2]);
|
|
#else
|
|
double scale = 3.0 / sqrt
|
|
(in1->m[0][0] * in1->m[0][0] + in1->m[0][1] * in1->m[0][1] + in1->m[0][2] * in1->m[0][2]
|
|
+ in1->m[1][0] * in1->m[1][0] + in1->m[1][1] * in1->m[1][1] + in1->m[1][2] * in1->m[1][2]
|
|
+ in1->m[2][0] * in1->m[2][0] + in1->m[2][1] * in1->m[2][1] + in1->m[2][2] * in1->m[2][2]);
|
|
scale *= scale;
|
|
#endif
|
|
|
|
// invert the rotation by transposing and multiplying by the squared
|
|
// recipricol of the input matrix scale as described above
|
|
out[0][0] = in1[0][0] * scale;
|
|
out[0][1] = in1[1][0] * scale;
|
|
out[0][2] = in1[2][0] * scale;
|
|
|
|
out[1][0] = in1[0][1] * scale;
|
|
out[1][1] = in1[1][1] * scale;
|
|
out[1][2] = in1[2][1] * scale;
|
|
|
|
out[2][0] = in1[0][2] * scale;
|
|
out[2][1] = in1[1][2] * scale;
|
|
out[2][2] = in1[2][2] * scale;
|
|
}
|
|
|
|
void Matrix3x4_Invert (const float *in1, float *out)
|
|
{
|
|
vec3_t a, b, c, trans;
|
|
|
|
VectorSet (a, in1[0], in1[4], in1[8]);
|
|
VectorSet (b, in1[1], in1[5], in1[9]);
|
|
VectorSet (c, in1[2], in1[6], in1[10]);
|
|
|
|
VectorScale (a, 1 / DotProduct (a, a), a);
|
|
VectorScale (b, 1 / DotProduct (b, b), b);
|
|
VectorScale (c, 1 / DotProduct (c, c), c);
|
|
|
|
VectorSet (trans, in1[3], in1[7], in1[11]);
|
|
|
|
Vector4Set (out+0, a[0], a[1], a[2], -DotProduct (a, trans));
|
|
Vector4Set (out+4, b[0], b[1], b[2], -DotProduct (b, trans));
|
|
Vector4Set (out+8, c[0], c[1], c[2], -DotProduct (c, trans));
|
|
}
|
|
|
|
void QDECL Matrix3x4_Invert_Simple (const float *in1, float *out)
|
|
{
|
|
// we only support uniform scaling, so assume the first row is enough
|
|
// (note the lack of sqrt here, because we're trying to undo the scaling,
|
|
// this means multiplying by the inverse scale twice - squaring it, which
|
|
// makes the sqrt a waste of time)
|
|
#if 1
|
|
double scale = 1.0 / (in1[0] * in1[0] + in1[1] * in1[1] + in1[2] * in1[2]);
|
|
#else
|
|
double scale = 3.0 / sqrt
|
|
(in1->m[0][0] * in1->m[0][0] + in1->m[0][1] * in1->m[0][1] + in1->m[0][2] * in1->m[0][2]
|
|
+ in1->m[1][0] * in1->m[1][0] + in1->m[1][1] * in1->m[1][1] + in1->m[1][2] * in1->m[1][2]
|
|
+ in1->m[2][0] * in1->m[2][0] + in1->m[2][1] * in1->m[2][1] + in1->m[2][2] * in1->m[2][2]);
|
|
scale *= scale;
|
|
#endif
|
|
|
|
// invert the rotation by transposing and multiplying by the squared
|
|
// recipricol of the input matrix scale as described above
|
|
out[0] = in1[0] * scale;
|
|
out[1] = in1[4] * scale;
|
|
out[2] = in1[8] * scale;
|
|
out[4] = in1[1] * scale;
|
|
out[5] = in1[5] * scale;
|
|
out[6] = in1[9] * scale;
|
|
out[8] = in1[2] * scale;
|
|
out[9] = in1[6] * scale;
|
|
out[10] = in1[10] * scale;
|
|
|
|
// invert the translate
|
|
out[3] = -(in1[3] * out[0] + in1[7] * out[1] + in1[11] * out[2]);
|
|
out[7] = -(in1[3] * out[4] + in1[7] * out[5] + in1[11] * out[6]);
|
|
out[11] = -(in1[3] * out[8] + in1[7] * out[9] + in1[11] * out[10]);
|
|
}
|
|
|
|
void Matrix3x4_InvertTo4x4_Simple (const float *in1, float *out)
|
|
{
|
|
Matrix3x4_Invert_Simple(in1, out);
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 0;
|
|
out[15] = 1;
|
|
}
|
|
|
|
void Matrix3x4_InvertTo3x3(const float *in, float *result)
|
|
{
|
|
float t1[16], tr[16];
|
|
memcpy(t1, in, sizeof(float)*12);
|
|
t1[12] = 0;
|
|
t1[13] = 0;
|
|
t1[14] = 0;
|
|
t1[15] = 1;
|
|
Matrix4_Invert(t1, tr);
|
|
VectorCopy(tr+0, result+0);
|
|
VectorCopy(tr+4, result+3);
|
|
VectorCopy(tr+8, result+6);
|
|
return;
|
|
/*
|
|
#define A(x,y) in[x+y*4]
|
|
#define result(x,y) result[x+y*3]
|
|
double determinant = +A(0,0)*(A(1,1)*A(2,2)-A(2,1)*A(1,2))
|
|
-A(0,1)*(A(1,0)*A(2,2)-A(1,2)*A(2,0))
|
|
+A(0,2)*(A(1,0)*A(2,1)-A(1,1)*A(2,0));
|
|
double invdet = 1/determinant;
|
|
result(0,0) = (A(1,1)*A(2,2)-A(2,1)*A(1,2))*invdet;
|
|
result(1,0) = -(A(0,1)*A(2,2)-A(0,2)*A(2,1))*invdet;
|
|
result(2,0) = (A(0,1)*A(1,2)-A(0,2)*A(1,1))*invdet;
|
|
result(0,1) = -(A(1,0)*A(2,2)-A(1,2)*A(2,0))*invdet;
|
|
result(1,1) = (A(0,0)*A(2,2)-A(0,2)*A(2,0))*invdet;
|
|
result(2,1) = -(A(0,0)*A(1,2)-A(1,0)*A(0,2))*invdet;
|
|
result(0,2) = (A(1,0)*A(2,1)-A(2,0)*A(1,1))*invdet;
|
|
result(1,2) = -(A(0,0)*A(2,1)-A(2,0)*A(0,1))*invdet;
|
|
result(2,2) = (A(0,0)*A(1,1)-A(1,0)*A(0,1))*invdet;
|
|
*/
|
|
}
|
|
|
|
//screen->3d
|
|
|
|
void Matrix4x4_CM_UnProject(const vec3_t in, vec3_t out, const vec3_t viewangles, const vec3_t vieworg, float fovx, float fovy)
|
|
{
|
|
float modelview[16];
|
|
float proj[16];
|
|
float tempm[16];
|
|
|
|
Matrix4x4_CM_ModelViewMatrix(modelview, viewangles, vieworg);
|
|
Matrix4x4_CM_Projection_Inf(proj, fovx, fovy, 4, true);
|
|
Matrix4_Multiply(proj, modelview, tempm);
|
|
|
|
Matrix4_Invert(tempm, proj);
|
|
|
|
{
|
|
float v[4], tempv[4];
|
|
v[0] = in[0]*2-1;
|
|
v[1] = in[1]*2-1;
|
|
v[2] = in[2];
|
|
v[3] = 1;
|
|
|
|
//don't use 1, because the far clip plane really is an infinite distance away
|
|
if (v[2] >= 1)
|
|
v[2] = 0.999999;
|
|
|
|
Matrix4x4_CM_Transform4(proj, v, tempv);
|
|
|
|
out[0] = tempv[0]/tempv[3];
|
|
out[1] = tempv[1]/tempv[3];
|
|
out[2] = tempv[2]/tempv[3];
|
|
}
|
|
}
|
|
|
|
//returns fractions of screen.
|
|
//uses GL style rotations and translations and stuff.
|
|
//3d -> screen (fixme: offscreen return values needed)
|
|
//returns false if the 2d point is offscreen.
|
|
qboolean Matrix4x4_CM_Project (const vec3_t in, vec3_t out, const vec3_t viewangles, const vec3_t vieworg, float fovx, float fovy)
|
|
{
|
|
qboolean result = true;
|
|
float modelview[16];
|
|
float proj[16];
|
|
|
|
Matrix4x4_CM_ModelViewMatrix(modelview, viewangles, vieworg);
|
|
Matrix4x4_CM_Projection_Inf(proj, fovx, fovy, 4, true);
|
|
|
|
{
|
|
float v[4], tempv[4];
|
|
v[0] = in[0];
|
|
v[1] = in[1];
|
|
v[2] = in[2];
|
|
v[3] = 1;
|
|
|
|
Matrix4x4_CM_Transform4(modelview, v, tempv);
|
|
Matrix4x4_CM_Transform4(proj, tempv, v);
|
|
|
|
v[0] /= v[3];
|
|
v[1] /= v[3];
|
|
if (v[2] < 0)
|
|
result = false; //too close to the view
|
|
v[2] /= v[3];
|
|
|
|
out[0] = (1+v[0])/2;
|
|
out[1] = (1+v[1])/2;
|
|
out[2] = (1+v[2])/2;
|
|
if (out[2] > 1)
|
|
result = false; //beyond far clip plane
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
//I much prefer it to take float*...
|
|
void Matrix3_Multiply (vec3_t *in1, vec3_t *in2, vec3_t *out)
|
|
{
|
|
out[0][0] = in1[0][0]*in2[0][0] + in1[0][1]*in2[1][0] + in1[0][2]*in2[2][0];
|
|
out[0][1] = in1[0][0]*in2[0][1] + in1[0][1]*in2[1][1] + in1[0][2]*in2[2][1];
|
|
out[0][2] = in1[0][0]*in2[0][2] + in1[0][1]*in2[1][2] + in1[0][2]*in2[2][2];
|
|
out[1][0] = in1[1][0]*in2[0][0] + in1[1][1]*in2[1][0] + in1[1][2]*in2[2][0];
|
|
out[1][1] = in1[1][0]*in2[0][1] + in1[1][1]*in2[1][1] + in1[1][2]*in2[2][1];
|
|
out[1][2] = in1[1][0]*in2[0][2] + in1[1][1]*in2[1][2] + in1[1][2]*in2[2][2];
|
|
out[2][0] = in1[2][0]*in2[0][0] + in1[2][1]*in2[1][0] + in1[2][2]*in2[2][0];
|
|
out[2][1] = in1[2][0]*in2[0][1] + in1[2][1]*in2[1][1] + in1[2][2]*in2[2][1];
|
|
out[2][2] = in1[2][0]*in2[0][2] + in1[2][1]*in2[1][2] + in1[2][2]*in2[2][2];
|
|
}
|
|
|
|
vec_t QDECL VectorNormalize2 (const vec3_t v, vec3_t out)
|
|
{
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrt (length);
|
|
if (length)
|
|
{
|
|
ilength = 1/length;
|
|
out[0] = v[0]*ilength;
|
|
out[1] = v[1]*ilength;
|
|
out[2] = v[2]*ilength;
|
|
}
|
|
else
|
|
{
|
|
VectorClear (out);
|
|
}
|
|
|
|
return length;
|
|
}
|
|
float ColorNormalize (const vec3_t in, vec3_t out)
|
|
{
|
|
float f = max (max (in[0], in[1]), in[2]);
|
|
|
|
if ( f > 1.0 ) {
|
|
f = 1.0 / f;
|
|
out[0] = in[0] * f;
|
|
out[1] = in[1] * f;
|
|
out[2] = in[2] * f;
|
|
} else {
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
return f;
|
|
}
|
|
|
|
void MakeNormalVectors (const vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
float d;
|
|
|
|
// this rotate and negat guarantees a vector
|
|
// not colinear with the original
|
|
right[1] = -forward[0];
|
|
right[2] = forward[1];
|
|
right[0] = forward[2];
|
|
|
|
d = DotProduct (right, forward);
|
|
VectorMA (right, -d, forward, right);
|
|
VectorNormalize (right);
|
|
CrossProduct (right, forward, up);
|
|
}
|
|
|