fteqw/engine/client/p_classic.c
TimeServ a94a33212c destroy software rendering and break everything (and that won't be all!)
also note that merged builds on non-windows no longer make much sense

git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@3283 fc73d0e0-1445-4013-8a0c-d673dee63da5
2009-07-16 22:06:59 +00:00

823 lines
19 KiB
C

#include "quakedef.h"
#ifdef PSET_CLASSIC
#include "glquake.h"
void D_DrawParticleTrans (vec3_t porg, float palpha, float pscale, unsigned int pcolour, blendmode_t blendmode);
cvar_t gl_solidparticles = SCVAR("gl_solidparticles", "0");
typedef enum {
DODGY,
ROCKET_TRAIL,
ALT_ROCKET_TRAIL,
BLOOD_TRAIL,
GRENADE_TRAIL,
BIG_BLOOD_TRAIL,
TRACER1_TRAIL,
TRACER2_TRAIL,
VOOR_TRAIL,
BLOBEXPLOSION_POINT,
LAVASPLASH_POINT,
EXPLOSION_POINT,
TELEPORTSPLASH_POINT,
EFFECTTYPE_MAX
} effect_type_t;
typedef struct cparticle_s {
enum {
pt_static,
pt_fire,
pt_explode,
pt_explode2,
pt_blob,
pt_blob2,
pt_grav,
pt_slowgrav
} type;
float die;
vec3_t org;
vec3_t vel;
float ramp;
unsigned char color;
struct cparticle_s *next;
} cparticle_t;
#define DEFAULT_NUM_PARTICLES 2048
#define ABSOLUTE_MIN_PARTICLES 512
#define ABSOLUTE_MAX_PARTICLES 8192
static int r_numparticles;
static cparticle_t *particles, *active_particles, *free_particles;
static int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61};
static int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66};
static int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3};
//obtains an index for the name, even if it is unknown (one can be loaded after. will only fail if the effect limit is reached)
//technically this function is not meant to fail often, but thats fine so long as the other functions are meant to safely reject invalid effect numbers.
static int PClassic_ParticleTypeForName(char *name)
{
if (!stricmp("tr_rocket", name))
return ROCKET_TRAIL;
if (!stricmp("tr_altrocket", name))
return ALT_ROCKET_TRAIL;
if (!stricmp("tr_slightblood", name))
return BLOOD_TRAIL;
if (!stricmp("tr_grenade", name))
return GRENADE_TRAIL;
if (!stricmp("tr_blood", name))
return BIG_BLOOD_TRAIL;
if (!stricmp("tr_wizspike", name))
return TRACER1_TRAIL;
if (!stricmp("tr_knightspike", name))
return TRACER2_TRAIL;
if (!stricmp("tr_vorespike", name))
return VOOR_TRAIL;
if (!stricmp("te_tarexplosion", name))
return BLOBEXPLOSION_POINT;
if (!stricmp("te_lavasplash", name))
return LAVASPLASH_POINT;
if (!stricmp("te_lavasplash", name))
return LAVASPLASH_POINT;
if (!stricmp("te_explosion", name))
return EXPLOSION_POINT;
if (!stricmp("te_teleport", name))
return TELEPORTSPLASH_POINT;
return P_INVALID;
}
//returns a valid effect if both its existance is known, and it is fully functional
static int PClassic_FindParticleType(char *name)
{
return P_ParticleTypeForName(name);
}
//a convienience function.
static int PClassic_RunParticleEffectTypeString (vec3_t org, vec3_t dir, float count, char *name)
{
int efnum = P_FindParticleType(name);
return P_RunParticleEffectState(org, dir, count, efnum, NULL);
}
//DP extension: add particles within a box that look like rain or snow.
static void PClassic_RunParticleWeather(vec3_t minb, vec3_t maxb, vec3_t dir, float count, int colour, char *efname)
{
}
//DP extension: add particles within a box.
static void PClassic_RunParticleCube(vec3_t minb, vec3_t maxb, vec3_t dir, float count, int colour, qboolean gravity, float jitter)
{
}
//hexen2 support: add particles flying out from a point with a randomized speed
static void PClassic_RunParticleEffect2 (vec3_t org, vec3_t dmin, vec3_t dmax, int color, int effect, int count)
{
}
//hexen2 support: add particles within a box.
static void PClassic_RunParticleEffect3 (vec3_t org, vec3_t box, int color, int effect, int count)
{
}
//hexen2 support: add particles around the spot in a radius. no idea what the 'effect' field is.
static void PClassic_RunParticleEffect4 (vec3_t org, float radius, int color, int effect, int count)
{
}
//this function is used as a fallback in case a trail effect is unknown.
static void PClassic_ParticleTrailIndex (vec3_t start, vec3_t end, int color, int crnd, trailstate_t **tsk)
{
}
//this function is called to tell the particle system about surfaces that might emit particles at map startup.
static void PClassic_EmitSkyEffectTris(model_t *mod, msurface_t *fa)
{
}
//the one-time initialisation function, called no mater which renderer is active.
static void PClassic_InitParticles (void)
{
int i;
model_t *mod;
extern model_t mod_known[];
extern int mod_numknown;
if ((i = COM_CheckParm ("-particles")) && i + 1 < com_argc) {
r_numparticles = (int) (Q_atoi(com_argv[i + 1]));
r_numparticles = bound(ABSOLUTE_MIN_PARTICLES, r_numparticles, ABSOLUTE_MAX_PARTICLES);
} else {
r_numparticles = DEFAULT_NUM_PARTICLES;
}
particles = (cparticle_t *) BZ_Malloc (r_numparticles * sizeof(cparticle_t));
CL_RegisterParticles();
for (i=0 , mod=mod_known ; i<mod_numknown ; i++, mod++)
{
mod->particleeffect = P_INVALID;
mod->particletrail = P_INVALID;
mod->engineflags &= ~MDLF_NODEFAULTTRAIL;
P_DefaultTrail(mod);
}
}
static void PClassic_ShutdownParticles(void)
{
BZ_Free(particles);
}
//called when an entity is removed from the world, taking its trailstate with it.
static void PClassic_DelinkTrailstate(trailstate_t **tsk)
{
//classic has no concept of trail states.
}
//wipes all the particles ready for the next map.
static void PClassic_ClearParticles (void)
{
int i;
free_particles = &particles[0];
active_particles = NULL;
for (i = 0;i < r_numparticles; i++)
particles[i].next = &particles[i+1];
particles[r_numparticles - 1].next = NULL;
}
#define USEARRAYS
#define BUFFERVERTS 2048*3
vec3_t classicverts[BUFFERVERTS];
union c
{
byte_vec4_t b;
unsigned int i;
} classiccolours[BUFFERVERTS];
vec2_t classictexcoords[BUFFERVERTS];
int classicnumverts;
int setuptexcoords;
//draws all the active particles.
static void PClassic_DrawParticles(void)
{
RSpeedLocals();
cparticle_t *p, *kill;
int i;
float time2, time3, time1, dvel, frametime, grav;
#ifdef RGLQUAKE
unsigned char *at, theAlpha;
vec3_t up, right;
float dist, scale, r_partscale=0;
union c usecolours;
#endif
if (!active_particles)
{
RQ_RenderDistAndClear();
return;
}
switch(qrenderer)
{
#ifdef RGLQUAKE
case QR_OPENGL:
r_partscale = 0.004 * tan (r_refdef.fov_x * (M_PI / 180) * 0.5f);
GL_Bind(particlecqtexture);
qglEnable (GL_BLEND);
if (!gl_solidparticles.value)
qglDepthMask (GL_FALSE);
qglTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
#ifdef USEARRAYS
if (!setuptexcoords)
{
setuptexcoords = true;
for (i = 0; i < BUFFERVERTS; i += 3)
{
classictexcoords[i+1][0] = 1;
classictexcoords[i+2][1] = 1;
}
}
qglTexCoordPointer(2, GL_FLOAT, 0, classictexcoords);
qglVertexPointer(3, GL_FLOAT, 0, classicverts);
qglColorPointer(4, GL_UNSIGNED_BYTE, 0, classiccolours);
qglEnableClientState(GL_TEXTURE_COORD_ARRAY);
qglEnableClientState(GL_COLOR_ARRAY);
qglEnableClientState(GL_VERTEX_ARRAY);
#else
qglBegin (GL_TRIANGLES);
#endif
VectorScale (vup, 1.5, up);
VectorScale (vright, 1.5, right);
classicnumverts = 0;
break;
#endif
default:
RQ_RenderDistAndClear();
return;
}
frametime = host_frametime;
if (cl.paused)
frametime = 0;
time3 = frametime * 15;
time2 = frametime * 10; // 15;
time1 = frametime * 5;
grav = frametime * 800 * 0.05;
dvel = 4 * frametime;
while(1)
{
kill = active_particles;
if (kill && kill->die < cl.time)
{
active_particles = kill->next;
kill->next = free_particles;
free_particles = kill;
continue;
}
break;
}
for (p = active_particles; p ; p = p->next)
{
while (1)
{
kill = p->next;
if (kill && kill->die < cl.time)
{
p->next = kill->next;
kill->next = free_particles;
free_particles = kill;
continue;
}
break;
}
switch(qrenderer)
{
#ifdef RGLQUAKE
case QR_OPENGL:
#ifdef USEARRAYS
if (classicnumverts >= BUFFERVERTS-3)
{
qglDrawArrays(GL_TRIANGLES, 0, classicnumverts);
classicnumverts = 0;
}
#endif
// hack a scale up to keep particles from disapearing
dist = (p->org[0] - r_origin[0]) * vpn[0] + (p->org[1] - r_origin[1]) * vpn[1] + (p->org[2] - r_origin[2]) * vpn[2];
scale = 1 + dist * r_partscale;
#ifdef USEARRAYS
usecolours.i = d_8to24rgbtable[(int)p->color];
if (p->type == pt_fire)
usecolours.b[3] = 255 * (6 - p->ramp) / 6;
else
usecolours.b[3] = 255;
classiccolours[classicnumverts].i = usecolours.i;
VectorCopy(p->org, classicverts[classicnumverts]);
classicnumverts++;
classiccolours[classicnumverts].i = usecolours.i;
VectorMA(p->org, scale, up, classicverts[classicnumverts]);
classicnumverts++;
classiccolours[classicnumverts].i = usecolours.i;
VectorMA(p->org, scale, right, classicverts[classicnumverts]);
classicnumverts++;
#else
at = (qbyte *) &d_8to24rgbtable[(int)p->color];
if (p->type == pt_fire)
theAlpha = 255 * (6 - p->ramp) / 6;
else
theAlpha = 255;
qglColor4ub (*at, *(at + 1), *(at + 2), theAlpha);
qglTexCoord2f (0, 0); qglVertex3fv (p->org);
qglTexCoord2f (1, 0); qglVertex3f (p->org[0] + up[0] * scale, p->org[1] + up[1] * scale, p->org[2] + up[2] * scale);
qglTexCoord2f (0, 1); qglVertex3f (p->org[0] + right[0] * scale, p->org[1] + right[1] * scale, p->org[2] + right[2] * scale);
#endif
break;
#endif
}
p->org[0] += p->vel[0] * frametime;
p->org[1] += p->vel[1] * frametime;
p->org[2] += p->vel[2] * frametime;
switch (p->type)
{
case pt_static:
break;
case pt_fire:
p->ramp += time1;
if (p->ramp >= 6)
p->die = -1;
else
p->color = ramp3[(int) p->ramp];
p->vel[2] += grav;
break;
case pt_explode:
p->ramp += time2;
if (p->ramp >=8)
p->die = -1;
else
p->color = ramp1[(int) p->ramp];
for (i = 0; i < 3; i++)
p->vel[i] += p->vel[i] * dvel;
p->vel[2] -= grav * 30;
break;
case pt_explode2:
p->ramp += time3;
if (p->ramp >=8)
p->die = -1;
else
p->color = ramp2[(int) p->ramp];
for (i = 0; i < 3; i++)
p->vel[i] -= p->vel[i] * frametime;
p->vel[2] -= grav * 30;
break;
case pt_blob:
for (i = 0; i < 3; i++)
p->vel[i] += p->vel[i] * dvel;
p->vel[2] -= grav;
break;
case pt_blob2:
for (i = 0; i < 2; i++)
p->vel[i] -= p->vel[i] * dvel;
p->vel[2] -= grav;
break;
case pt_slowgrav:
case pt_grav:
p->vel[2] -= grav;
break;
}
}
switch(qrenderer)
{
#ifdef RGLQUAKE
case QR_OPENGL:
#ifdef USEARRAYS
if (classicnumverts)
{
qglDrawArrays(GL_TRIANGLES, 0, classicnumverts);
classicnumverts = 0;
}
#else
qglEnd ();
#endif
qglDisable (GL_BLEND);
qglDepthMask (GL_TRUE);
qglTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
qglColor3ub (255, 255, 255);
break;
#endif
default:
break;
}
RSpeedRemark();
RQ_RenderDistAndClear();
RSpeedEnd(RSPEED_PARTICLESDRAW);
}
//called to set up the rendering state (opengl)
static void PClassic_FlushRenderer(void)
{
}
static void Classic_ParticleExplosion (vec3_t org)
{
int i, j;
cparticle_t *p;
for (i = 0; i < 1024; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 5;
p->color = ramp1[0];
p->ramp = rand() & 3;
if (i & 1)
{
p->type = pt_explode;
for (j = 0; j < 3; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
else
{
p->type = pt_explode2;
for (j = 0; j < 3; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand()%512) - 256;
}
}
}
}
static void Classic_BlobExplosion (vec3_t org)
{
int i, j;
cparticle_t *p;
for (i = 0; i < 1024; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 1 + (rand() & 8) * 0.05;
if (i & 1)
{
p->type = pt_blob;
p->color = 66 + rand() % 6;
for (j = 0; j < 3; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
else
{
p->type = pt_blob2;
p->color = 150 + rand() % 6;
for (j = 0; j < 3; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
}
}
static void Classic_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
{
int i, j, scale;
cparticle_t *p;
if (!dir)
dir = vec3_origin;
scale = (count > 130) ? 3 : (count > 20) ? 2 : 1;
for (i = 0; i < count; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.1 * (rand() % 5);
p->color = (color & ~7) + (rand() & 7);
p->type = pt_grav;
for (j = 0; j < 3; j++)
{
p->org[j] = org[j] + scale * ((rand() & 15) - 8);
p->vel[j] = dir[j] * 15;
}
}
}
static void Classic_LavaSplash (vec3_t org)
{
int i, j, k;
cparticle_t *p;
float vel;
vec3_t dir;
for (i = -16; i < 16; i++)
{
for (j = -16; j < 16; j++)
{
for (k = 0; k < 1; k++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 2 + (rand() & 31) * 0.02;
p->color = 224 + (rand() & 7);
p->type = pt_grav;
dir[0] = j * 8 + (rand() & 7);
dir[1] = i * 8 + (rand() & 7);
dir[2] = 256;
p->org[0] = org[0] + dir[0];
p->org[1] = org[1] + dir[1];
p->org[2] = org[2] + (rand() & 63);
VectorNormalizeFast (dir);
vel = 50 + (rand() & 63);
VectorScale (dir, vel, p->vel);
}
}
}
}
static void Classic_TeleportSplash (vec3_t org)
{
int i, j, k;
cparticle_t *p;
float vel;
vec3_t dir;
for (i = -16; i < 16; i += 4)
{
for (j = -16; j < 16; j += 4)
{
for (k = -24; k < 32; k += 4)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.2 + (rand() & 7) * 0.02;
p->color = 7 + (rand() & 7);
p->type = pt_grav;
dir[0] = j * 8;
dir[1] = i * 8;
dir[2] = k * 8;
p->org[0] = org[0] + i + (rand() & 3);
p->org[1] = org[1] + j + (rand() & 3);
p->org[2] = org[2] + k + (rand() & 3);
VectorNormalizeFast (dir);
vel = 50 + (rand() & 63);
VectorScale (dir, vel, p->vel);
}
}
}
}
static void Classic_ParticleTrail (vec3_t start, vec3_t end, vec3_t *trail_origin, effect_type_t type)
{
vec3_t point, delta, dir;
float len;
int i, j, num_particles;
cparticle_t *p;
static int tracercount;
VectorCopy (start, point);
VectorSubtract (end, start, delta);
if (!(len = VectorLength (delta)))
goto done;
VectorScale(delta, 1 / len, dir); //unit vector in direction of trail
switch (type) {
case ALT_ROCKET_TRAIL:
len /= 1.5; break;
case BLOOD_TRAIL:
len /= 6; break;
default:
len /= 3; break;
}
if (!(num_particles = (int) len))
goto done;
VectorScale (delta, 1.0 / num_particles, delta);
for (i = 0; i < num_particles && free_particles; i++) {
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
VectorClear (p->vel);
p->die = cl.time + 2;
switch(type) {
case GRENADE_TRAIL:
p->ramp = (rand() & 3) + 2;
p->color = ramp3[(int) p->ramp];
p->type = pt_fire;
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() % 6) - 3);
break;
case BLOOD_TRAIL:
p->type = pt_slowgrav;
p->color = 67 + (rand() & 3);
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() % 6) - 3);
break;
case BIG_BLOOD_TRAIL:
p->type = pt_slowgrav;
p->color = 67 + (rand() & 3);
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() % 6) - 3);
break;
case TRACER1_TRAIL:
case TRACER2_TRAIL:
p->die = cl.time + 0.5;
p->type = pt_static;
if (type == TRACER1_TRAIL)
p->color = 52 + ((tracercount & 4) << 1);
else
p->color = 230 + ((tracercount & 4) << 1);
tracercount++;
VectorCopy (point, p->org);
if (tracercount & 1) {
p->vel[0] = 90 * dir[1];
p->vel[1] = 90 * -dir[0];
} else {
p->vel[0] = 90 * -dir[1];
p->vel[1] = 90 * dir[0];
}
break;
case VOOR_TRAIL:
p->color = 9 * 16 + 8 + (rand() & 3);
p->type = pt_static;
p->die = cl.time + 0.3;
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() & 15) - 8);
break;
case ALT_ROCKET_TRAIL:
p->ramp = (rand() & 3);
p->color = ramp3[(int) p->ramp];
p->type = pt_fire;
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() % 6) - 3);
break;
case ROCKET_TRAIL:
default:
p->ramp = (rand() & 3);
p->color = ramp3[(int) p->ramp];
p->type = pt_fire;
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() % 6) - 3);
break;
}
VectorAdd (point, delta, point);
}
done:
if (trail_origin)
VectorCopy(point, *trail_origin);
}
//builds a trail from here to there. The trail state can be used to remember how far you got last frame.
static int PClassic_ParticleTrail (vec3_t startpos, vec3_t end, int type, trailstate_t **tsk)
{
if (type == P_INVALID)
return 1;
Classic_ParticleTrail(startpos, end, NULL, type);
return 0;
}
//svc_tempentity support: this is the function that handles 'special' point effects.
//use the trail state so fast/slow frames keep the correct particle counts on certain every-frame effects
static int PClassic_RunParticleEffectState (vec3_t org, vec3_t dir, float count, int typenum, trailstate_t **tsk)
{
switch(typenum)
{
case BLOBEXPLOSION_POINT:
Classic_BlobExplosion(org);
break;
case LAVASPLASH_POINT:
Classic_LavaSplash(org);
break;
case EXPLOSION_POINT:
Classic_ParticleExplosion(org);
break;
case TELEPORTSPLASH_POINT:
Classic_TeleportSplash(org);
break;
default:
return 1;
}
return 0;
}
//svc_particle support: add X particles with the given colour, velocity, and aproximate origin.
static void PClassic_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
{
Classic_RunParticleEffect(org, dir, color, count);
}
particleengine_t pe_classic =
{
"Classic",
NULL,
PClassic_ParticleTypeForName,
PClassic_FindParticleType,
PClassic_RunParticleEffectTypeString,
PClassic_ParticleTrail,
PClassic_RunParticleEffectState,
PClassic_RunParticleWeather,
PClassic_RunParticleCube,
PClassic_RunParticleEffect,
PClassic_RunParticleEffect2,
PClassic_RunParticleEffect3,
PClassic_RunParticleEffect4,
PClassic_ParticleTrailIndex,
PClassic_EmitSkyEffectTris,
PClassic_InitParticles,
PClassic_ShutdownParticles,
PClassic_DelinkTrailstate,
PClassic_ClearParticles,
PClassic_DrawParticles,
PClassic_FlushRenderer
};
#endif