fteqw/engine/d3d/d3d11_backend.c
Spoike 1c26738095 Misc compile fixes.
git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@5448 fc73d0e0-1445-4013-8a0c-d673dee63da5
2019-04-17 00:50:14 +00:00

3792 lines
111 KiB
C

#include "quakedef.h"
#ifdef D3D11QUAKE
#include "glquake.h"
#include "gl_draw.h"
#include "shader.h"
#define COBJMACROS
#include <d3d11.h>
extern ID3D11Device *pD3DDev11;
extern ID3D11DeviceContext *d3ddevctx;
extern ID3D11DepthStencilView *fb_backdepthstencil;
extern cvar_t r_shadow_realtime_world_lightmaps;
extern cvar_t gl_overbright;
extern cvar_t r_portalrecursion, r_wireframe;
extern cvar_t r_polygonoffset_shadowmap_offset, r_polygonoffset_shadowmap_factor;
void D3D11_TerminateShadowMap(void);
void D3D11BE_BeginShadowmapFace(void);
#ifdef _DEBUG
#define d3dcheck(foo) do{HRESULT err = foo; if (FAILED(err)) Sys_Error("D3D11 reported error on backend line %i - error 0x%x\n", __LINE__, (unsigned int)err);} while(0)
#else
#define d3dcheck(foo) foo
#endif
#define MAX_TMUS 16
static void BE_RotateForEntity (const entity_t *e, const model_t *mod);
void D3D11BE_SetupLightCBuffer(dlight_t *l, vec3_t colour);
texid_t D3D11_GetShadowMap(int id);
/*========================================== tables for deforms =====================================*/
#define frand() (rand()*(1.0/RAND_MAX))
#define FTABLE_SIZE 1024
#define FTABLE_CLAMP(x) (((int)((x)*FTABLE_SIZE) & (FTABLE_SIZE-1)))
#define FTABLE_EVALUATE(table,x) (table ? table[FTABLE_CLAMP(x)] : frand()*((x)-floor(x)))
#define R_FastSin(x) r_sintable[FTABLE_CLAMP(x)]
static float r_sintable[FTABLE_SIZE];
static float r_triangletable[FTABLE_SIZE];
static float r_squaretable[FTABLE_SIZE];
static float r_sawtoothtable[FTABLE_SIZE];
static float r_inversesawtoothtable[FTABLE_SIZE];
static float *FTableForFunc ( unsigned int func )
{
switch (func)
{
case SHADER_FUNC_SIN:
return r_sintable;
case SHADER_FUNC_TRIANGLE:
return r_triangletable;
case SHADER_FUNC_SQUARE:
return r_squaretable;
case SHADER_FUNC_SAWTOOTH:
return r_sawtoothtable;
case SHADER_FUNC_INVERSESAWTOOTH:
return r_inversesawtoothtable;
}
//bad values allow us to crash (so I can debug em)
return NULL;
}
static void FTable_Init(void)
{
unsigned int i;
double t;
for (i = 0; i < FTABLE_SIZE; i++)
{
t = (double)i / (double)FTABLE_SIZE;
r_sintable[i] = sin(t * 2*M_PI);
if (t < 0.25)
r_triangletable[i] = t * 4.0;
else if (t < 0.75)
r_triangletable[i] = 2 - 4.0 * t;
else
r_triangletable[i] = (t - 0.75) * 4.0 - 1.0;
if (t < 0.5)
r_squaretable[i] = 1.0f;
else
r_squaretable[i] = -1.0f;
r_sawtoothtable[i] = t;
r_inversesawtoothtable[i] = 1.0 - t;
}
}
typedef vec3_t mat3_t[3];
static mat3_t axisDefault={{1, 0, 0},
{0, 1, 0},
{0, 0, 1}};
static void Matrix3_Transpose (mat3_t in, mat3_t out)
{
out[0][0] = in[0][0];
out[1][1] = in[1][1];
out[2][2] = in[2][2];
out[0][1] = in[1][0];
out[0][2] = in[2][0];
out[1][0] = in[0][1];
out[1][2] = in[2][1];
out[2][0] = in[0][2];
out[2][1] = in[1][2];
}
static void Matrix3_Multiply_Vec3 (const mat3_t a, const vec3_t b, vec3_t product)
{
product[0] = a[0][0]*b[0] + a[0][1]*b[1] + a[0][2]*b[2];
product[1] = a[1][0]*b[0] + a[1][1]*b[1] + a[1][2]*b[2];
product[2] = a[2][0]*b[0] + a[2][1]*b[1] + a[2][2]*b[2];
}
static int Matrix3_Compare(const mat3_t in, const mat3_t out)
{
return !memcmp(in, out, sizeof(mat3_t));
}
/*================================================*/
//global constant-buffer
typedef struct
{
float m_view[16];
float m_projection[16];
vec3_t v_eyepos; float v_time;
vec3_t e_light_ambient; float pad1;
vec3_t e_light_dir; float pad2;
vec3_t e_light_mul; float pad3;
} dx11_cbuf_view_t;
typedef struct
{
float l_cubematrix[16];
vec3_t l_lightposition; float padl1;
vec3_t l_colour; float pad2;
vec3_t l_lightcolourscale; float l_lightradius;
vec4_t l_shadowmapproj;
vec2_t l_shadowmapscale; vec2_t pad3;
} dx11_cbuf_light_t;
//entity-specific constant-buffer
typedef struct
{
float m_model[16];
vec3_t e_eyepos;
float e_time;
vec3_t e_light_ambient; float pad1;
vec3_t e_light_dir; float pad2;
vec3_t e_light_mul; float pad3;
vec4_t e_lmscale[4];
vec4_t e_uppercolour;
vec4_t e_lowercolour;
vec4_t e_colourmod;
vec4_t e_glowmod;
} dx11_cbuf_entity_t;
//vertex attributes
typedef struct
{
vecV_t coord;
vec2_t tex;
vec2_t lm;
vec3_t ndir;
vec3_t sdir;
vec3_t tdir;
byte_vec4_t colorsb;
} dx11_vbovdata_t;
enum
{
//pos1 is always used
D3D_VDEC_COL4B = 1<<0,
D3D_VDEC_ST0 = 1<<1, //base or tcgen/tcmod
D3D_VDEC_ST1 = 1<<2, //lm or so
// D3D_VDEC_ST2 = 1<<3,
// D3D_VDEC_ST3 = 1<<4,
D3D_VDEC_NORM = 1<<3, //normal+sdir+tdir
// D3D_VDEC_SKEL = 1<<4,
// D3D_VDEC_POS2 = 1<<5,
D3D_VDEC_MAX = 1<<5,
};
typedef struct blendstates_s
{
struct blendstates_s *next;
ID3D11BlendState *val;
unsigned int bits;
} blendstates_t;
/*
typedef struct d3d11renderqueue_s
{
ID3D11SamplerState *cursamplerstate[MAX_TMUS];
ID3D11ShaderResourceView *pendingtextures[MAX_TMUS];
unsigned int shaderbits;
ID3D11Buffer *stream_buffer[D3D11_BUFF_MAX];
unsigned int stream_stride[D3D11_BUFF_MAX];
unsigned int stream_offset[D3D11_BUFF_MAX];
} d3d11renderqueue_t;
*/
typedef struct
{
unsigned int inited;
backendmode_t mode;
unsigned int flags;
float identitylighting;
float curtime;
const entity_t *curentity;
const dlight_t *curdlight;
vec3_t curdlight_colours;
shader_t *curshader;
shader_t *depthonly;
texnums_t *curtexnums;
int curvertdecl;
unsigned int shaderbits;
unsigned int curcull;
float depthbias;
float depthfactor;
float m_model[16];
unsigned int lastpasscount;
vbo_t *batchvbo;
batch_t *curbatch;
batch_t dummybatch;
vec4_t lightshadowmapproj;
vec2_t lightshadowmapscale;
unsigned int curlmode;
shader_t *shader_rtlight[LSHADER_MODES];
unsigned int texflags[MAX_TMUS];
unsigned int tmuflags[MAX_TMUS];
ID3D11SamplerState *cursamplerstate[MAX_TMUS];
ID3D11SamplerState *sampstate[SHADER_PASS_IMAGE_FLAGS_D3D11+1];
ID3D11DepthStencilState *depthstates[1u<<4]; //index, its fairly short.
blendstates_t *blendstates; //list. this could get big.
//pending buffer state
ID3D11Buffer *stream_buffer[D3D11_BUFF_MAX];
unsigned int stream_stride[D3D11_BUFF_MAX];
unsigned int stream_offset[D3D11_BUFF_MAX];
qboolean stream_rgbaf;
program_t *programfixedemu[4];
mesh_t **meshlist;
unsigned int nummeshes;
#define NUMECBUFFERS 8
ID3D11Buffer *lcbuffer;
ID3D11Buffer *vcbuffer;
ID3D11Buffer *ecbuffers[NUMECBUFFERS];
int ecbufferidx;
unsigned int wbatch;
unsigned int maxwbatches;
batch_t *wbatches;
qboolean textureschanged;
ID3D11ShaderResourceView *pendingtextures[MAX_TMUS];
float depthrange;
qboolean purgevertexstream;
#define NUMVBUFFERS 3
ID3D11Buffer *vertexstream[NUMVBUFFERS];
int vertexstreamcycle;
int vertexstreamoffset;
qboolean purgeindexstream;
#define NUMIBUFFERS 3
ID3D11Buffer *indexstream[NUMIBUFFERS];
int indexstreamcycle;
int indexstreamoffset;
texid_t currentrender;
int numlivevbos;
int numliveshadowbuffers;
} d3d11backend_t;
extern D3D_FEATURE_LEVEL d3dfeaturelevel;
#define VERTEXSTREAMSIZE (1024*1024*2) //2mb = 1 PAE jumbo page
#define DYNVBUFFSIZE 65536
#define DYNIBUFFSIZE 65536*3
static vecV_t tmpbuf[65536]; //max verts per mesh
static d3d11backend_t shaderstate;
extern int be_maxpasses;
void D3D11_UpdateFiltering(image_t *imagelist, int filtermip[3], int filterpic[3], int mipcap[2], float lodbias, float anis)
{
D3D11_SAMPLER_DESC sampdesc;
int flags;
for (flags = 0; flags <= (SHADER_PASS_IMAGE_FLAGS_D3D11); flags++)
{
int *filter;
sampdesc.Filter = 0;
filter = (flags & SHADER_PASS_UIPIC)?filterpic:filtermip;
if ((filter[2] && !(flags & SHADER_PASS_NEAREST)) || (flags & SHADER_PASS_LINEAR))
sampdesc.Filter |= D3D11_FILTER_TYPE_LINEAR<<D3D11_MAG_FILTER_SHIFT;
else
sampdesc.Filter |= D3D11_FILTER_TYPE_POINT<<D3D11_MAG_FILTER_SHIFT;
//d3d11 has no no-mip feature
if ((filter[1]==1 && !(flags & SHADER_PASS_NEAREST)) || (flags & SHADER_PASS_LINEAR))
sampdesc.Filter |= D3D11_FILTER_TYPE_LINEAR<<D3D11_MIP_FILTER_SHIFT;
else
sampdesc.Filter |= D3D11_FILTER_TYPE_POINT<<D3D11_MIP_FILTER_SHIFT;
if ((filter[0] && !(flags & SHADER_PASS_NEAREST)) || (flags & SHADER_PASS_LINEAR))
sampdesc.Filter |= D3D11_FILTER_TYPE_LINEAR<<D3D11_MIN_FILTER_SHIFT;
else
sampdesc.Filter |= D3D11_FILTER_TYPE_POINT<<D3D11_MIN_FILTER_SHIFT;
//switch to anisotropic filtering if all three filters are linear and anis is set
if (sampdesc.Filter == D3D11_FILTER_MIN_MAG_MIP_LINEAR && anis > 1)
sampdesc.Filter = D3D11_FILTER_ANISOTROPIC;
if (flags & SHADER_PASS_DEPTHCMP)
sampdesc.Filter |= D3D11_COMPARISON_FILTERING_BIT;
if (flags & SHADER_PASS_DEPTHCMP)
sampdesc.ComparisonFunc = D3D11_COMPARISON_LESS_EQUAL;
else
sampdesc.ComparisonFunc = D3D11_COMPARISON_NEVER;
if (flags & SHADER_PASS_CLAMP)
{
sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP;
sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP;
sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP;
}
else
{
sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
}
sampdesc.MipLODBias = lodbias;
sampdesc.MaxAnisotropy = bound(1, anis, 16);
sampdesc.BorderColor[0] = 0;
sampdesc.BorderColor[1] = 0;
sampdesc.BorderColor[2] = 0;
sampdesc.BorderColor[3] = 0;
if (flags & SHADER_PASS_NOMIPMAP)
{ //only ever use the biggest mip if multiple are present
sampdesc.MinLOD = 0;
sampdesc.MaxLOD = 0;
}
else
{
sampdesc.MinLOD = mipcap[0];
sampdesc.MaxLOD = mipcap[1];
}
if (d3dfeaturelevel < D3D_FEATURE_LEVEL_10_0) //9.* sucks
sampdesc.MaxLOD = FLT_MAX;
if (shaderstate.sampstate[flags])
ID3D11SamplerState_Release(shaderstate.sampstate[flags]);
shaderstate.sampstate[flags] = NULL;
//returns the same pointer for dupes, supposedly, so no need to check that
ID3D11Device_CreateSamplerState(pD3DDev11, &sampdesc, &shaderstate.sampstate[flags]);
}
}
static void BE_DestroyVariousStates(void)
{
blendstates_t *bs;
int flags;
int i;
for (i = 0; i < MAX_TMUS/*shaderstate.lastpasscount*/; i++)
{
shaderstate.cursamplerstate[i] = NULL;
}
if (d3ddevctx && i)
ID3D11DeviceContext_PSSetSamplers(d3ddevctx, 0, i, shaderstate.cursamplerstate);
for (flags = 0; flags <= SHADER_PASS_IMAGE_FLAGS_D3D11; flags++)
{
if (shaderstate.sampstate[flags])
ID3D11SamplerState_Release(shaderstate.sampstate[flags]);
shaderstate.sampstate[flags] = NULL;
}
if (d3ddevctx)
ID3D11DeviceContext_OMSetDepthStencilState(d3ddevctx, NULL, 0);
for (i = 0; i < (1u<<4); i++)
{
if (shaderstate.depthstates[i])
ID3D11DepthStencilState_Release(shaderstate.depthstates[i]);
shaderstate.depthstates[i] = NULL;
}
if (d3ddevctx)
ID3D11DeviceContext_OMSetBlendState(d3ddevctx, NULL, NULL, 0xffffffff);
//hopefully the caches inside shaders should get flushed too...
while(shaderstate.blendstates)
{
bs = shaderstate.blendstates;
shaderstate.blendstates = bs->next;
if (bs->val)
ID3D11BlendState_Release(bs->val);
BZ_Free(bs);
}
for (i = 0; i < NUMIBUFFERS; i++)
{
if (shaderstate.indexstream[i])
ID3D11Buffer_Release(shaderstate.indexstream[i]);
shaderstate.indexstream[i] = NULL;
}
for (i = 0; i < NUMVBUFFERS; i++)
{
if (shaderstate.vertexstream[i])
ID3D11Buffer_Release(shaderstate.vertexstream[i]);
shaderstate.vertexstream[i] = NULL;
}
if (shaderstate.lcbuffer)
ID3D11Buffer_Release(shaderstate.lcbuffer);
shaderstate.lcbuffer = NULL;
if (shaderstate.vcbuffer)
ID3D11Buffer_Release(shaderstate.vcbuffer);
shaderstate.vcbuffer = NULL;
for (i = 0; i < NUMECBUFFERS; i++)
{
if (shaderstate.ecbuffers[i])
ID3D11Buffer_Release(shaderstate.ecbuffers[i]);
shaderstate.ecbuffers[i] = NULL;
}
D3D11_DestroyTexture(shaderstate.currentrender);
//make sure the device doesn't have any textures still referenced.
for (i = 0; i < MAX_TMUS/*shaderstate.lastpasscount*/; i++)
{
shaderstate.pendingtextures[i] = NULL;
}
if (d3ddevctx && i)
ID3D11DeviceContext_PSSetShaderResources(d3ddevctx, 0, i, shaderstate.pendingtextures);
}
static void BE_ApplyTMUState(unsigned int tu, unsigned int flags)
{
ID3D11SamplerState *nstate;
flags = (flags & SHADER_PASS_IMAGE_FLAGS_D3D11);
flags |= shaderstate.texflags[tu];
nstate = shaderstate.sampstate[flags];
if (nstate != shaderstate.cursamplerstate[tu])
{
shaderstate.cursamplerstate[tu] = nstate;
//fixme: is it significant to bulk-apply this later?
ID3D11DeviceContext_PSSetSamplers(d3ddevctx, tu, 1, &nstate);
}
/*
if ((flags ^ shaderstate.tmuflags[tu]) & (SHADER_PASS_NEAREST|SHADER_PASS_CLAMP))
{
D3D11_SAMPLER_DESC sampdesc;
ID3D11SamplerState *sstate;
shaderstate.tmuflags[tu] = flags;
if (flags & SHADER_PASS_NEAREST)
sampdesc.Filter = D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR;
else
sampdesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
if (flags & SHADER_PASS_CLAMP)
{
sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP;
sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP;
sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP;
}
else
{
sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
}
sampdesc.MipLODBias = 0.0f;
sampdesc.MaxAnisotropy = 1;
sampdesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
sampdesc.BorderColor[0] = 0;
sampdesc.BorderColor[1] = 0;
sampdesc.BorderColor[2] = 0;
sampdesc.BorderColor[3] = 0;
sampdesc.MinLOD = 0;
sampdesc.MaxLOD = D3D11_FLOAT32_MAX;
if (!FAILED(ID3D11Device_CreateSamplerState(pD3DDev11, &sampdesc, &sstate)))
{
ID3D11DeviceContext_PSSetSamplers(d3ddevctx, tu, 1, &sstate);
ID3D11SamplerState_Release(sstate);
}
}
*/
}
static void *D3D11BE_GenerateBlendState(unsigned int bits)
{
D3D11_BLEND_DESC blend = {0};
ID3D11BlendState *newblendstate;
blend.IndependentBlendEnable = FALSE;
blend.AlphaToCoverageEnable = FALSE; //FIXME
if (bits & SBITS_BLEND_BITS)
{
switch(bits & SBITS_SRCBLEND_BITS)
{
case SBITS_SRCBLEND_ZERO: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_ZERO; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ZERO; break;
case SBITS_SRCBLEND_ONE: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE; break;
case SBITS_SRCBLEND_DST_COLOR: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_DEST_COLOR; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_DEST_ALPHA; break;
case SBITS_SRCBLEND_ONE_MINUS_DST_COLOR: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_DEST_COLOR; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA; break;
case SBITS_SRCBLEND_SRC_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_SRC_ALPHA; break;
case SBITS_SRCBLEND_ONE_MINUS_SRC_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_SRC_ALPHA; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; break;
case SBITS_SRCBLEND_DST_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_DEST_ALPHA; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_DEST_ALPHA; break;
case SBITS_SRCBLEND_ONE_MINUS_DST_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_DEST_ALPHA; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA; break;
case SBITS_SRCBLEND_ALPHA_SATURATE: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA_SAT; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_SRC_ALPHA_SAT; break;
default: Sys_Error("Bad shader blend src\n"); return NULL;
}
switch(bits & SBITS_DSTBLEND_BITS)
{
case SBITS_DSTBLEND_ZERO: blend.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO; break;
case SBITS_DSTBLEND_ONE: blend.RenderTarget[0].DestBlend = D3D11_BLEND_ONE; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ONE; break;
case SBITS_DSTBLEND_SRC_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_SRC_ALPHA; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_SRC_ALPHA; break;
case SBITS_DSTBLEND_ONE_MINUS_SRC_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_ALPHA; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; break;
case SBITS_DSTBLEND_DST_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_DEST_ALPHA; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_DEST_ALPHA; break;
case SBITS_DSTBLEND_ONE_MINUS_DST_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_INV_DEST_ALPHA; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA; break;
case SBITS_DSTBLEND_SRC_COLOR: blend.RenderTarget[0].DestBlend = D3D11_BLEND_SRC_COLOR; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_SRC_ALPHA; break;
case SBITS_DSTBLEND_ONE_MINUS_SRC_COLOR: blend.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_COLOR; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; break;
default: Sys_Error("Bad shader blend dst\n"); return NULL;
}
blend.RenderTarget[0].BlendEnable = TRUE;
}
else
{
blend.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
blend.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO;
blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
blend.RenderTarget[0].BlendEnable = FALSE;
}
blend.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
blend.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
if (bits&SBITS_MASK_BITS)
{
blend.RenderTarget[0].RenderTargetWriteMask = 0;
if (!(bits&SBITS_MASK_RED))
blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_RED;
if (!(bits&SBITS_MASK_GREEN))
blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_GREEN;
if (!(bits&SBITS_MASK_BLUE))
blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_BLUE;
if (!(bits&SBITS_MASK_ALPHA))
blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_ALPHA;
}
else
blend.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
if (!FAILED(ID3D11Device_CreateBlendState(pD3DDev11, &blend, &newblendstate)))
return newblendstate;
return NULL;
}
static void D3D11BE_ApplyShaderBits(unsigned int bits, void **blendstatecache)
{
unsigned int delta;
if (shaderstate.flags & (BEF_FORCEADDITIVE|BEF_FORCETRANSPARENT|BEF_FORCENODEPTH|BEF_FORCEDEPTHTEST|BEF_FORCEDEPTHWRITE))
{
blendstatecache = NULL;
if (shaderstate.flags & BEF_FORCEADDITIVE)
bits = (bits & ~(SBITS_MISC_DEPTHWRITE|SBITS_BLEND_BITS|SBITS_ATEST_BITS))
| (SBITS_SRCBLEND_SRC_ALPHA | SBITS_DSTBLEND_ONE);
else if (shaderstate.flags & BEF_FORCETRANSPARENT)
{
if ((bits & SBITS_BLEND_BITS) == (SBITS_SRCBLEND_ONE|SBITS_DSTBLEND_ZERO) || !(bits & SBITS_BLEND_BITS)) /*if transparency is forced, clear alpha test bits*/
bits = (bits & ~(SBITS_MISC_DEPTHWRITE|SBITS_BLEND_BITS|SBITS_ATEST_BITS))
| (SBITS_SRCBLEND_SRC_ALPHA | SBITS_DSTBLEND_ONE_MINUS_SRC_ALPHA);
}
if (shaderstate.flags & BEF_FORCENODEPTH) /*EF_NODEPTHTEST dp extension*/
bits |= SBITS_MISC_NODEPTHTEST;
else
{
if (shaderstate.flags & BEF_FORCEDEPTHTEST)
bits &= ~SBITS_MISC_NODEPTHTEST;
if (shaderstate.flags & BEF_FORCEDEPTHWRITE)
bits |= SBITS_MISC_DEPTHWRITE;
}
}
delta = bits ^ shaderstate.shaderbits;
if (!delta)
return;
shaderstate.shaderbits = bits;
if (delta & (SBITS_BLEND_BITS|SBITS_MASK_BITS))
{
int sbits = bits & (SBITS_BLEND_BITS|SBITS_MASK_BITS);
if (blendstatecache && *blendstatecache)
ID3D11DeviceContext_OMSetBlendState(d3ddevctx, *blendstatecache, NULL, 0xffffffff);
else
{
blendstates_t *bs;
for (bs = shaderstate.blendstates; bs; bs = bs->next)
{
if (bs->bits == sbits)
break;
}
if (!bs)
{
bs = BZ_Malloc(sizeof(*bs));
bs->next = shaderstate.blendstates;
shaderstate.blendstates = bs;
bs->bits = sbits;
bs->val = D3D11BE_GenerateBlendState(sbits);
}
ID3D11DeviceContext_OMSetBlendState(d3ddevctx, bs->val, NULL, 0xffffffff);
if (blendstatecache)
*blendstatecache = bs->val;
}
}
if (delta & SBITS_ATEST_BITS)
{
/*
switch(bits & SBITS_ATEST_BITS)
{
case SBITS_ATEST_NONE:
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, FALSE);
// IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 0);
// IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, 0);
break;
case SBITS_ATEST_GT0:
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, TRUE);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 0);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, D3DCMP_GREATER);
break;
case SBITS_ATEST_LT128:
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, TRUE);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 128);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, D3DCMP_LESS);
break;
case SBITS_ATEST_GE128:
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, TRUE);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 128);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL);
break;
}
*/
}
if (delta & (SBITS_DEPTHFUNC_BITS|SBITS_MISC_NODEPTHTEST|SBITS_MISC_DEPTHWRITE))
{
unsigned int key = (bits&(SBITS_DEPTHFUNC_BITS|SBITS_MISC_NODEPTHTEST|SBITS_MISC_DEPTHWRITE))>>16;
if (shaderstate.depthstates[key])
ID3D11DeviceContext_OMSetDepthStencilState(d3ddevctx, shaderstate.depthstates[key], 0);
else
{
D3D11_DEPTH_STENCIL_DESC depthdesc;
if (bits & SBITS_MISC_NODEPTHTEST)
depthdesc.DepthEnable = false;
else
depthdesc.DepthEnable = true;
if (bits & SBITS_MISC_DEPTHWRITE)
depthdesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
else
depthdesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
switch(bits & SBITS_DEPTHFUNC_BITS)
{
default:
case SBITS_DEPTHFUNC_CLOSEREQUAL:
depthdesc.DepthFunc = D3D11_COMPARISON_LESS_EQUAL;
break;
case SBITS_DEPTHFUNC_EQUAL:
depthdesc.DepthFunc = D3D11_COMPARISON_EQUAL;
break;
case SBITS_DEPTHFUNC_CLOSER:
depthdesc.DepthFunc = D3D11_COMPARISON_LESS;
break;
case SBITS_DEPTHFUNC_FURTHER:
depthdesc.DepthFunc = D3D11_COMPARISON_GREATER;
break;
}
//make sure the stencil part is actually valid, even if we're not using it.
depthdesc.StencilEnable = false;
depthdesc.StencilReadMask = 0xFF;
depthdesc.StencilWriteMask = 0xFF;
depthdesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
depthdesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_KEEP;
depthdesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
depthdesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS;
depthdesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
depthdesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_KEEP;
depthdesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
depthdesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS;
//and change it
if (!FAILED(ID3D11Device_CreateDepthStencilState(pD3DDev11, &depthdesc, &shaderstate.depthstates[key])))
ID3D11DeviceContext_OMSetDepthStencilState(d3ddevctx, shaderstate.depthstates[key], 0);
}
}
}
void D3D11BE_Reset(qboolean before)
{
int i;
if (!shaderstate.inited)
return;
if (before)
{
/*backbuffer is going away, release stuff so it can be destroyed cleanly*/
}
else
{
/*we have a new backbuffer etc, reassert state*/
for (i = 0; i < MAX_TMUS; i++)
{
shaderstate.tmuflags[i] = ~0;
BE_ApplyTMUState(i, 0);
}
/*force all state to change, thus setting a known state*/
shaderstate.shaderbits = ~0;
D3D11BE_ApplyShaderBits(0, NULL);
}
}
static const char LIGHTPASS_SHADER[] = "\
{\n\
program rtlight\n\
{\n\
blendfunc add\n\
}\n\
}";
void D3D11BE_Init(void)
{
D3D11_BUFFER_DESC bd;
int i;
be_maxpasses = 1;
memset(&shaderstate, 0, sizeof(shaderstate));
shaderstate.inited = true;
shaderstate.curvertdecl = -1;
for (i = 0; i < MAXRLIGHTMAPS; i++)
shaderstate.dummybatch.lightmap[i] = -1;
FTable_Init();
// BE_CreateSamplerStates();
// FTable_Init();
/* shaderstate.dynxyz_size = sizeof(vecV_t) * DYNVBUFFSIZE;
shaderstate.dyncol_size = sizeof(byte_vec4_t) * DYNVBUFFSIZE;
shaderstate.dynst_size = sizeof(vec2_t) * DYNVBUFFSIZE;
shaderstate.dynidx_size = sizeof(index_t) * DYNIBUFFSIZE;
*/
D3D11BE_Reset(false);
//set up the constant buffers
for (i = 0; i < NUMECBUFFERS; i++)
{
bd.Usage = D3D11_USAGE_DYNAMIC;
bd.ByteWidth = sizeof(dx11_cbuf_entity_t);
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
bd.MiscFlags = 0;
bd.StructureByteStride = 0;
if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.ecbuffers[i])))
return;
}
bd.Usage = D3D11_USAGE_DYNAMIC;
bd.ByteWidth = sizeof(dx11_cbuf_view_t);
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
bd.MiscFlags = 0;
bd.StructureByteStride = 0;
if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.vcbuffer)))
return;
bd.Usage = D3D11_USAGE_DYNAMIC;
bd.ByteWidth = sizeof(dx11_cbuf_light_t);
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
bd.MiscFlags = 0;
bd.StructureByteStride = 0;
if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.lcbuffer)))
return;
//generate the streaming buffers for stuff that doesn't provide info in nice static vbos
for (i = 0; i < NUMIBUFFERS; i++)
{
bd.BindFlags = D3D11_BIND_INDEX_BUFFER;
bd.ByteWidth = VERTEXSTREAMSIZE;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
bd.MiscFlags = 0;
bd.StructureByteStride = 0;
bd.Usage = D3D11_USAGE_DYNAMIC;
if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.indexstream[i])))
return;
}
for (i = 0; i < NUMVBUFFERS; i++)
{
bd.BindFlags = D3D11_BIND_VERTEX_BUFFER;
bd.ByteWidth = VERTEXSTREAMSIZE;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
bd.MiscFlags = 0;
bd.StructureByteStride = 0;
bd.Usage = D3D11_USAGE_DYNAMIC;
if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.vertexstream[i])))
return;
}
/*
for (i = 0; i < LSHADER_MODES; i++)
{
if ((i & LSHADER_CUBE) && (i & LSHADER_SPOT))
continue;
shaderstate.shader_rtlight[i] = R_RegisterShader(va("rtlight%s%s%s",
(i & LSHADER_SMAP)?"#PCF":"",
(i & LSHADER_SPOT)?"#SPOT":"",
(i & LSHADER_CUBE)?"#CUBE":"")
, SUF_NONE, LIGHTPASS_SHADER);
}
*/
// shaderstate.shader_rtlight = R_RegisterShader("rtlight", SUF_NONE, LIGHTPASS_SHADER);
shaderstate.depthonly = R_RegisterShader("depthonly", SUF_NONE,
"{\n"
"program depthonly\n"
"{\n"
"depthwrite\n"
"maskcolor\n"
"}\n"
"}\n");
R_InitFlashblends();
}
void D3D11BE_Shutdown(void)
{
unsigned int i;
shaderstate.inited = false;
#ifdef RTLIGHTS
D3D11_TerminateShadowMap();
#endif
BE_DestroyVariousStates();
Z_Free(shaderstate.wbatches);
shaderstate.wbatches = NULL;
for (i = 0; i < countof(shaderstate.programfixedemu); i++)
Shader_ReleaseGeneric(shaderstate.programfixedemu[i]);
}
static void allocvertexbuffer(ID3D11Buffer **buf, unsigned int *offset, void **dest, unsigned int sz)
{
D3D11_MAPPED_SUBRESOURCE msr;
unsigned int maptype;
sz = (sz+63)&~63; //try to align it to a cacheline. I assume the memory is write-through cached.
if (shaderstate.purgevertexstream || shaderstate.vertexstreamoffset + sz > VERTEXSTREAMSIZE)
{
shaderstate.purgevertexstream = false;
shaderstate.vertexstreamoffset = 0;
maptype = D3D11_MAP_WRITE_DISCARD;
shaderstate.vertexstreamcycle++;
if (shaderstate.vertexstreamcycle == NUMVBUFFERS)
shaderstate.vertexstreamcycle = 0;
}
else
{
maptype = D3D11_MAP_WRITE_NO_OVERWRITE;
}
*buf = shaderstate.vertexstream[shaderstate.vertexstreamcycle];
if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)*buf, 0, maptype, 0, &msr)))
{
*offset = 0;
*buf = NULL;
*dest = NULL;
Con_Printf("allocvertexbuffer: failed to map vertex buffer\n");
return;
}
*dest = (index_t*)((qbyte*)msr.pData + shaderstate.vertexstreamoffset);
*offset = shaderstate.vertexstreamoffset;
shaderstate.vertexstreamoffset += sz;
return;
}
static unsigned int allocindexbuffer(index_t **dest, ID3D11Buffer **buf, unsigned int entries)
{
D3D11_MAPPED_SUBRESOURCE msr;
unsigned int sz = sizeof(index_t) * entries;
unsigned int maptype;
unsigned int ret;
if (shaderstate.purgeindexstream || shaderstate.indexstreamoffset + sz > VERTEXSTREAMSIZE)
{
shaderstate.purgeindexstream = false;
shaderstate.indexstreamoffset = 0;
maptype = D3D11_MAP_WRITE_DISCARD;
shaderstate.indexstreamcycle++;
if (shaderstate.indexstreamcycle == NUMIBUFFERS)
shaderstate.indexstreamcycle = 0;
}
else
{
maptype = D3D11_MAP_WRITE_NO_OVERWRITE;
}
*buf = shaderstate.indexstream[shaderstate.indexstreamcycle];
if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)*buf, 0, maptype, 0, &msr)))
{
*buf = NULL;
*dest = NULL;
Con_Printf("allocindexbuffer: failed to map index buffer\n");
return 0;
}
*dest = (index_t*)((qbyte*)msr.pData + shaderstate.indexstreamoffset);
ret = shaderstate.indexstreamoffset;
shaderstate.indexstreamoffset += sz;
return ret;
}
ID3D11ShaderResourceView *D3D11_Image_View(const texid_t id);
static void BindTexture(unsigned int tu, const texid_t id)
{
ID3D11ShaderResourceView *view = D3D11_Image_View(id);
if (shaderstate.pendingtextures[tu] != view)
{
shaderstate.textureschanged = true;
shaderstate.pendingtextures[tu] = view;
if (id)
shaderstate.texflags[tu] = id->flags&SHADER_PASS_IMAGE_FLAGS_D3D11;
}
}
void D3D11BE_UnbindAllTextures(void)
{
int i;
for (i = 0; i < shaderstate.lastpasscount; i++)
shaderstate.pendingtextures[i] = NULL;
if (i)
{
ID3D11DeviceContext_PSSetShaderResources(d3ddevctx, 0, i, shaderstate.pendingtextures);
shaderstate.lastpasscount = 0;
}
}
#define IID_ID3D11Texture2D gahzomgwtf
static const GUID IID_ID3D11Texture2D = { 0x6f15aaf2, 0xd208, 0x4e89, { 0x9a,0xb4,0x48,0x95,0x35,0xd3,0x4f,0x9c } };
static texid_t T_Gen_CurrentRender(void)
{
// int vwidth, vheight;
// int pwidth = vid.fbpwidth;
// int pheight = vid.fbpheight;
ID3D11Texture2D *backbuf;
#ifdef WINRT
extern IDXGISwapChain1 *d3dswapchain;
#else
extern IDXGISwapChain *d3dswapchain;
#endif
D3D11_TEXTURE2D_DESC tdesc = {0};
if (r_refdef.recurse)
return r_nulltex;
//FIXME: should be willing to use the current rendertargets instead
IDXGISwapChain_GetBuffer(d3dswapchain, 0, &IID_ID3D11Texture2D, (LPVOID*)&backbuf);
ID3D11Texture2D_GetDesc(backbuf, &tdesc);
// copy the scene to texture
if (!TEXVALID(shaderstate.currentrender) || tdesc.Width != shaderstate.currentrender->width || tdesc.Height != shaderstate.currentrender->height)
{
if (!shaderstate.currentrender)
shaderstate.currentrender = Image_CreateTexture("***$currentrender***", NULL, 0);
if (shaderstate.currentrender)
{
shaderstate.currentrender->width = tdesc.Width;
shaderstate.currentrender->height = tdesc.Height;
tdesc.BindFlags = D3D11_BIND_RENDER_TARGET | D3D11_BIND_SHADER_RESOURCE;
tdesc.CPUAccessFlags = 0;
if (shaderstate.currentrender->ptr)
ID3D11Texture2D_Release((ID3D11Texture2D*)shaderstate.currentrender->ptr);
shaderstate.currentrender->ptr = NULL;
ID3D11Device_CreateTexture2D(pD3DDev11, &tdesc, NULL, (ID3D11Texture2D**)&shaderstate.currentrender->ptr);
}
}
ID3D11DeviceContext_CopyResource(d3ddevctx, (ID3D11Resource*)shaderstate.currentrender->ptr, (ID3D11Resource*)backbuf);
if (shaderstate.currentrender->ptr2)
ID3D11ShaderResourceView_Release((ID3D11ShaderResourceView*)shaderstate.currentrender->ptr2);
shaderstate.currentrender->ptr2 = NULL;
ID3D11Texture2D_Release(backbuf);
return shaderstate.currentrender;
}
static void SelectPassTexture(unsigned int tu, const shaderpass_t *pass)
{
extern texid_t r_whiteimage, missing_texture_gloss, missing_texture_normal;
switch(pass->texgen)
{
default:
case T_GEN_DIFFUSE:
BindTexture(tu, shaderstate.curtexnums->base);
break;
case T_GEN_NORMALMAP:
if (TEXLOADED(shaderstate.curtexnums->bump))
BindTexture(tu, shaderstate.curtexnums->bump);
else
BindTexture(tu, missing_texture_normal);
break;
case T_GEN_SPECULAR:
if (TEXLOADED(shaderstate.curtexnums->specular))
BindTexture(tu, shaderstate.curtexnums->specular);
else
BindTexture(tu, missing_texture_gloss);
break;
case T_GEN_UPPEROVERLAY:
BindTexture(tu, shaderstate.curtexnums->upperoverlay);
break;
case T_GEN_LOWEROVERLAY:
BindTexture(tu, shaderstate.curtexnums->loweroverlay);
break;
case T_GEN_FULLBRIGHT:
BindTexture(tu, shaderstate.curtexnums->fullbright);
break;
case T_GEN_REFLECTCUBE:
BindTexture(tu, shaderstate.curtexnums->reflectcube);
break;
case T_GEN_REFLECTMASK:
BindTexture(tu, shaderstate.curtexnums->reflectmask);
break;
case T_GEN_ANIMMAP:
BindTexture(tu, pass->anim_frames[(int)(pass->anim_fps * shaderstate.curtime) % pass->anim_numframes]);
break;
case T_GEN_3DMAP:
case T_GEN_CUBEMAP:
case T_GEN_SINGLEMAP:
BindTexture(tu, pass->anim_frames[0]);
break;
case T_GEN_DELUXMAP:
{
int lmi = shaderstate.curbatch->lightmap[0];
if (lmi < 0 || !lightmap[lmi]->hasdeluxe)
BindTexture(tu, r_nulltex);
else
{
lmi+=1;
BindTexture(tu, lightmap[lmi]->lightmap_texture);
}
}
break;
case T_GEN_LIGHTMAP:
{
int lmi = shaderstate.curbatch->lightmap[0];
if (lmi < 0)
BindTexture(tu, r_whiteimage);
else
BindTexture(tu, lightmap[lmi]->lightmap_texture);
}
break;
case T_GEN_CURRENTRENDER:
BindTexture(tu, T_Gen_CurrentRender());
break;
case T_GEN_VIDEOMAP:
#ifdef HAVE_MEDIA_DECODER
if (pass->cin)
{
BindTexture(tu, Media_UpdateForShader(pass->cin));
break;
}
#endif
BindTexture(tu, r_nulltex);
break;
case T_GEN_LIGHTCUBEMAP: //light's projected cubemap
if (shaderstate.curdlight)
BindTexture(tu, shaderstate.curdlight->cubetexture);
else
BindTexture(tu, r_nulltex);
break;
case T_GEN_SHADOWMAP: //light's depth values.
#ifdef RTLIGHTS
if (shaderstate.curdlight)
{
BindTexture(tu, D3D11_GetShadowMap(shaderstate.curdlight->fov>0));
break;
}
#endif
BindTexture(tu, r_nulltex);
break;
case T_GEN_SOURCECOLOUR: //used for render-to-texture targets
case T_GEN_SOURCEDEPTH: //used for render-to-texture targets
case T_GEN_REFLECTION: //reflection image (mirror-as-fbo)
case T_GEN_REFRACTION: //refraction image (portal-as-fbo)
case T_GEN_REFRACTIONDEPTH: //refraction image (portal-as-fbo)
case T_GEN_RIPPLEMAP: //ripplemap image (water surface distortions-as-fbo)
case T_GEN_SOURCECUBE: //used for render-to-texture targets
BindTexture(tu, r_nulltex);
break;
}
BE_ApplyTMUState(tu, pass->flags);
//pass blend modes are skipped - they're really only useful for fixed function. we should just use blend modes instead.
}
static void colourgenbyte(const shaderpass_t *pass, int cnt, byte_vec4_t *srcb, vec4_t *srcf, byte_vec4_t *dst, const mesh_t *mesh)
{
#define D3DCOLOR unsigned int
#define D3DCOLOR_ARGB(a,r,g,b) ((D3DCOLOR)((((a)&0xff)<<24)|(((r)&0xff)<<16)|(((g)&0xff)<<8)|((b)&0xff)))
#define D3DCOLOR_COLORVALUE(r,g,b,a) D3DCOLOR_RGBA((DWORD)((r)*255.f),(DWORD)((g)*255.f),(DWORD)((b)*255.f),(DWORD)((a)*255.f))
#define D3DCOLOR_RGBA(r,g,b,a) D3DCOLOR_ARGB(a,r,g,b)
D3DCOLOR block;
switch (pass->rgbgen)
{
case RGB_GEN_ENTITY:
block = D3DCOLOR_COLORVALUE(shaderstate.curentity->shaderRGBAf[0], shaderstate.curentity->shaderRGBAf[1], shaderstate.curentity->shaderRGBAf[2], shaderstate.curentity->shaderRGBAf[3]);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
break;
case RGB_GEN_ONE_MINUS_ENTITY:
block = D3DCOLOR_COLORVALUE(1-shaderstate.curentity->shaderRGBAf[0], 1-shaderstate.curentity->shaderRGBAf[1], 1-shaderstate.curentity->shaderRGBAf[2], 1-shaderstate.curentity->shaderRGBAf[3]);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
break;
case RGB_GEN_VERTEX_LIGHTING:
case RGB_GEN_VERTEX_EXACT:
if (srcb)
{
while((cnt)--)
{
qbyte r, g, b;
r=srcb[cnt][0];
g=srcb[cnt][1];
b=srcb[cnt][2];
dst[cnt][0] = b;
dst[cnt][1] = g;
dst[cnt][2] = r;
}
}
else if (srcf)
{
while((cnt)--)
{
int r, g, b;
r=srcf[cnt][0]*255;
g=srcf[cnt][1]*255;
b=srcf[cnt][2]*255;
dst[cnt][0] = bound(0, b, 255);
dst[cnt][1] = bound(0, g, 255);
dst[cnt][2] = bound(0, r, 255);
}
}
else
goto identity;
break;
case RGB_GEN_ONE_MINUS_VERTEX:
if (srcb)
{
while((cnt)--)
{
qbyte r, g, b;
r=255-srcb[cnt][0];
g=255-srcb[cnt][1];
b=255-srcb[cnt][2];
dst[cnt][0] = b;
dst[cnt][1] = g;
dst[cnt][2] = r;
}
}
else if (srcf)
{
while((cnt)--)
{
int r, g, b;
r=255-srcf[cnt][0]*255;
g=255-srcf[cnt][1]*255;
b=255-srcf[cnt][2]*255;
dst[cnt][0] = bound(0, b, 255);
dst[cnt][1] = bound(0, g, 255);
dst[cnt][2] = bound(0, r, 255);
}
}
else
goto identity;
break;
case RGB_GEN_IDENTITY_LIGHTING:
//compensate for overbrights
block = D3DCOLOR_RGBA(255, 255, 255, 255); //shaderstate.identitylighting
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
break;
default:
identity:
case RGB_GEN_IDENTITY_OVERBRIGHT:
case RGB_GEN_IDENTITY:
block = D3DCOLOR_RGBA(255, 255, 255, 255);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
break;
case RGB_GEN_CONST:
block = D3DCOLOR_COLORVALUE(pass->rgbgen_func.args[0], pass->rgbgen_func.args[1], pass->rgbgen_func.args[2], 1);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
break;
case RGB_GEN_LIGHTING_DIFFUSE:
//collect lighting details for mobile entities
if (!mesh->normals_array)
{
block = D3DCOLOR_RGBA(255, 255, 255, 255);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
}
else
{
R_LightArraysByte_BGR(shaderstate.curentity , mesh->xyz_array, dst, cnt, mesh->normals_array, pass->rgbgen==RGB_GEN_ENTITY_LIGHTING_DIFFUSE);
}
break;
case RGB_GEN_WAVE:
{
float *table;
float c;
table = FTableForFunc(pass->rgbgen_func.type);
c = pass->rgbgen_func.args[2] + shaderstate.curtime * pass->rgbgen_func.args[3];
c = FTABLE_EVALUATE(table, c) * pass->rgbgen_func.args[1] + pass->rgbgen_func.args[0];
c = bound(0.0f, c, 1.0f);
block = D3DCOLOR_COLORVALUE(c, c, c, 1);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
}
break;
case RGB_GEN_TOPCOLOR:
case RGB_GEN_BOTTOMCOLOR:
#ifdef warningmsg
#pragma warningmsg("fix 24bit player colours")
#endif
block = D3DCOLOR_RGBA(255, 255, 255, 255);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
// Con_Printf("RGB_GEN %i not supported\n", pass->rgbgen);
break;
}
}
static void alphagenbyte(const shaderpass_t *pass, int cnt, byte_vec4_t *srcb, vec4_t *srcf, byte_vec4_t *dst, const mesh_t *mesh)
{
float *table;
unsigned char t;
float f;
vec3_t v1, v2;
switch (pass->alphagen)
{
default:
case ALPHA_GEN_IDENTITY:
if (shaderstate.flags & BEF_FORCETRANSPARENT)
{
f = shaderstate.curentity->shaderRGBAf[3];
if (f < 0)
t = 0;
else if (f >= 1)
t = 255;
else
t = f*255;
while(cnt--)
dst[cnt][3] = t;
}
else
{
while(cnt--)
dst[cnt][3] = 255;
}
break;
case ALPHA_GEN_CONST:
t = pass->alphagen_func.args[0]*255;
while(cnt--)
dst[cnt][3] = t;
break;
case ALPHA_GEN_WAVE:
table = FTableForFunc(pass->alphagen_func.type);
f = pass->alphagen_func.args[2] + shaderstate.curtime * pass->alphagen_func.args[3];
f = FTABLE_EVALUATE(table, f) * pass->alphagen_func.args[1] + pass->alphagen_func.args[0];
t = bound(0.0f, f, 1.0f)*255;
while(cnt--)
dst[cnt][3] = t;
break;
case ALPHA_GEN_PORTAL:
//FIXME: should this be per-vert?
VectorAdd(mesh->xyz_array[0], shaderstate.curentity->origin, v1);
VectorSubtract(r_origin, v1, v2);
f = VectorLength(v2) * (1.0 / 255.0);
t = bound(0.0f, f, 1.0f)*255;
while(cnt--)
dst[cnt][3] = t;
break;
case ALPHA_GEN_VERTEX:
if (srcb)
{
while(cnt--)
{
dst[cnt][3] = srcb[cnt][3];
}
}
else if (srcf)
{
while(cnt--)
{
dst[cnt][3] = bound(0, srcf[cnt][3]*255, 255);
}
}
else
{
while(cnt--)
{
dst[cnt][3] = 255;
}
}
break;
case ALPHA_GEN_ENTITY:
t = bound(0, shaderstate.curentity->shaderRGBAf[3], 1)*255;
while(cnt--)
{
dst[cnt][3] = t;
}
break;
case ALPHA_GEN_SPECULAR:
{
int i;
VectorSubtract(r_origin, shaderstate.curentity->origin, v1);
if (!Matrix3_Compare(shaderstate.curentity->axis, (void *)axisDefault))
{
Matrix3_Multiply_Vec3(shaderstate.curentity->axis, v1, v2);
}
else
{
VectorCopy(v1, v2);
}
for (i = 0; i < cnt; i++)
{
VectorSubtract(v2, mesh->xyz_array[i], v1);
f = DotProduct(v1, mesh->normals_array[i]) * Q_rsqrt(DotProduct(v1,v1));
f = f * f * f * f * f;
dst[i][3] = bound (0, (int)(f*255), 255);
}
}
break;
}
}
//true if we used an array (flag to use uniforms for it instead if false)
static void BE_GenerateColourMods(unsigned int vertcount, const shaderpass_t *pass)
{
const mesh_t *m = shaderstate.meshlist[0];
if (pass->flags & SHADER_PASS_NOCOLORARRAY)
{
#if 1
ID3D11Buffer *buf;
unsigned char *map;
unsigned int offset;
byte_vec4_t passcolour;
static byte_vec4_t fakesource = {0xff,0xff,0xff,0xff};
allocvertexbuffer(&buf, &offset, (void**)&map, sizeof(byte_vec4_t));
colourgenbyte(pass, 1, (byte_vec4_t*)&fakesource, NULL, (byte_vec4_t*)&passcolour, m);
alphagenbyte(pass, 1, (byte_vec4_t*)&fakesource, NULL, (byte_vec4_t*)&passcolour, m);
*(int*)map = *(int*)passcolour;
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
shaderstate.stream_buffer[D3D11_BUFF_COL] = buf;
shaderstate.stream_offset[D3D11_BUFF_COL] = offset;
shaderstate.stream_stride[D3D11_BUFF_COL] = 0; //omg that's so lame!
shaderstate.stream_rgbaf = false;
#else
ID3D11Buffer *buf;
unsigned char *map;
unsigned int offset;
vec4_t passcolour;
static vec4_t fakesource = {1,1,1,1};
allocvertexbuffer(&buf, &offset, (void**)&map, sizeof(fakesource));
colourgen(pass, 1, (vec4_t*)&fakesource, NULL, (vec4_t*)&passcolour, m);
alphagen(pass, 1, (vec4_t*)&fakesource, NULL, (vec4_t*)&passcolour, m);
Vector4Copy(passcolour, map);
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
shaderstate.stream_buffer[D3D11_BUFF_COL] = buf;
shaderstate.stream_offset[D3D11_BUFF_COL] = offset;
shaderstate.stream_stride[D3D11_BUFF_COL] = 0; //omg that's so lame!
shaderstate.stream_rgbaf = true;
#endif
}
else
{
if (shaderstate.batchvbo && (m->colors4f_array[0] &&
((pass->rgbgen == RGB_GEN_VERTEX_LIGHTING) ||
(pass->rgbgen == RGB_GEN_VERTEX_EXACT) ||
(pass->rgbgen == RGB_GEN_ONE_MINUS_VERTEX)) &&
(pass->alphagen == ALPHA_GEN_VERTEX)))
{
shaderstate.stream_buffer[D3D11_BUFF_COL] = shaderstate.batchvbo->colours[0].d3d.buff;
shaderstate.stream_offset[D3D11_BUFF_COL] = shaderstate.batchvbo->colours[0].d3d.offs;
shaderstate.stream_stride[D3D11_BUFF_COL] = sizeof(dx11_vbovdata_t);
shaderstate.stream_rgbaf = false;
}
else
{
ID3D11Buffer *buf;
byte_vec4_t *map;
unsigned int mno;
unsigned int offset;
allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(byte_vec4_t));
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
colourgenbyte(pass, m->numvertexes, m->colors4b_array, m->colors4f_array[0], map, m);
alphagenbyte(pass, m->numvertexes, m->colors4b_array, m->colors4f_array[0], map, m);
map += m->numvertexes;
}
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
shaderstate.stream_buffer[D3D11_BUFF_COL] = buf;
shaderstate.stream_offset[D3D11_BUFF_COL] = offset;
shaderstate.stream_stride[D3D11_BUFF_COL] = sizeof(byte_vec4_t);
shaderstate.stream_rgbaf = false;
}
}
}
/*********************************************************************************************************/
/*========================================== texture coord generation =====================================*/
static void tcgen_environment(float *st, unsigned int numverts, float *xyz, float *normal)
{
int i;
vec3_t viewer, reflected;
float d;
vec3_t rorg;
RotateLightVector(shaderstate.curentity->axis, shaderstate.curentity->origin, r_origin, rorg);
for (i = 0 ; i < numverts ; i++, xyz += sizeof(vecV_t)/sizeof(vec_t), normal += 3, st += 2 )
{
VectorSubtract (rorg, xyz, viewer);
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}
static float *tcgen(const shaderpass_t *pass, int cnt, float *dst, const mesh_t *mesh)
{
int i;
vecV_t *src;
switch (pass->tcgen)
{
default:
case TC_GEN_BASE:
return (float*)mesh->st_array;
case TC_GEN_LIGHTMAP:
return (float*)mesh->lmst_array[0];
case TC_GEN_NORMAL:
return (float*)mesh->normals_array;
case TC_GEN_SVECTOR:
return (float*)mesh->snormals_array;
case TC_GEN_TVECTOR:
return (float*)mesh->tnormals_array;
case TC_GEN_ENVIRONMENT:
tcgen_environment(dst, cnt, (float*)mesh->xyz_array, (float*)mesh->normals_array);
return dst;
case TC_GEN_DOTPRODUCT:
return dst;//mesh->st_array[0];
case TC_GEN_VECTOR:
src = mesh->xyz_array;
for (i = 0; i < cnt; i++, dst += 2)
{
dst[0] = DotProduct(pass->tcgenvec[0], src[i]);
dst[1] = DotProduct(pass->tcgenvec[1], src[i]);
}
return dst;
}
}
/*src and dst can be the same address when tcmods are chained*/
static void tcmod(const tcmod_t *tcmod, int cnt, const float *src, float *dst, const mesh_t *mesh)
{
float *table;
float t1, t2;
float cost, sint;
int j;
switch (tcmod->type)
{
case SHADER_TCMOD_ROTATE:
cost = tcmod->args[0] * shaderstate.curtime;
sint = R_FastSin(cost);
cost = R_FastSin(cost + 0.25);
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
t1 = cost * (src[0] - 0.5f) - sint * (src[1] - 0.5f) + 0.5f;
t2 = cost * (src[1] - 0.5f) + sint * (src[0] - 0.5f) + 0.5f;
dst[0] = t1;
dst[1] = t2;
}
break;
case SHADER_TCMOD_SCALE:
t1 = tcmod->args[0];
t2 = tcmod->args[1];
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
dst[0] = src[0] * t1;
dst[1] = src[1] * t2;
}
break;
case SHADER_TCMOD_TURB:
t1 = tcmod->args[2] + shaderstate.curtime * tcmod->args[3];
t2 = tcmod->args[1];
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
dst[0] = src[0] + R_FastSin (src[0]*t2+t1) * t2;
dst[1] = src[1] + R_FastSin (src[1]*t2+t1) * t2;
}
break;
case SHADER_TCMOD_STRETCH:
table = FTableForFunc(tcmod->args[0]);
t2 = tcmod->args[3] + shaderstate.curtime * tcmod->args[4];
t1 = FTABLE_EVALUATE(table, t2) * tcmod->args[2] + tcmod->args[1];
t1 = t1 ? 1.0f / t1 : 1.0f;
t2 = 0.5f - 0.5f * t1;
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
dst[0] = src[0] * t1 + t2;
dst[1] = src[1] * t1 + t2;
}
break;
case SHADER_TCMOD_SCROLL:
t1 = tcmod->args[0] * shaderstate.curtime;
t2 = tcmod->args[1] * shaderstate.curtime;
for (j = 0; j < cnt; j++, dst += 2, src+=2)
{
dst[0] = src[0] + t1;
dst[1] = src[1] + t2;
}
break;
case SHADER_TCMOD_TRANSFORM:
for (j = 0; j < cnt; j++, dst+=2, src+=2)
{
t1 = src[0];
t2 = src[1];
dst[0] = t1 * tcmod->args[0] + t2 * tcmod->args[2] + tcmod->args[4];
dst[1] = t1 * tcmod->args[1] + t2 * tcmod->args[3] + tcmod->args[5];
}
break;
default:
break;
}
}
static void BE_GenerateTCMods(const shaderpass_t *pass, float *dest)
{
mesh_t *mesh;
unsigned int mno;
int i;
float *src;
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
mesh = shaderstate.meshlist[mno];
src = tcgen(pass, mesh->numvertexes, dest, mesh);
//tcgen might return unmodified info
if (pass->numtcmods)
{
tcmod(&pass->tcmods[0], mesh->numvertexes, src, dest, mesh);
for (i = 1; i < pass->numtcmods; i++)
{
tcmod(&pass->tcmods[i], mesh->numvertexes, dest, dest, mesh);
}
}
else if (src != dest)
{
memcpy(dest, src, sizeof(vec2_t)*mesh->numvertexes);
}
dest += mesh->numvertexes*2;
}
}
//end texture coords
/*******************************************************************************************************************/
static void deformgen(const deformv_t *deformv, int cnt, vecV_t *src, vecV_t *dst, const mesh_t *mesh)
{
float *table;
int j, k;
float args[4];
float deflect;
switch (deformv->type)
{
default:
case DEFORMV_NONE:
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
break;
case DEFORMV_WAVE:
if (!mesh->normals_array)
{
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
return;
}
args[0] = deformv->func.args[0];
args[1] = deformv->func.args[1];
args[3] = deformv->func.args[2] + deformv->func.args[3] * shaderstate.curtime;
table = FTableForFunc(deformv->func.type);
for ( j = 0; j < cnt; j++ )
{
deflect = deformv->args[0] * (src[j][0]+src[j][1]+src[j][2]) + args[3];
deflect = FTABLE_EVALUATE(table, deflect) * args[1] + args[0];
// Deflect vertex along its normal by wave amount
VectorMA(src[j], deflect, mesh->normals_array[j], dst[j]);
}
break;
case DEFORMV_NORMAL:
//normal does not actually move the verts, but it does change the normals array
//we don't currently support that.
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
/*
args[0] = deformv->args[1] * shaderstate.curtime;
for ( j = 0; j < cnt; j++ )
{
args[1] = normalsArray[j][2] * args[0];
deflect = deformv->args[0] * R_FastSin(args[1]);
normalsArray[j][0] *= deflect;
deflect = deformv->args[0] * R_FastSin(args[1] + 0.25);
normalsArray[j][1] *= deflect;
VectorNormalizeFast(normalsArray[j]);
}
*/ break;
case DEFORMV_MOVE:
table = FTableForFunc(deformv->func.type);
deflect = deformv->func.args[2] + shaderstate.curtime * deformv->func.args[3];
deflect = FTABLE_EVALUATE(table, deflect) * deformv->func.args[1] + deformv->func.args[0];
for ( j = 0; j < cnt; j++ )
VectorMA(src[j], deflect, deformv->args, dst[j]);
break;
case DEFORMV_BULGE:
args[0] = deformv->args[0]/(2*M_PI);
args[1] = deformv->args[1];
args[2] = shaderstate.curtime * deformv->args[2]/(2*M_PI);
for (j = 0; j < cnt; j++)
{
deflect = R_FastSin(mesh->st_array[j][0]*args[0] + args[2])*args[1];
dst[j][0] = src[j][0]+deflect*mesh->normals_array[j][0];
dst[j][1] = src[j][1]+deflect*mesh->normals_array[j][1];
dst[j][2] = src[j][2]+deflect*mesh->normals_array[j][2];
}
break;
case DEFORMV_AUTOSPRITE:
if (mesh->numindexes < 6)
break;
for (j = 0; j < cnt-3; j+=4, src+=4, dst+=4)
{
vec3_t mid, d;
float radius;
mid[0] = 0.25*(src[0][0] + src[1][0] + src[2][0] + src[3][0]);
mid[1] = 0.25*(src[0][1] + src[1][1] + src[2][1] + src[3][1]);
mid[2] = 0.25*(src[0][2] + src[1][2] + src[2][2] + src[3][2]);
VectorSubtract(src[0], mid, d);
radius = 2*VectorLength(d);
for (k = 0; k < 4; k++)
{
dst[k][0] = mid[0] + radius*((mesh->st_array[j+k][0]-0.5)*r_refdef.m_view[0+0]-(mesh->st_array[j+k][1]-0.5)*r_refdef.m_view[0+1]);
dst[k][1] = mid[1] + radius*((mesh->st_array[j+k][0]-0.5)*r_refdef.m_view[4+0]-(mesh->st_array[j+k][1]-0.5)*r_refdef.m_view[4+1]);
dst[k][2] = mid[2] + radius*((mesh->st_array[j+k][0]-0.5)*r_refdef.m_view[8+0]-(mesh->st_array[j+k][1]-0.5)*r_refdef.m_view[8+1]);
}
}
break;
case DEFORMV_AUTOSPRITE2:
if (mesh->numindexes < 6)
break;
for (k = 0; k < mesh->numindexes; k += 6)
{
int long_axis, short_axis;
vec3_t axis;
float len[3];
mat3_t m0, m1, m2, result;
float *quad[4];
vec3_t rot_centre, tv, tv2;
quad[0] = (float *)(src + mesh->indexes[k+0]);
quad[1] = (float *)(src + mesh->indexes[k+1]);
quad[2] = (float *)(src + mesh->indexes[k+2]);
for (j = 2; j >= 0; j--)
{
quad[3] = (float *)(src + mesh->indexes[k+3+j]);
if (!VectorEquals (quad[3], quad[0]) &&
!VectorEquals (quad[3], quad[1]) &&
!VectorEquals (quad[3], quad[2]))
{
break;
}
}
// build a matrix were the longest axis of the billboard is the Y-Axis
VectorSubtract(quad[1], quad[0], m0[0]);
VectorSubtract(quad[2], quad[0], m0[1]);
VectorSubtract(quad[2], quad[1], m0[2]);
len[0] = DotProduct(m0[0], m0[0]);
len[1] = DotProduct(m0[1], m0[1]);
len[2] = DotProduct(m0[2], m0[2]);
if ((len[2] > len[1]) && (len[2] > len[0]))
{
if (len[1] > len[0])
{
long_axis = 1;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 1;
}
}
else if ((len[1] > len[2]) && (len[1] > len[0]))
{
if (len[2] > len[0])
{
long_axis = 2;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 2;
}
}
else //if ( (len[0] > len[1]) && (len[0] > len[2]) )
{
if (len[2] > len[1])
{
long_axis = 2;
short_axis = 1;
}
else
{
long_axis = 1;
short_axis = 2;
}
}
if (DotProduct(m0[long_axis], m0[short_axis]))
{
VectorNormalize2(m0[long_axis], axis);
VectorCopy(axis, m0[1]);
if (axis[0] || axis[1])
{
VectorVectors(m0[1], m0[2], m0[0]);
}
else
{
VectorVectors(m0[1], m0[0], m0[2]);
}
}
else
{
VectorNormalize2(m0[long_axis], axis);
VectorNormalize2(m0[short_axis], m0[0]);
VectorCopy(axis, m0[1]);
CrossProduct(m0[0], m0[1], m0[2]);
}
for (j = 0; j < 3; j++)
rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25;
if (shaderstate.curentity)
{
VectorAdd(shaderstate.curentity->origin, rot_centre, tv);
}
else
{
VectorCopy(rot_centre, tv);
}
VectorSubtract(r_origin, tv, tv);
// filter any longest-axis-parts off the camera-direction
deflect = -DotProduct(tv, axis);
VectorMA(tv, deflect, axis, m1[2]);
VectorNormalizeFast(m1[2]);
VectorCopy(axis, m1[1]);
CrossProduct(m1[1], m1[2], m1[0]);
Matrix3_Transpose(m1, m2);
Matrix3_Multiply(m2, m0, result);
for (j = 0; j < 4; j++)
{
int v = ((vecV_t*)quad[j]-src);
VectorSubtract(quad[j], rot_centre, tv);
Matrix3_Multiply_Vec3((void *)result, tv, tv2);
VectorAdd(rot_centre, tv2, dst[v]);
}
}
break;
// case DEFORMV_PROJECTION_SHADOW:
// break;
}
}
static void BE_ApplyUniforms(program_t *prog, struct programpermu_s *permu)
{
ID3D11Buffer *cbuf[3] =
{
shaderstate.ecbuffers[shaderstate.ecbufferidx], //entity buffer
shaderstate.vcbuffer, //view buffer that changes rarely
shaderstate.lcbuffer //light buffer that changes rarelyish
};
//FIXME: how many of these calls can we avoid?
ID3D11DeviceContext_IASetInputLayout(d3ddevctx, permu->h.hlsl.layouts[shaderstate.stream_rgbaf]);
ID3D11DeviceContext_VSSetShader(d3ddevctx, permu->h.hlsl.vert, NULL, 0);
ID3D11DeviceContext_HSSetShader(d3ddevctx, permu->h.hlsl.hull, NULL, 0);
ID3D11DeviceContext_DSSetShader(d3ddevctx, permu->h.hlsl.domain, NULL, 0);
ID3D11DeviceContext_GSSetShader(d3ddevctx, permu->h.hlsl.geom, NULL, 0);
ID3D11DeviceContext_PSSetShader(d3ddevctx, permu->h.hlsl.frag, NULL, 0);
ID3D11DeviceContext_IASetPrimitiveTopology(d3ddevctx, permu->h.hlsl.topology);
ID3D11DeviceContext_VSSetConstantBuffers(d3ddevctx, 0, 3, cbuf);
if (permu->h.hlsl.hull)
ID3D11DeviceContext_HSSetConstantBuffers(d3ddevctx, 0, 3, cbuf);
if (permu->h.hlsl.domain)
ID3D11DeviceContext_DSSetConstantBuffers(d3ddevctx, 0, 3, cbuf);
if (permu->h.hlsl.geom)
ID3D11DeviceContext_GSSetConstantBuffers(d3ddevctx, 0, 3, cbuf);
ID3D11DeviceContext_PSSetConstantBuffers(d3ddevctx, 0, 3, cbuf);
}
static void BE_RenderMeshProgram(program_t *p, shaderpass_t *pass, unsigned int vertcount, unsigned int idxfirst, unsigned int idxcount)
{
int passno;
int perm = 0;
struct programpermu_s *pp;
if (TEXLOADED(shaderstate.curtexnums->bump))
perm |= PERMUTATION_BUMPMAP;
if (TEXLOADED(shaderstate.curtexnums->fullbright))
perm |= PERMUTATION_FULLBRIGHT;
if ((TEXLOADED(shaderstate.curtexnums->upperoverlay) || TEXLOADED(shaderstate.curtexnums->loweroverlay)))
perm |= PERMUTATION_UPPERLOWER;
if (r_refdef.globalfog.density)
perm |= PERMUTATION_FOG;
// if (r_glsl_offsetmapping.ival && TEXLOADED(shaderstate.curtexnums->bump))
// perm |= PERMUTATION_OFFSET;
perm &= p->supportedpermutations;
pp = p->permu[perm];
if (!pp)
{
p->permu[perm] = pp = Shader_LoadPermutation(p, perm);
if (!pp)
{ //failed? copy from 0 so we don't keep re-failing
pp = p->permu[perm] = p->permu[0];
}
}
BE_ApplyUniforms(p, pp);
D3D11BE_ApplyShaderBits(pass->shaderbits, &pass->becache);
/*activate tmus*/
for (passno = 0; passno < pass->numMergedPasses; passno++)
{
SelectPassTexture(passno, pass+passno);
}
/*deactivate any extras*/
for (; passno < shaderstate.lastpasscount; passno++)
{
shaderstate.pendingtextures[passno] = NULL;
shaderstate.textureschanged = true;
}
if (shaderstate.textureschanged)
ID3D11DeviceContext_PSSetShaderResources(d3ddevctx, 0, max(passno, pass->numMergedPasses), shaderstate.pendingtextures);
shaderstate.lastpasscount = pass->numMergedPasses;
ID3D11DeviceContext_DrawIndexed(d3ddevctx, idxcount, idxfirst, 0);
RQuantAdd(RQUANT_DRAWS, 1);
}
static void D3D11BE_Cull(unsigned int cullflags, int depthbias, float depthfactor)
{
HRESULT hr;
D3D11_RASTERIZER_DESC rasterdesc;
ID3D11RasterizerState *newrasterizerstate;
if (shaderstate.flags & BEF_FORCETWOSIDED)
cullflags = 0;
else if (cullflags)
cullflags ^= r_refdef.flipcull;
#define SHADER_CULL_WIREFRAME SHADER_NODRAW //borrow a flag...
if (shaderstate.mode == BEM_WIREFRAME)
cullflags |= SHADER_CULL_WIREFRAME;
if (shaderstate.curcull != cullflags || shaderstate.depthbias != depthbias || shaderstate.depthfactor != depthfactor)
{
shaderstate.curcull = cullflags;
shaderstate.depthbias = depthbias;
shaderstate.depthfactor = depthfactor;
rasterdesc.AntialiasedLineEnable = false;
if (shaderstate.curcull & 1)
{
if (shaderstate.curcull & SHADER_CULL_FRONT)
rasterdesc.CullMode = D3D11_CULL_FRONT;
else if (shaderstate.curcull & SHADER_CULL_BACK)
rasterdesc.CullMode = D3D11_CULL_BACK;
else
rasterdesc.CullMode = D3D11_CULL_NONE;
}
else
{
if (shaderstate.curcull & SHADER_CULL_FRONT)
rasterdesc.CullMode = D3D11_CULL_BACK;
else if (shaderstate.curcull & SHADER_CULL_BACK)
rasterdesc.CullMode = D3D11_CULL_FRONT;
else
rasterdesc.CullMode = D3D11_CULL_NONE;
}
rasterdesc.DepthBias = shaderstate.depthbias;
rasterdesc.SlopeScaledDepthBias = shaderstate.depthfactor;
rasterdesc.DepthBiasClamp = 0.0f;
rasterdesc.DepthClipEnable = true;
rasterdesc.FillMode = (shaderstate.curcull&SHADER_CULL_WIREFRAME)?D3D11_FILL_WIREFRAME:D3D11_FILL_SOLID;
rasterdesc.FrontCounterClockwise = false;
rasterdesc.MultisampleEnable = false;
rasterdesc.ScissorEnable = true;
if (FAILED(hr=ID3D11Device_CreateRasterizerState(pD3DDev11, &rasterdesc, &newrasterizerstate)))
{
if (hr == DXGI_ERROR_DEVICE_REMOVED)
{
hr = ID3D11Device_GetDeviceRemovedReason(pD3DDev11);
switch(hr)
{
case DXGI_ERROR_DEVICE_HUNG:
Sys_Error("DXGI_ERROR_DEVICE_HUNG\nThe application's device failed due to badly formed commands sent by the application.\n");
break;
case DXGI_ERROR_DEVICE_REMOVED:
Sys_Error("DXGI_ERROR_DEVICE_REMOVED\nThe video card has been physically removed from the system, or a driver upgrade for the video card has occurred.\n");
break;
case DXGI_ERROR_DEVICE_RESET:
Sys_Error("DXGI_ERROR_DEVICE_RESET\nThe device failed due to a badly formed command.\n");
break;
case DXGI_ERROR_DRIVER_INTERNAL_ERROR:
Sys_Error("DXGI_ERROR_DRIVER_INTERNAL_ERROR\nThe driver encountered a problem and was put into the device removed state.\n");
break;
case DXGI_ERROR_INVALID_CALL:
Sys_Error("invalid call! oh noes!\n");
break;
default:
break;
}
}
else
Con_Printf("ID3D11Device_CreateRasterizerState failed\n");
return;
}
ID3D11DeviceContext_RSSetState(d3ddevctx, newrasterizerstate);
ID3D11RasterizerState_Release(newrasterizerstate);
}
}
static void BE_DrawMeshChain_Internal(void)
{
shader_t *altshader;
unsigned int vertcount, idxcount, idxfirst;
mesh_t *m;
qboolean vblends; //software
// void *map;
// int i;
unsigned int mno;
unsigned int passno;
// extern cvar_t r_polygonoffset_submodel_factor;
// float pushdepth;
// float pushfactor;
altshader = shaderstate.curshader;
switch (shaderstate.mode)
{
case BEM_LIGHT:
altshader = shaderstate.shader_rtlight[shaderstate.curlmode];
break;
case BEM_DEPTHONLY:
altshader = shaderstate.curshader->bemoverrides[bemoverride_depthonly];
if (!altshader)
altshader = shaderstate.depthonly;
break;
default:
case BEM_STANDARD:
altshader = shaderstate.curshader;
break;
case BEM_WIREFRAME:
altshader = R_RegisterShader("wireframe", SUF_NONE,
"{\n"
"{\n"
"map $whiteimage\n"
"}\n"
"}\n"
);
break;
}
if (!altshader)
return;
if (0)//shaderstate.force2d)
{
RQuantAdd(RQUANT_2DBATCHES, 1);
}
else if (shaderstate.curentity == &r_worldentity)
{
RQuantAdd(RQUANT_WORLDBATCHES, 1);
}
else
{
RQuantAdd(RQUANT_ENTBATCHES, 1);
}
D3D11BE_Cull(shaderstate.curshader->flags & (SHADER_CULL_FRONT | SHADER_CULL_BACK), shaderstate.curshader->polyoffset.unit, shaderstate.curshader->polyoffset.factor);
memset(shaderstate.stream_buffer, 0, sizeof(shaderstate.stream_buffer));
//if this flag is set, then we have to generate our own arrays. to avoid processing extra verticies this may require that we re-pack the verts
if (shaderstate.meshlist[0]->xyz2_array)// && !altshader->prog)
{
vblends = true;
shaderstate.batchvbo = NULL;
}
else
{
vblends = false;
if (altshader->flags & SHADER_NEEDSARRAYS)
shaderstate.batchvbo = NULL;
}
/*so are index buffers*/
if (shaderstate.batchvbo && shaderstate.nummeshes == 1)
{
m = shaderstate.meshlist[0];
ID3D11DeviceContext_IASetIndexBuffer(d3ddevctx, shaderstate.batchvbo->indicies.d3d.buff, DXGI_FORMAT_INDEX_UINT, shaderstate.batchvbo->indicies.d3d.offs);
idxfirst = m->vbofirstelement;
vertcount = m->vbofirstvert + m->numvertexes;
idxcount = m->numindexes;
}
else if (shaderstate.batchvbo)
{ /*however, we still want to try to avoid discontinuities, because that would otherwise be more draw calls. we can have gaps in verts though*/
index_t *map;
ID3D11Buffer *buf;
unsigned int i;
unsigned int byteofs;
vertcount = shaderstate.batchvbo->vertcount;
for (mno = 0, idxcount = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
idxcount += m->numindexes;
}
byteofs = allocindexbuffer(&map, &buf, idxcount);
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
for (i = 0; i < m->numindexes; i++)
map[i] = m->indexes[i]+m->vbofirstvert;
map += m->numindexes;
}
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
ID3D11DeviceContext_IASetIndexBuffer(d3ddevctx, buf, DXGI_FORMAT_INDEX_UINT, byteofs);
idxfirst = 0;
}
else
{ /*we're going to be using dynamic array stuff here, so generate an index array list that has no vertex gaps*/
index_t *map;
ID3D11Buffer *buf;
unsigned int i;
unsigned int byteofs;
for (mno = 0, vertcount = 0, idxcount = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
vertcount += m->numvertexes;
idxcount += m->numindexes;
}
byteofs = allocindexbuffer(&map, &buf, idxcount);
for (mno = 0, vertcount = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
for (i = 0; i < m->numindexes; i++)
map[i] = m->indexes[i]+vertcount;
map += m->numindexes;
vertcount += m->numvertexes;
}
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
ID3D11DeviceContext_IASetIndexBuffer(d3ddevctx, buf, DXGI_FORMAT_INDEX_UINT, byteofs);
idxfirst = 0;
}
/*vertex buffers are common to all passes*/
if (shaderstate.batchvbo && !vblends)
{
shaderstate.stream_buffer[D3D11_BUFF_POS] = shaderstate.batchvbo->coord.d3d.buff;
shaderstate.stream_offset[D3D11_BUFF_POS] = shaderstate.batchvbo->coord.d3d.offs;
shaderstate.stream_stride[D3D11_BUFF_POS] = sizeof(dx11_vbovdata_t);
}
else
{
ID3D11Buffer *buf;
vecV_t *map;
const mesh_t *m;
unsigned int mno;
unsigned int offset, i;
allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(vecV_t));
if (vblends)
{
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
const mesh_t *m = shaderstate.meshlist[mno];
vecV_t *ov = shaderstate.curshader->numdeforms?tmpbuf:map;
vecV_t *iv1 = m->xyz_array;
vecV_t *iv2 = m->xyz2_array;
float w1 = m->xyz_blendw[0];
float w2 = m->xyz_blendw[1];
for (i = 0; i < m->numvertexes; i++)
{
ov[i][0] = iv1[i][0]*w1 + iv2[i][0]*w2;
ov[i][1] = iv1[i][1]*w1 + iv2[i][1]*w2;
ov[i][2] = iv1[i][2]*w1 + iv2[i][2]*w2;
}
if (shaderstate.curshader->numdeforms)
{
for (i = 0; i < shaderstate.curshader->numdeforms-1; i++)
deformgen(&shaderstate.curshader->deforms[i], m->numvertexes, tmpbuf, tmpbuf, m);
deformgen(&shaderstate.curshader->deforms[i], m->numvertexes, tmpbuf, (vecV_t*)map, m);
}
map += m->numvertexes;
}
}
else if (shaderstate.curshader->numdeforms > 1)
{ //horrible code, because multiple deforms would otherwise READ from the gpu memory
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
deformgen(&shaderstate.curshader->deforms[0], m->numvertexes, m->xyz_array, tmpbuf, m);
for (i = 1; i < shaderstate.curshader->numdeforms-1; i++)
deformgen(&shaderstate.curshader->deforms[i], m->numvertexes, tmpbuf, tmpbuf, m);
deformgen(&shaderstate.curshader->deforms[i], m->numvertexes, tmpbuf, (vecV_t*)map, m);
map += m->numvertexes;
}
}
else
{
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
deformgen(&shaderstate.curshader->deforms[0], m->numvertexes, m->xyz_array, (vecV_t*)map, m);
map += m->numvertexes;
}
}
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
shaderstate.stream_buffer[D3D11_BUFF_POS] = buf;
shaderstate.stream_offset[D3D11_BUFF_POS] = offset;
shaderstate.stream_stride[D3D11_BUFF_POS] = sizeof(vecV_t);
}
if (altshader->prog)
{
if (shaderstate.batchvbo)
{
shaderstate.stream_buffer[D3D11_BUFF_COL] = shaderstate.batchvbo->colours[0].d3d.buff;
shaderstate.stream_offset[D3D11_BUFF_COL] = shaderstate.batchvbo->colours[0].d3d.offs;
shaderstate.stream_stride[D3D11_BUFF_COL] = sizeof(dx11_vbovdata_t);
shaderstate.stream_rgbaf = false;
shaderstate.stream_buffer[D3D11_BUFF_TC] = shaderstate.batchvbo->texcoord.d3d.buff;
shaderstate.stream_offset[D3D11_BUFF_TC] = shaderstate.batchvbo->texcoord.d3d.offs;
shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(dx11_vbovdata_t);
shaderstate.stream_buffer[D3D11_BUFF_LMTC] = shaderstate.batchvbo->lmcoord[0].d3d.buff;
shaderstate.stream_offset[D3D11_BUFF_LMTC] = shaderstate.batchvbo->lmcoord[0].d3d.offs;
shaderstate.stream_stride[D3D11_BUFF_LMTC] = sizeof(dx11_vbovdata_t);
shaderstate.stream_buffer[D3D11_BUFF_NORM] = shaderstate.batchvbo->normals.d3d.buff;
shaderstate.stream_offset[D3D11_BUFF_NORM] = shaderstate.batchvbo->normals.d3d.offs;
shaderstate.stream_stride[D3D11_BUFF_NORM] = sizeof(dx11_vbovdata_t);
}
else
{
ID3D11Buffer *buf;
vec2_t *map;
vec2_t *lmmap;
const mesh_t *m;
unsigned int mno;
unsigned int offset, i;
if (shaderstate.meshlist[0]->colors4f_array[0])
{
vec4_t *map;
allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(*map));
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
memcpy(map, m->colors4f_array[0], sizeof(*map)*m->numvertexes);
map += m->numvertexes;
}
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
shaderstate.stream_buffer[D3D11_BUFF_COL] = buf;
shaderstate.stream_offset[D3D11_BUFF_COL] = offset;
shaderstate.stream_stride[D3D11_BUFF_COL] = sizeof(*map);
shaderstate.stream_rgbaf = true;
}
else if (shaderstate.meshlist[0]->colors4b_array)
{
byte_vec4_t *map;
allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(byte_vec4_t));
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
for (i = 0; i < m->numvertexes; i++)
memcpy(map, m->colors4b_array, vertcount*sizeof(byte_vec4_t));
map += m->numvertexes;
}
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
shaderstate.stream_buffer[D3D11_BUFF_COL] = buf;
shaderstate.stream_offset[D3D11_BUFF_COL] = offset;
shaderstate.stream_stride[D3D11_BUFF_COL] = sizeof(byte_vec4_t);
shaderstate.stream_rgbaf = false;
}
else
{
shaderstate.stream_buffer[D3D11_BUFF_COL] = 0;
shaderstate.stream_offset[D3D11_BUFF_COL] = 0;
shaderstate.stream_stride[D3D11_BUFF_COL] = 0;
shaderstate.stream_rgbaf = false;
}
if (shaderstate.meshlist[0]->lmst_array[0])
{
allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(vec4_t));
lmmap = map + vertcount;
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
for (i = 0; i < m->numvertexes; i++)
{
map[i][0] = m->st_array[i][0];
map[i][1] = m->st_array[i][1];
lmmap[i][0] = m->lmst_array[0][i][0];
lmmap[i][1] = m->lmst_array[0][i][1];
}
map += m->numvertexes;
lmmap += m->numvertexes;
}
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
shaderstate.stream_buffer[D3D11_BUFF_TC] = buf;
shaderstate.stream_offset[D3D11_BUFF_TC] = offset;
shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(vec2_t);
shaderstate.stream_buffer[D3D11_BUFF_LMTC] = buf;
shaderstate.stream_offset[D3D11_BUFF_LMTC] = offset+vertcount*sizeof(vec2_t);
shaderstate.stream_stride[D3D11_BUFF_LMTC] = sizeof(vec2_t);
}
else
{
allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(vec2_t));
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
for (i = 0; i < m->numvertexes; i++)
{
map[i][0] = m->st_array[i][0];
map[i][1] = m->st_array[i][1];
}
map += m->numvertexes;
}
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
shaderstate.stream_buffer[D3D11_BUFF_TC] = buf;
shaderstate.stream_offset[D3D11_BUFF_TC] = offset;
shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(vec2_t);
shaderstate.stream_buffer[D3D11_BUFF_LMTC] = NULL;
shaderstate.stream_offset[D3D11_BUFF_LMTC] = 0;
shaderstate.stream_stride[D3D11_BUFF_LMTC] = 0;
}
}
ID3D11DeviceContext_IASetVertexBuffers(d3ddevctx, 0, D3D11_BUFF_MAX, (ID3D11Buffer**)shaderstate.stream_buffer, shaderstate.stream_stride, shaderstate.stream_offset);
BE_RenderMeshProgram(altshader->prog, altshader->passes, vertcount, idxfirst, idxcount);
}
else if (1)
{
shaderpass_t *p;
//d3d11 has no fixed function pipeline. we emulate it.
for (passno = 0; passno < altshader->numpasses; passno += p->numMergedPasses)
{
int emumode;
p = &altshader->passes[passno];
emumode = 0;
emumode = (p->shaderbits & SBITS_ATEST_BITS) >> SBITS_ATEST_SHIFT;
BE_GenerateColourMods(vertcount, p);
if (shaderstate.batchvbo)
{ //texcoords are all compatible with static arrays, supposedly
if (p->tcgen == TC_GEN_LIGHTMAP)
{
shaderstate.stream_buffer[D3D11_BUFF_TC] = shaderstate.batchvbo->lmcoord[0].d3d.buff;
shaderstate.stream_offset[D3D11_BUFF_TC] = shaderstate.batchvbo->lmcoord[0].d3d.offs;
shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(dx11_vbovdata_t);
}
else if (p->tcgen == TC_GEN_BASE)
{
shaderstate.stream_buffer[D3D11_BUFF_TC] = shaderstate.batchvbo->texcoord.d3d.buff;
shaderstate.stream_offset[D3D11_BUFF_TC] = shaderstate.batchvbo->texcoord.d3d.offs;
shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(dx11_vbovdata_t);
}
else
{
Con_Printf("should be unreachable\n");
}
}
else
{
ID3D11Buffer *buf;
float *map;
unsigned int offset;
allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(vec2_t));
BE_GenerateTCMods(p, map);
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0);
shaderstate.stream_buffer[D3D11_BUFF_TC] = buf;
shaderstate.stream_offset[D3D11_BUFF_TC] = offset;
shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(vec2_t);
}
if (!shaderstate.programfixedemu[emumode])
{
char *modes[] = {
"","#ALPHATEST=>0.0","#ALPHATEST=<0.5","#ALPHATEST=>=0.5"
};
shaderstate.programfixedemu[emumode] = Shader_FindGeneric(va("fixedemu%s", modes[emumode]), QR_DIRECT3D11);
if (!shaderstate.programfixedemu[emumode])
break;
}
ID3D11DeviceContext_IASetVertexBuffers(d3ddevctx, 0, D3D11_BUFF_MAX, (ID3D11Buffer**)shaderstate.stream_buffer, shaderstate.stream_stride, shaderstate.stream_offset);
BE_RenderMeshProgram(shaderstate.programfixedemu[emumode], p, vertcount, idxfirst, idxcount);
}
}
}
void D3D11BE_SelectMode(backendmode_t mode)
{
shaderstate.mode = mode;
if (mode == BEM_STENCIL)
D3D11BE_ApplyShaderBits(SBITS_MASK_BITS, NULL);
}
qboolean D3D11BE_GenerateRTLightShader(unsigned int lmode)
{
if (!shaderstate.shader_rtlight[lmode])
{
shaderstate.shader_rtlight[lmode] = R_RegisterShader(va("rtlight%s%s%s",
(lmode & LSHADER_SMAP)?"#PCF":"",
(lmode & LSHADER_SPOT)?"#SPOT":"",
(lmode & LSHADER_CUBE)?"#CUBE":"")
, SUF_NONE, LIGHTPASS_SHADER);
}
if (!shaderstate.shader_rtlight[lmode]->prog)
return false;
return true;
}
qboolean D3D11BE_SelectDLight(dlight_t *dl, vec3_t colour, vec3_t axis[3], unsigned int lmode)
{
if (!D3D11BE_GenerateRTLightShader(lmode))
{
lmode &= ~(LSHADER_SMAP|LSHADER_CUBE);
if (!D3D11BE_GenerateRTLightShader(lmode))
return false;
}
shaderstate.curdlight = dl;
shaderstate.curlmode = lmode;
VectorCopy(colour, shaderstate.curdlight_colours);
D3D11BE_SetupLightCBuffer(dl, colour);
return true;
}
#ifdef RTLIGHTS
void D3D11BE_SetupForShadowMap(dlight_t *dl, int texwidth, int texheight, float shadowscale)
{
#define SHADOWMAP_SIZE 512
extern cvar_t r_shadow_shadowmapping_nearclip, r_shadow_shadowmapping_bias;
float nc = r_shadow_shadowmapping_nearclip.value;
float bias = r_shadow_shadowmapping_bias.value;
//much of the projection matrix cancels out due to symmetry and stuff
//we need to scale between -0.5,0.5 within the sub-image. the fragment shader will center on the subimage based upon the major axis.
//in d3d, the depth value is scaled between 0 and 1 (gl is -1 to 1).
//d3d's framebuffer is upside down or something annoying like that.
shaderstate.lightshadowmapproj[0] = shadowscale * (1.0-(1.0/texwidth)) * 0.5/3.0; //pinch x inwards
shaderstate.lightshadowmapproj[1] = -shadowscale * (1.0-(1.0/texheight)) * 0.5/2.0; //pinch y inwards
shaderstate.lightshadowmapproj[2] = 0.5*(dl->radius+nc)/(nc-dl->radius); //proj matrix 10
shaderstate.lightshadowmapproj[3] = (dl->radius*nc)/(nc-dl->radius) - bias*nc*(1024/texheight); //proj matrix 14
shaderstate.lightshadowmapscale[0] = 1.0/(SHADOWMAP_SIZE*3);
shaderstate.lightshadowmapscale[1] = -1.0/(SHADOWMAP_SIZE*2);
}
#endif
void D3D11BE_SelectEntity(entity_t *ent)
{
BE_RotateForEntity(ent, ent->model);
}
void D3D11BE_GenBatchVBOs(vbo_t **vbochain, batch_t *firstbatch, batch_t *stopbatch)
{
int maxvboelements;
int maxvboverts;
int vert = 0, idx = 0;
batch_t *batch;
vbo_t *vbo;
int i, j;
mesh_t *m;
ID3D11Buffer *vbuff;
ID3D11Buffer *ebuff;
index_t *vboedata, *vboedatastart;
dx11_vbovdata_t *vbovdata, *vbovdatastart;
D3D11_BUFFER_DESC vbodesc;
D3D11_BUFFER_DESC ebodesc;
D3D11_SUBRESOURCE_DATA srd;
vbo = Z_Malloc(sizeof(*vbo));
maxvboverts = 0;
maxvboelements = 0;
for(batch = firstbatch; batch != stopbatch; batch = batch->next)
{
for (i=0 ; i<batch->maxmeshes ; i++)
{
m = batch->mesh[i];
maxvboelements += m->numindexes;
maxvboverts += m->numvertexes;
}
}
vbovdatastart = vbovdata = BZ_Malloc(sizeof(*vbovdata) * maxvboverts);
vboedatastart = vboedata = BZ_Malloc(sizeof(*vboedata) * maxvboelements);
for(batch = firstbatch; batch != stopbatch; batch = batch->next)
{
batch->vbo = vbo;
for (j=0 ; j<batch->maxmeshes ; j++)
{
m = batch->mesh[j];
m->vbofirstvert = vert;
for (i = 0; i < m->numvertexes; i++)
{
VectorCopy(m->xyz_array[i], vbovdata->coord);
vbovdata->coord[3] = 1;
Vector2Copy(m->st_array[i], vbovdata->tex);
if (m->lmst_array[0])
Vector2Copy(m->lmst_array[0][i], vbovdata->lm);
else
Vector2Copy(m->st_array[i], vbovdata->tex);
if (m->normals_array)
VectorCopy(m->normals_array[i], vbovdata->ndir);
else
VectorSet(vbovdata->ndir, 0, 0, 1);
if (m->snormals_array)
VectorCopy(m->snormals_array[i], vbovdata->sdir);
else
VectorSet(vbovdata->sdir, 1, 0, 0);
if (m->tnormals_array)
VectorCopy(m->tnormals_array[i], vbovdata->tdir);
else
VectorSet(vbovdata->tdir, 0, 1, 0);
if (m->colors4f_array[0])
Vector4Scale(m->colors4f_array[0][i], 255, vbovdata->colorsb);
else if (m->colors4b_array)
Vector4Copy(m->colors4b_array[i], vbovdata->colorsb);
else
Vector4Set(vbovdata->colorsb, 255, 255, 255, 255);
vbovdata++;
}
m->vbofirstelement = idx;
for (i = 0; i < m->numindexes; i++)
{
*vboedata++ = vert + m->indexes[i];
}
idx += m->numindexes;
vert += m->numvertexes;
}
}
//generate the ebo, and submit the data to the driver
ebodesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
ebodesc.ByteWidth = sizeof(*vboedata) * maxvboelements;
ebodesc.CPUAccessFlags = 0;
ebodesc.MiscFlags = 0;
ebodesc.StructureByteStride = 0;
ebodesc.Usage = D3D11_USAGE_DEFAULT;
srd.pSysMem = vboedatastart;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
ID3D11Device_CreateBuffer(pD3DDev11, &ebodesc, &srd, &ebuff);
shaderstate.numlivevbos++;
BZ_Free(vboedatastart);
//generate the vbo, and submit the data to the driver
vbodesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vbodesc.ByteWidth = sizeof(*vbovdata) * maxvboverts;
vbodesc.CPUAccessFlags = 0;
vbodesc.MiscFlags = 0;
vbodesc.StructureByteStride = 0;
vbodesc.Usage = D3D11_USAGE_DEFAULT;
srd.pSysMem = vbovdatastart;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
ID3D11Device_CreateBuffer(pD3DDev11, &vbodesc, &srd, &vbuff);
shaderstate.numlivevbos++;
BZ_Free(vbovdatastart);
vbovdata = NULL;
vbo->coord.d3d.buff = vbuff;
vbo->coord.d3d.offs = (quintptr_t)&vbovdata->coord;
vbo->texcoord.d3d.buff = vbuff;
vbo->texcoord.d3d.offs = (quintptr_t)&vbovdata->tex;
vbo->lmcoord[0].d3d.buff = vbuff;
vbo->lmcoord[0].d3d.offs = (quintptr_t)&vbovdata->lm;
vbo->normals.d3d.buff = vbuff;
vbo->normals.d3d.offs = (quintptr_t)&vbovdata->ndir;
vbo->svector.d3d.buff = vbuff;
vbo->svector.d3d.offs = (quintptr_t)&vbovdata->sdir;
vbo->tvector.d3d.buff = vbuff;
vbo->tvector.d3d.offs = (quintptr_t)&vbovdata->tdir;
vbo->colours[0].d3d.buff = vbuff;
vbo->colours[0].d3d.offs = (quintptr_t)&vbovdata->colorsb;
vbo->indicies.d3d.buff = ebuff;
vbo->indicies.d3d.offs = 0;
vbo->indexcount = maxvboelements;
vbo->vertcount = maxvboverts;
vbo->next = *vbochain;
*vbochain = vbo;
}
void D3D11BE_GenBrushModelVBO(model_t *mod)
{
unsigned int vcount, cvcount;
batch_t *batch, *fbatch;
int sortid;
int i;
fbatch = NULL;
vcount = 0;
for (sortid = 0; sortid < SHADER_SORT_COUNT; sortid++)
{
if (!mod->batches[sortid])
continue;
for (fbatch = batch = mod->batches[sortid]; batch != NULL; batch = batch->next)
{
for (i = 0, cvcount = 0; i < batch->maxmeshes; i++)
cvcount += batch->mesh[i]->numvertexes;
//firstmesh got reused as the number of verticies in each batch
if (vcount + cvcount > MAX_INDICIES)
{
D3D11BE_GenBatchVBOs(&mod->vbos, fbatch, batch);
fbatch = batch;
vcount = 0;
}
vcount += cvcount;
}
D3D11BE_GenBatchVBOs(&mod->vbos, fbatch, batch);
}
}
/*Wipes a vbo*/
void D3D11BE_ClearVBO(vbo_t *vbo, qboolean dataonly)
{
ID3D11Buffer *vbuff = vbo->coord.d3d.buff;
ID3D11Buffer *ebuff = vbo->indicies.d3d.buff;
if (vbuff)
{
ID3D11Buffer_Release(vbuff);
shaderstate.numlivevbos--;
}
if (ebuff)
{
ID3D11Buffer_Release(ebuff);
shaderstate.numlivevbos--;
}
vbo->coord.d3d.buff = NULL;
vbo->indicies.d3d.buff = NULL;
if (!dataonly)
BZ_Free(vbo);
}
/*upload all lightmaps at the start to reduce lags*/
static void BE_UploadLightmaps(qboolean force)
{
int i;
for (i = 0; i < numlightmaps; i++)
{
if (!lightmap[i])
continue;
if (force && !lightmap[i]->external)
{
lightmap[i]->rectchange.l = 0;
lightmap[i]->rectchange.t = 0;
lightmap[i]->rectchange.r = lightmap[i]->width;
lightmap[i]->rectchange.b = lightmap[i]->height;
lightmap[i]->modified = true;
}
if (lightmap[i]->modified)
{
D3D11_UploadLightmap(lightmap[i]);
}
}
}
void D3D11BE_UploadAllLightmaps(void)
{
BE_UploadLightmaps(true);
}
qboolean D3D11BE_LightCullModel(vec3_t org, model_t *model)
{
#ifdef RTLIGHTS
if ((shaderstate.mode == BEM_LIGHT || shaderstate.mode == BEM_STENCIL))
{
/*true if hidden from current light*/
/*we have no rtlight support, so mneh*/
}
#endif
return false;
}
batch_t *D3D11BE_GetTempBatch(void)
{
if (shaderstate.wbatch >= shaderstate.maxwbatches)
{
shaderstate.wbatch++;
return NULL;
}
return &shaderstate.wbatches[shaderstate.wbatch++];
}
/*static float projd3dtogl[16] =
{
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 2.0, 0.0,
0.0, 0.0, -1.0, 1.0
};*/
static float projgltod3d[16] =
{
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.0, 0.0, 0.5, 1.0
};
static void D3D11BE_SetupViewCBuffer(void)
{
dx11_cbuf_view_t *cbv;
D3D11_MAPPED_SUBRESOURCE msr;
if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)shaderstate.vcbuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &msr)))
{
Con_Printf("BE_RotateForEntity: failed to map constant buffer\n");
return;
}
cbv = (dx11_cbuf_view_t*)msr.pData;
//we internally use gl-style projection matricies.
//gl's viewport is based upon -1 to 1 depth.
//d3d uses 0 to 1 depth.
//so we scale the projection matrix by a bias
#if 1
Matrix4_Multiply(projgltod3d, (shaderstate.depthrange<1)?r_refdef.m_projection_view:r_refdef.m_projection_std, cbv->m_projection);
#else
memcpy(cbv->m_projection, r_refdef.m_projection_std, sizeof(cbv->m_projection));
cbv->m_projection[10] = r_refdef.m_projection_std[10] * 0.5;
#endif
memcpy(cbv->m_view, r_refdef.m_view, sizeof(cbv->m_view));
VectorCopy(r_origin, cbv->v_eyepos);
cbv->v_time = r_refdef.time;
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)shaderstate.vcbuffer, 0);
}
void D3D11BE_Set2D(void)
{
D3D11_VIEWPORT vport;
vport.TopLeftX = 0;
vport.TopLeftY = 0;
vport.Width = vid.pixelwidth;
vport.Height = vid.pixelheight;
vport.MinDepth = 0;
vport.MaxDepth = shaderstate.depthrange = 1;
ID3D11DeviceContext_RSSetViewports(d3ddevctx, 1, &vport);
D3D11BE_SetupViewCBuffer();
D3D11BE_Scissor(NULL);
}
void D3D11BE_SetupLightCBuffer(dlight_t *l, vec3_t colour)
{
extern cvar_t gl_specular;
dx11_cbuf_light_t *cbl;
D3D11_MAPPED_SUBRESOURCE msr;
if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)shaderstate.lcbuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &msr)))
{
Con_Printf("BE_RotateForEntity: failed to map constant buffer\n");
return;
}
cbl = (dx11_cbuf_light_t*)msr.pData;
cbl->l_lightradius = l->radius;
Matrix4x4_CM_LightMatrixFromAxis(cbl->l_cubematrix, l->axis[0], l->axis[1], l->axis[2], l->origin);
VectorCopy(l->origin, cbl->l_lightposition);
cbl->padl1 = 0;
VectorCopy(colour, cbl->l_colour);
#ifdef RTLIGHTS
VectorCopy(l->lightcolourscales, cbl->l_lightcolourscale);
cbl->l_lightcolourscale[0] = l->lightcolourscales[0];
cbl->l_lightcolourscale[1] = l->lightcolourscales[1];
cbl->l_lightcolourscale[2] = l->lightcolourscales[2] * gl_specular.value;
#endif
cbl->l_lightradius = l->radius;
Vector4Copy(shaderstate.lightshadowmapproj, cbl->l_shadowmapproj);
Vector2Copy(shaderstate.lightshadowmapscale, cbl->l_shadowmapscale);
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)shaderstate.lcbuffer, 0);
}
static void R_FetchPlayerColour(unsigned int cv, vec4_t rgba)
{
int i;
if (cv >= 16)
{
rgba[0] = (((cv&0xff0000)>>16)**((unsigned char*)&d_8to24rgbtable[15]+0)) / (256.0*256);
rgba[1] = (((cv&0x00ff00)>>8)**((unsigned char*)&d_8to24rgbtable[15]+1)) / (256.0*256);
rgba[2] = (((cv&0x0000ff)>>0)**((unsigned char*)&d_8to24rgbtable[15]+2)) / (256.0*256);
rgba[3] = 1.0;
return;
}
i = cv;
if (i >= 8)
{
i<<=4;
}
else
{
i<<=4;
i+=15;
}
i*=3;
rgba[0] = host_basepal[i+0] / 255.0;
rgba[1] = host_basepal[i+1] / 255.0;
rgba[2] = host_basepal[i+2] / 255.0;
rgba[3] = 1.0;
}
//also updates the entity constant buffer
static void BE_RotateForEntity (const entity_t *e, const model_t *mod)
{
int i;
float ndr;
float modelinv[16];
float *m = shaderstate.m_model;
dx11_cbuf_entity_t *cbe;
D3D11_MAPPED_SUBRESOURCE msr;
shaderstate.ecbufferidx = (shaderstate.ecbufferidx + 1) & (NUMECBUFFERS-1);
if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)shaderstate.ecbuffers[shaderstate.ecbufferidx], 0, D3D11_MAP_WRITE_DISCARD, 0, &msr)))
{
Con_Printf("BE_RotateForEntity: failed to map constant buffer\n");
return;
}
cbe = (dx11_cbuf_entity_t*)msr.pData;
shaderstate.curentity = e;
if ((e->flags & RF_WEAPONMODEL) && r_refdef.playerview->viewentity > 0)
{
float em[16];
float vm[16];
if (e->flags & RF_WEAPONMODELNOBOB)
{
vm[0] = vpn[0];
vm[1] = vpn[1];
vm[2] = vpn[2];
vm[3] = 0;
vm[4] = -vright[0];
vm[5] = -vright[1];
vm[6] = -vright[2];
vm[7] = 0;
vm[8] = vup[0];
vm[9] = vup[1];
vm[10] = vup[2];
vm[11] = 0;
vm[12] = r_refdef.vieworg[0];
vm[13] = r_refdef.vieworg[1];
vm[14] = r_refdef.vieworg[2];
vm[15] = 1;
}
else
{
vm[0] = r_refdef.playerview->vw_axis[0][0];
vm[1] = r_refdef.playerview->vw_axis[0][1];
vm[2] = r_refdef.playerview->vw_axis[0][2];
vm[3] = 0;
vm[4] = r_refdef.playerview->vw_axis[1][0];
vm[5] = r_refdef.playerview->vw_axis[1][1];
vm[6] = r_refdef.playerview->vw_axis[1][2];
vm[7] = 0;
vm[8] = r_refdef.playerview->vw_axis[2][0];
vm[9] = r_refdef.playerview->vw_axis[2][1];
vm[10] = r_refdef.playerview->vw_axis[2][2];
vm[11] = 0;
vm[12] = r_refdef.playerview->vw_origin[0];
vm[13] = r_refdef.playerview->vw_origin[1];
vm[14] = r_refdef.playerview->vw_origin[2];
vm[15] = 1;
}
em[0] = e->axis[0][0];
em[1] = e->axis[0][1];
em[2] = e->axis[0][2];
em[3] = 0;
em[4] = e->axis[1][0];
em[5] = e->axis[1][1];
em[6] = e->axis[1][2];
em[7] = 0;
em[8] = e->axis[2][0];
em[9] = e->axis[2][1];
em[10] = e->axis[2][2];
em[11] = 0;
em[12] = e->origin[0];
em[13] = e->origin[1];
em[14] = e->origin[2];
em[15] = 1;
Matrix4_Multiply(vm, em, m);
}
else
{
m[0] = e->axis[0][0];
m[1] = e->axis[0][1];
m[2] = e->axis[0][2];
m[3] = 0;
m[4] = e->axis[1][0];
m[5] = e->axis[1][1];
m[6] = e->axis[1][2];
m[7] = 0;
m[8] = e->axis[2][0];
m[9] = e->axis[2][1];
m[10] = e->axis[2][2];
m[11] = 0;
m[12] = e->origin[0];
m[13] = e->origin[1];
m[14] = e->origin[2];
m[15] = 1;
}
if (e->scale != 1 && e->scale != 0) //hexen 2 stuff
{
#ifdef HEXEN2
float z;
float escale;
escale = e->scale;
switch(e->drawflags&SCALE_TYPE_MASK)
{
default:
case SCALE_TYPE_UNIFORM:
VectorScale((m+0), escale, (m+0));
VectorScale((m+4), escale, (m+4));
VectorScale((m+8), escale, (m+8));
break;
case SCALE_TYPE_XYONLY:
VectorScale((m+0), escale, (m+0));
VectorScale((m+4), escale, (m+4));
break;
case SCALE_TYPE_ZONLY:
VectorScale((m+8), escale, (m+8));
break;
}
if (mod && (e->drawflags&SCALE_TYPE_MASK) != SCALE_TYPE_XYONLY)
{
switch(e->drawflags&SCALE_ORIGIN_MASK)
{
case SCALE_ORIGIN_CENTER:
z = ((mod->maxs[2] + mod->mins[2]) * (1-escale))/2;
VectorMA((m+12), z, e->axis[2], (m+12));
break;
case SCALE_ORIGIN_BOTTOM:
VectorMA((m+12), mod->mins[2]*(1-escale), e->axis[2], (m+12));
break;
case SCALE_ORIGIN_TOP:
VectorMA((m+12), -mod->maxs[2], e->axis[2], (m+12));
break;
}
}
#else
VectorScale((m+0), e->scale, (m+0));
VectorScale((m+4), e->scale, (m+4));
VectorScale((m+8), e->scale, (m+8));
#endif
}
else if (mod && !strcmp(mod->name, "progs/eyes.mdl"))
{
/*resize eyes, to make them easier to see*/
m[14] -= (22 + 8);
VectorScale((m+0), 2, (m+0));
VectorScale((m+4), 2, (m+4));
VectorScale((m+8), 2, (m+8));
}
if (mod && !ruleset_allow_larger_models.ival && mod->clampscale != 1)
{ //possibly this should be on a per-frame basis, but that's a real pain to do
Con_DPrintf("Rescaling %s by %f\n", mod->name, mod->clampscale);
VectorScale((m+0), mod->clampscale, (m+0));
VectorScale((m+4), mod->clampscale, (m+4));
VectorScale((m+8), mod->clampscale, (m+8));
}
memcpy(cbe->m_model, m, sizeof(cbe->m_model));
Matrix4_Invert(shaderstate.m_model, modelinv);
cbe->e_time = r_refdef.time - shaderstate.curentity->shaderTime;
VectorCopy(e->light_avg, cbe->e_light_ambient);
VectorCopy(e->light_dir, cbe->e_light_dir);
VectorCopy(e->light_range, cbe->e_light_mul);
R_FetchPlayerColour(e->topcolour, cbe->e_uppercolour);
R_FetchPlayerColour(e->bottomcolour, cbe->e_lowercolour);
R_FetchPlayerColour(e->bottomcolour, cbe->e_colourmod);
if (shaderstate.flags & BEF_FORCECOLOURMOD)
Vector4Copy(e->shaderRGBAf, cbe->e_colourmod);
else
Vector4Set(cbe->e_colourmod, 1, 1, 1, e->shaderRGBAf[3]);
VectorCopy(e->glowmod, cbe->e_glowmod);cbe->e_glowmod[3] = 1;
//various stuff in modelspace
Matrix4x4_CM_Transform3(modelinv, r_origin, cbe->e_eyepos);
for (i = 0; i < MAXRLIGHTMAPS ; i++)
{
extern cvar_t gl_overbright;
unsigned char s = shaderstate.curbatch?shaderstate.curbatch->lmlightstyle[i]:0;
float sc;
if (s == 255)
{
if (i == 0)
{
if (shaderstate.curentity->model && shaderstate.curentity->model->engineflags & MDLF_NEEDOVERBRIGHT)
sc = (1<<bound(0, gl_overbright.ival, 2)) * shaderstate.identitylighting;
else
sc = shaderstate.identitylighting;
cbe->e_lmscale[i][0] = sc;
cbe->e_lmscale[i][1] = sc;
cbe->e_lmscale[i][2] = sc;
cbe->e_lmscale[i][3] = 1;
i++;
}
for (; i < MAXRLIGHTMAPS ; i++)
{
cbe->e_lmscale[i][0] = 0;
cbe->e_lmscale[i][1] = 0;
cbe->e_lmscale[i][2] = 0;
cbe->e_lmscale[i][3] = 1;
}
break;
}
if (shaderstate.curentity->model && shaderstate.curentity->model->engineflags & MDLF_NEEDOVERBRIGHT)
sc = (1<<bound(0, gl_overbright.ival, 2)) * shaderstate.identitylighting;
else
sc = shaderstate.identitylighting;
sc *= d_lightstylevalue[s]/256.0f;
Vector4Set(cbe->e_lmscale[i], sc, sc, sc, 1);
}
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)shaderstate.ecbuffers[shaderstate.ecbufferidx], 0);
ndr = (e->flags & RF_DEPTHHACK)?0.333:1;
if (ndr != shaderstate.depthrange)
{
D3D11_VIEWPORT vport;
shaderstate.depthrange = ndr;
vport.TopLeftX = r_refdef.pxrect.x;
vport.TopLeftY = r_refdef.pxrect.y;
vport.Width = r_refdef.pxrect.width;
vport.Height = r_refdef.pxrect.height;
vport.MinDepth = 0;
vport.MaxDepth = shaderstate.depthrange;
ID3D11DeviceContext_RSSetViewports(d3ddevctx, 1, &vport);
D3D11BE_SetupViewCBuffer();
}
}
void D3D11BE_SubmitBatch(batch_t *batch)
{
shader_t *shader = batch->shader;
shaderstate.nummeshes = batch->meshes - batch->firstmesh;
if (!shaderstate.nummeshes)
return;
shaderstate.curbatch = batch;
shaderstate.batchvbo = batch->vbo;
shaderstate.meshlist = batch->mesh + batch->firstmesh;
shaderstate.curshader = shader;
if (shaderstate.curentity != batch->ent)
{
BE_RotateForEntity(batch->ent, batch->ent->model);
shaderstate.curtime = r_refdef.time - shaderstate.curentity->shaderTime;
}
if (batch->skin)
shaderstate.curtexnums = batch->skin;
else if (shader->numdefaulttextures)
shaderstate.curtexnums = shader->defaulttextures + ((int)(shader->defaulttextures_fps * shaderstate.curtime) % shader->numdefaulttextures);
else
shaderstate.curtexnums = shader->defaulttextures;
shaderstate.flags = batch->flags;
BE_DrawMeshChain_Internal();
}
void D3D11BE_DrawMesh_List(shader_t *shader, int nummeshes, mesh_t **meshlist, vbo_t *vbo, texnums_t *texnums, unsigned int beflags)
{
shaderstate.curbatch = &shaderstate.dummybatch;
shaderstate.batchvbo = vbo;
shaderstate.curshader = shader;
if (texnums)
shaderstate.curtexnums = texnums;
else if (shader->numdefaulttextures)
shaderstate.curtexnums = shader->defaulttextures + ((int)(shader->defaulttextures_fps * shaderstate.curtime) % shader->numdefaulttextures);
else
shaderstate.curtexnums = shader->defaulttextures;
shaderstate.meshlist = meshlist;
shaderstate.nummeshes = nummeshes;
shaderstate.flags = beflags;
BE_DrawMeshChain_Internal();
}
void D3D11BE_DrawMesh_Single(shader_t *shader, mesh_t *meshchain, vbo_t *vbo, unsigned int beflags)
{
shaderstate.curbatch = &shaderstate.dummybatch;
shaderstate.batchvbo = vbo;
shaderstate.curtime = realtime;
shaderstate.curshader = shader;
if (shader->numdefaulttextures)
shaderstate.curtexnums = shader->defaulttextures + ((int)(shader->defaulttextures_fps * shaderstate.curtime) % shader->numdefaulttextures);
else
shaderstate.curtexnums = shader->defaulttextures;
shaderstate.meshlist = &meshchain;
shaderstate.nummeshes = 1;
shaderstate.flags = beflags;
BE_DrawMeshChain_Internal();
}
static void BE_SubmitMeshesSortList(batch_t *sortlist)
{
batch_t *batch;
for (batch = sortlist; batch; batch = batch->next)
{
if (batch->meshes == batch->firstmesh)
continue;
if (batch->buildmeshes)
batch->buildmeshes(batch);
if (batch->shader->flags & SHADER_NODLIGHT)
if (shaderstate.mode == BEM_LIGHT)
continue;
if (batch->shader->flags & SHADER_SKY)
{
if (shaderstate.mode == BEM_STANDARD || shaderstate.mode == BEM_DEPTHDARK)
{
if (R_DrawSkyChain (batch))
continue;
}
else if (shaderstate.mode != BEM_FOG && shaderstate.mode != BEM_CREPUSCULAR && shaderstate.mode != BEM_WIREFRAME)
continue;
}
BE_SubmitBatch(batch);
}
}
/*generates a new modelview matrix, as well as vpn vectors*/
static void R_MirrorMatrix(plane_t *plane)
{
float mirror[16];
float view[16];
float result[16];
vec3_t pnorm;
VectorNegate(plane->normal, pnorm);
mirror[0] = 1-2*pnorm[0]*pnorm[0];
mirror[1] = -2*pnorm[0]*pnorm[1];
mirror[2] = -2*pnorm[0]*pnorm[2];
mirror[3] = 0;
mirror[4] = -2*pnorm[1]*pnorm[0];
mirror[5] = 1-2*pnorm[1]*pnorm[1];
mirror[6] = -2*pnorm[1]*pnorm[2] ;
mirror[7] = 0;
mirror[8] = -2*pnorm[2]*pnorm[0];
mirror[9] = -2*pnorm[2]*pnorm[1];
mirror[10] = 1-2*pnorm[2]*pnorm[2];
mirror[11] = 0;
mirror[12] = -2*pnorm[0]*plane->dist;
mirror[13] = -2*pnorm[1]*plane->dist;
mirror[14] = -2*pnorm[2]*plane->dist;
mirror[15] = 1;
view[0] = vpn[0];
view[1] = vpn[1];
view[2] = vpn[2];
view[3] = 0;
view[4] = -vright[0];
view[5] = -vright[1];
view[6] = -vright[2];
view[7] = 0;
view[8] = vup[0];
view[9] = vup[1];
view[10] = vup[2];
view[11] = 0;
view[12] = r_refdef.vieworg[0];
view[13] = r_refdef.vieworg[1];
view[14] = r_refdef.vieworg[2];
view[15] = 1;
VectorMA(r_refdef.vieworg, 0.25, plane->normal, r_refdef.pvsorigin);
Matrix4_Multiply(mirror, view, result);
vpn[0] = result[0];
vpn[1] = result[1];
vpn[2] = result[2];
vright[0] = -result[4];
vright[1] = -result[5];
vright[2] = -result[6];
vup[0] = result[8];
vup[1] = result[9];
vup[2] = result[10];
r_refdef.vieworg[0] = result[12];
r_refdef.vieworg[1] = result[13];
r_refdef.vieworg[2] = result[14];
}
static entity_t *R_NearestPortal(plane_t *plane)
{
int i;
entity_t *best = NULL;
float dist, bestd = 0;
//for q3-compat, portals on world scan for a visedict to use for their view.
for (i = 0; i < cl_numvisedicts; i++)
{
if (cl_visedicts[i].rtype == RT_PORTALSURFACE)
{
dist = DotProduct(cl_visedicts[i].origin, plane->normal)-plane->dist;
dist = fabs(dist);
if (dist < 64 && (!best || dist < bestd))
best = &cl_visedicts[i];
}
}
return best;
}
static void TransformCoord(vec3_t in, vec3_t planea[3], vec3_t planeo, vec3_t viewa[3], vec3_t viewo, vec3_t result)
{
int i;
vec3_t local;
vec3_t transformed;
float d;
local[0] = in[0] - planeo[0];
local[1] = in[1] - planeo[1];
local[2] = in[2] - planeo[2];
VectorClear(transformed);
for ( i = 0 ; i < 3 ; i++ )
{
d = DotProduct(local, planea[i]);
VectorMA(transformed, d, viewa[i], transformed);
}
result[0] = transformed[0] + viewo[0];
result[1] = transformed[1] + viewo[1];
result[2] = transformed[2] + viewo[2];
}
static void TransformDir(vec3_t in, vec3_t planea[3], vec3_t viewa[3], vec3_t result)
{
int i;
float d;
vec3_t tmp;
VectorCopy(in, tmp);
VectorClear(result);
for ( i = 0 ; i < 3 ; i++ )
{
d = DotProduct(tmp, planea[i]);
VectorMA(result, d, viewa[i], result);
}
}
static void R_DrawPortal(batch_t *batch, batch_t **blist)
{
entity_t *view;
// float glplane[4];
plane_t plane;
refdef_t oldrefdef;
mesh_t *mesh = batch->mesh[batch->firstmesh];
int sort;
if (r_refdef.recurse)// || !r_portalrecursion.ival)
return;
VectorCopy(mesh->normals_array[0], plane.normal);
plane.dist = DotProduct(mesh->xyz_array[0], plane.normal);
//if we're too far away from the surface, don't draw anything
if (batch->shader->flags & SHADER_AGEN_PORTAL)
{
/*there's a portal alpha blend on that surface, that fades out after this distance*/
if (DotProduct(r_refdef.vieworg, plane.normal)-plane.dist > batch->shader->portaldist)
return;
}
//if we're behind it, then also don't draw anything.
if (DotProduct(r_refdef.vieworg, plane.normal)-plane.dist < 0)
return;
view = R_NearestPortal(&plane);
//if (!view)
// return;
oldrefdef = r_refdef;
r_refdef.recurse = true;
r_refdef.externalview = true;
if (!view || VectorCompare(view->origin, view->oldorigin))
{
r_refdef.flipcull ^= SHADER_CULL_FLIP;
R_MirrorMatrix(&plane);
}
else
{
float d;
vec3_t paxis[3], porigin, vaxis[3], vorg;
void PerpendicularVector( vec3_t dst, const vec3_t src );
/*calculate where the surface is meant to be*/
VectorCopy(mesh->normals_array[0], paxis[0]);
PerpendicularVector(paxis[1], paxis[0]);
CrossProduct(paxis[0], paxis[1], paxis[2]);
d = DotProduct(view->origin, plane.normal) - plane.dist;
VectorMA(view->origin, -d, paxis[0], porigin);
/*grab the camera origin*/
VectorNegate(view->axis[0], vaxis[0]);
VectorNegate(view->axis[1], vaxis[1]);
VectorCopy(view->axis[2], vaxis[2]);
VectorCopy(view->oldorigin, vorg);
VectorCopy(vorg, r_refdef.pvsorigin);
/*rotate it a bit*/
RotatePointAroundVector(vaxis[1], vaxis[0], view->axis[1], sin(realtime)*4);
CrossProduct(vaxis[0], vaxis[1], vaxis[2]);
TransformCoord(oldrefdef.vieworg, paxis, porigin, vaxis, vorg, r_refdef.vieworg);
TransformDir(vpn, paxis, vaxis, vpn);
TransformDir(vright, paxis, vaxis, vright);
TransformDir(vup, paxis, vaxis, vup);
}
Matrix4x4_CM_ModelViewMatrixFromAxis(r_refdef.m_view, vpn, vright, vup, r_refdef.vieworg);
VectorAngles(vpn, vup, r_refdef.viewangles, true);
VectorCopy(r_refdef.vieworg, r_origin);
/*FIXME: the batch stuff should be done in renderscene*/
/*fixup the first mesh index*/
for (sort = 0; sort < SHADER_SORT_COUNT; sort++)
for (batch = blist[sort]; batch; batch = batch->next)
{
batch->firstmesh = batch->meshes;
}
R_SetFrustum (r_refdef.m_projection_std, r_refdef.m_view);
/*FIXME: we need to borrow pretty much everything about portal positioning from the gl renderer. make it common code or something, because this is horrendous.
if (r_refdef.frustum_numplanes < MAXFRUSTUMPLANES)
{
extern int SignbitsForPlane (mplane_t *out);
mplane_t fp;
VectorCopy(plane.normal, fp.normal);
fp.dist = plane.dist;
fp.type = PLANE_ANYZ;
fp.signbits = SignbitsForPlane (&fp);
if (portaltype == 1 || portaltype == 2)
R_ObliqueNearClip(r_refdef.m_view, &fp);
//our own culling should be an epsilon forwards so we don't still draw things behind the line due to precision issues.
fp.dist += 0.01;
r_refdef.frustum[r_refdef.frustum_numplanes++] = fp;
}
*/
shaderstate.curentity = NULL;
Surf_SetupFrame();
Surf_DrawWorld();
for (sort = 0; sort < SHADER_SORT_COUNT; sort++)
for (batch = blist[sort]; batch; batch = batch->next)
{
batch->firstmesh = 0;
}
r_refdef = oldrefdef;
/*broken stuff*/
AngleVectors (r_refdef.viewangles, vpn, vright, vup);
VectorCopy (r_refdef.vieworg, r_origin);
R_SetFrustum (r_refdef.m_projection_std, r_refdef.m_view);
shaderstate.curentity = NULL;
D3D11BE_SetupViewCBuffer();
//fixme: should be some other variable...
ID3D11DeviceContext_ClearDepthStencilView(d3ddevctx, fb_backdepthstencil, D3D11_CLEAR_DEPTH, 1, 0); //is it faster to clear the stencil too?
//fixme: mask the batch's depth so that later batches don't break it.
}
static void BE_SubmitMeshesPortals(batch_t **worldlist, batch_t *dynamiclist)
{
batch_t *batch, *old;
int i;
/*attempt to draw portal shaders*/
if (shaderstate.mode == BEM_STANDARD)
{
for (i = 0; i < 2; i++)
{
for (batch = i?dynamiclist:worldlist[SHADER_SORT_PORTAL]; batch; batch = batch->next)
{
if (batch->meshes == batch->firstmesh)
continue;
if (batch->buildmeshes)
batch->buildmeshes(batch);
/*draw already-drawn portals as depth-only, to ensure that their contents are not harmed*/
BE_SelectMode(BEM_DEPTHONLY);
for (old = worldlist[SHADER_SORT_PORTAL]; old && old != batch; old = old->next)
{
if (old->meshes == old->firstmesh)
continue;
BE_SubmitBatch(old);
}
if (!old)
{
for (old = dynamiclist; old != batch; old = old->next)
{
if (old->meshes == old->firstmesh)
continue;
BE_SubmitBatch(old);
}
}
BE_SelectMode(BEM_STANDARD);
R_DrawPortal(batch, worldlist);
}
}
}
}
void D3D11BE_SubmitMeshes (batch_t **worldbatches, batch_t **blist, int first, int stop)
{
int i;
for (i = first; i < stop; i++)
{
if (worldbatches)
{
if (i == SHADER_SORT_PORTAL /*&& !r_noportals.ival*/ && !r_refdef.recurse)
BE_SubmitMeshesPortals(worldbatches, blist[i]);
BE_SubmitMeshesSortList(worldbatches[i]);
}
BE_SubmitMeshesSortList(blist[i]);
}
}
#ifdef RTLIGHTS
void D3D11BE_BaseEntTextures(qbyte *worldpvs)
{
batch_t *batches[SHADER_SORT_COUNT];
BE_GenModelBatches(batches, shaderstate.curdlight, shaderstate.mode, worldpvs);
D3D11BE_SubmitMeshes(NULL, batches, SHADER_SORT_PORTAL, SHADER_SORT_SEETHROUGH+1);
BE_SelectEntity(&r_worldentity);
}
void D3D11BE_GenerateShadowBuffer(void **vbuf_out, vecV_t *verts, int numverts, void **ibuf_out, index_t *indicies, int numindicies)
{
D3D11_BUFFER_DESC desc;
D3D11_SUBRESOURCE_DATA srd;
ID3D11Buffer *vbuf;
ID3D11Buffer *ibuf;
//generate the ebo, and submit the data to the driver
desc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
desc.ByteWidth = sizeof(*verts) * numverts;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
desc.Usage = D3D11_USAGE_DEFAULT;
srd.pSysMem = verts;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
ID3D11Device_CreateBuffer(pD3DDev11, &desc, &srd, &vbuf);
//generate the vbo, and submit the data to the driver
desc.BindFlags = D3D11_BIND_INDEX_BUFFER;
desc.ByteWidth = sizeof(*indicies) * numindicies;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
desc.Usage = D3D11_USAGE_DEFAULT;
srd.pSysMem = indicies;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
ID3D11Device_CreateBuffer(pD3DDev11, &desc, &srd, &ibuf);
shaderstate.numliveshadowbuffers++;
*vbuf_out = vbuf;
*ibuf_out = ibuf;
}
void D3D11_DestroyShadowBuffer(void *vbuf_in, void *ibuf_in)
{
ID3D11Buffer *vbuf = vbuf_in;
ID3D11Buffer *ibuf = ibuf_in;
if (vbuf && ibuf)
{
ID3D11Buffer_Release(vbuf);
ID3D11Buffer_Release(ibuf);
shaderstate.numliveshadowbuffers--;
}
}
//draws all depth-only surfaces from the perspective of the light.
void D3D11BE_RenderShadowBuffer(unsigned int numverts, void *vbuf, unsigned int numindicies, void *ibuf)
{
ID3D11Buffer *vbufs[] = {vbuf};
int vstrides[] = {sizeof(vecV_t)};
int voffsets[] = {0};
int i;
if (!shaderstate.depthonly->prog)
return;
D3D11BE_SetupViewCBuffer();
D3D11BE_Cull(SHADER_CULL_FRONT, r_polygonoffset_shadowmap_offset.ival, r_polygonoffset_shadowmap_factor.value);
for (i = 0; i < shaderstate.lastpasscount; i++)
{
shaderstate.pendingtextures[i] = NULL;
shaderstate.textureschanged = true;
}
if (shaderstate.textureschanged)
ID3D11DeviceContext_PSSetShaderResources(d3ddevctx, 0, shaderstate.lastpasscount, shaderstate.pendingtextures);
shaderstate.lastpasscount = 0;
ID3D11DeviceContext_IASetVertexBuffers(d3ddevctx, 0, 1, vbufs, vstrides, voffsets);
ID3D11DeviceContext_IASetIndexBuffer(d3ddevctx, ibuf, DXGI_FORMAT_INDEX_UINT, 0);
BE_ApplyUniforms(shaderstate.depthonly->prog, shaderstate.depthonly->prog->permu[0]);
ID3D11DeviceContext_DrawIndexed(d3ddevctx, numindicies, 0, 0);
}
void D3D11BE_DoneShadows(void)
{
D3D11BE_SetupViewCBuffer();
BE_SelectEntity(&r_worldentity);
D3D11BE_BeginShadowmapFace();
}
#endif
void D3D11BE_DrawWorld (batch_t **worldbatches)
{
batch_t *batches[SHADER_SORT_COUNT];
RSpeedLocals();
shaderstate.curentity = NULL;
shaderstate.depthrange = 0;
if (!r_refdef.recurse)
{
if (shaderstate.wbatch > shaderstate.maxwbatches)
{
int newm = shaderstate.wbatch;
Z_Free(shaderstate.wbatches);
shaderstate.wbatches = Z_Malloc(newm * sizeof(*shaderstate.wbatches));
memset(shaderstate.wbatches + shaderstate.maxwbatches, 0, (newm - shaderstate.maxwbatches) * sizeof(*shaderstate.wbatches));
shaderstate.maxwbatches = newm;
}
shaderstate.wbatch = 0;
}
D3D11BE_SetupViewCBuffer();
shaderstate.curdlight = NULL;
BE_GenModelBatches(batches, shaderstate.curdlight, BEM_STANDARD, r_refdef.scenevis);
if (r_refdef.scenevis)
{
BE_UploadLightmaps(false);
//make sure the world draws correctly
r_worldentity.shaderRGBAf[0] = 1;
r_worldentity.shaderRGBAf[1] = 1;
r_worldentity.shaderRGBAf[2] = 1;
r_worldentity.shaderRGBAf[3] = 1;
r_worldentity.axis[0][0] = 1;
r_worldentity.axis[1][1] = 1;
r_worldentity.axis[2][2] = 1;
#ifdef RTLIGHTS
if (r_refdef.scenevis && r_shadow_realtime_world.ival)
shaderstate.identitylighting = r_shadow_realtime_world_lightmaps.value;
else
#endif
shaderstate.identitylighting = r_lightmap_scale.value;
shaderstate.identitylighting *= r_refdef.hdr_value;
// shaderstate.identitylightmap = shaderstate.identitylighting / (1<<gl_overbright.ival);
BE_SelectMode(BEM_STANDARD);
RSpeedRemark();
D3D11BE_SubmitMeshes(worldbatches, batches, SHADER_SORT_PORTAL, SHADER_SORT_SEETHROUGH+1);
RSpeedEnd(RSPEED_OPAQUE);
#ifdef RTLIGHTS
RSpeedRemark();
D3D11BE_SelectEntity(&r_worldentity);
Sh_DrawLights(r_refdef.scenevis);
RSpeedEnd(RSPEED_RTLIGHTS);
#endif
RSpeedRemark();
D3D11BE_SubmitMeshes(worldbatches, batches, SHADER_SORT_SEETHROUGH+1, SHADER_SORT_COUNT);
RSpeedEnd(RSPEED_TRANSPARENTS);
if (r_wireframe.ival)
{
D3D11BE_SelectMode(BEM_WIREFRAME);
D3D11BE_SubmitMeshes(worldbatches, batches, SHADER_SORT_PORTAL, SHADER_SORT_NEAREST);
D3D11BE_SelectMode(BEM_STANDARD);
}
}
else
{
RSpeedRemark();
shaderstate.identitylighting = 1;
D3D11BE_SubmitMeshes(NULL, batches, SHADER_SORT_PORTAL, SHADER_SORT_COUNT);
RSpeedEnd(RSPEED_OPAQUE);
}
R_RenderDlights ();
BE_RotateForEntity(&r_worldentity, NULL);
}
void D3D11BE_VBO_Begin(vbobctx_t *ctx, size_t maxsize)
{
}
void D3D11BE_VBO_Data(vbobctx_t *ctx, void *data, size_t size, vboarray_t *varray)
{
}
void D3D11BE_VBO_Finish(vbobctx_t *ctx, void *edata, size_t esize, vboarray_t *earray, void **vbomem, void **ebomem)
{
}
void D3D11BE_VBO_Destroy(vboarray_t *vearray, void *mem)
{
}
void D3D11BE_Scissor(srect_t *rect)
{
D3D11_RECT drect;
if (rect)
{
drect.left = (rect->x)*vid.fbpwidth;
drect.right = (rect->x + rect->width)*vid.fbpwidth;
drect.bottom = (1-(rect->y))*vid.fbpheight;
drect.top = (1-(rect->y + rect->height))*vid.fbpheight;
if (drect.left < 0)
drect.left = 0;
if (drect.top < 0)
drect.top = 0;
}
else
{
drect.left = 0;
drect.right = vid.fbpwidth;
drect.top = 0;
drect.bottom = vid.fbpheight;
}
ID3D11DeviceContext_RSSetScissorRects(d3ddevctx, 1, &drect);
}
#ifdef RTLIGHTS
void D3D11BE_BeginShadowmapFace(void)
{
D3D11_VIEWPORT vport;
vport.TopLeftX = r_refdef.pxrect.x;
vport.TopLeftY = r_refdef.pxrect.y;
vport.Width = r_refdef.pxrect.width;
vport.Height = r_refdef.pxrect.height;
vport.MinDepth = 0;
vport.MaxDepth = 1;
ID3D11DeviceContext_RSSetViewports(d3ddevctx, 1, &vport);
D3D11BE_Cull(SHADER_CULL_FRONT, r_polygonoffset_shadowmap_offset.ival, r_polygonoffset_shadowmap_factor.value);
}
#endif
#endif