mirror of
https://github.com/nzp-team/fteqw.git
synced 2024-11-26 22:01:50 +00:00
56b8f125a1
provide xz support, because we might as well. git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@4866 fc73d0e0-1445-4013-8a0c-d673dee63da5
3110 lines
80 KiB
C
3110 lines
80 KiB
C
#include "quakedef.h"
|
|
#include "fs.h"
|
|
|
|
#ifdef AVAIL_XZDEC
|
|
|
|
#define XZ_EXTERN static
|
|
#define XZ_DEC_DYNALLOC //data comes in periodically, can't use single mode.
|
|
|
|
//http://tukaani.org/xz/embedded.html
|
|
//we use an amalgamation, just because.
|
|
//note that the original code has no stable api nor public library.
|
|
#if 0
|
|
#include "xz/xz_dec_stream.c"
|
|
#include "xz/xz_dec_lzma2.c"
|
|
#include "xz/xz_crc32.c"
|
|
#else
|
|
|
|
# include <stddef.h>
|
|
# include <stdint.h>
|
|
|
|
|
|
//BEGIN xz.h
|
|
/*
|
|
* XZ decompressor
|
|
*
|
|
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
|
* Igor Pavlov <http://7-zip.org/>
|
|
*
|
|
* This file has been put into the public domain.
|
|
* You can do whatever you want with this file.
|
|
*/
|
|
|
|
#ifndef XZ_H
|
|
#define XZ_H
|
|
|
|
#ifdef __KERNEL__
|
|
# include <linux/stddef.h>
|
|
# include <linux/types.h>
|
|
#else
|
|
# include <stddef.h>
|
|
# include <stdint.h>
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* In Linux, this is used to make extern functions static when needed. */
|
|
#ifndef XZ_EXTERN
|
|
# define XZ_EXTERN extern
|
|
#endif
|
|
|
|
/**
|
|
* enum xz_mode - Operation mode
|
|
*
|
|
* @XZ_SINGLE: Single-call mode. This uses less RAM than
|
|
* than multi-call modes, because the LZMA2
|
|
* dictionary doesn't need to be allocated as
|
|
* part of the decoder state. All required data
|
|
* structures are allocated at initialization,
|
|
* so xz_dec_run() cannot return XZ_MEM_ERROR.
|
|
* @XZ_PREALLOC: Multi-call mode with preallocated LZMA2
|
|
* dictionary buffer. All data structures are
|
|
* allocated at initialization, so xz_dec_run()
|
|
* cannot return XZ_MEM_ERROR.
|
|
* @XZ_DYNALLOC: Multi-call mode. The LZMA2 dictionary is
|
|
* allocated once the required size has been
|
|
* parsed from the stream headers. If the
|
|
* allocation fails, xz_dec_run() will return
|
|
* XZ_MEM_ERROR.
|
|
*
|
|
* It is possible to enable support only for a subset of the above
|
|
* modes at compile time by defining XZ_DEC_SINGLE, XZ_DEC_PREALLOC,
|
|
* or XZ_DEC_DYNALLOC. The xz_dec kernel module is always compiled
|
|
* with support for all operation modes, but the preboot code may
|
|
* be built with fewer features to minimize code size.
|
|
*/
|
|
enum xz_mode {
|
|
XZ_SINGLE,
|
|
XZ_PREALLOC,
|
|
XZ_DYNALLOC
|
|
};
|
|
|
|
/**
|
|
* enum xz_ret - Return codes
|
|
* @XZ_OK: Everything is OK so far. More input or more
|
|
* output space is required to continue. This
|
|
* return code is possible only in multi-call mode
|
|
* (XZ_PREALLOC or XZ_DYNALLOC).
|
|
* @XZ_STREAM_END: Operation finished successfully.
|
|
* @XZ_UNSUPPORTED_CHECK: Integrity check type is not supported. Decoding
|
|
* is still possible in multi-call mode by simply
|
|
* calling xz_dec_run() again.
|
|
* Note that this return value is used only if
|
|
* XZ_DEC_ANY_CHECK was defined at build time,
|
|
* which is not used in the kernel. Unsupported
|
|
* check types return XZ_OPTIONS_ERROR if
|
|
* XZ_DEC_ANY_CHECK was not defined at build time.
|
|
* @XZ_MEM_ERROR: Allocating memory failed. This return code is
|
|
* possible only if the decoder was initialized
|
|
* with XZ_DYNALLOC. The amount of memory that was
|
|
* tried to be allocated was no more than the
|
|
* dict_max argument given to xz_dec_init().
|
|
* @XZ_MEMLIMIT_ERROR: A bigger LZMA2 dictionary would be needed than
|
|
* allowed by the dict_max argument given to
|
|
* xz_dec_init(). This return value is possible
|
|
* only in multi-call mode (XZ_PREALLOC or
|
|
* XZ_DYNALLOC); the single-call mode (XZ_SINGLE)
|
|
* ignores the dict_max argument.
|
|
* @XZ_FORMAT_ERROR: File format was not recognized (wrong magic
|
|
* bytes).
|
|
* @XZ_OPTIONS_ERROR: This implementation doesn't support the requested
|
|
* compression options. In the decoder this means
|
|
* that the header CRC32 matches, but the header
|
|
* itself specifies something that we don't support.
|
|
* @XZ_DATA_ERROR: Compressed data is corrupt.
|
|
* @XZ_BUF_ERROR: Cannot make any progress. Details are slightly
|
|
* different between multi-call and single-call
|
|
* mode; more information below.
|
|
*
|
|
* In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
|
|
* to XZ code cannot consume any input and cannot produce any new output.
|
|
* This happens when there is no new input available, or the output buffer
|
|
* is full while at least one output byte is still pending. Assuming your
|
|
* code is not buggy, you can get this error only when decoding a compressed
|
|
* stream that is truncated or otherwise corrupt.
|
|
*
|
|
* In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
|
|
* is too small or the compressed input is corrupt in a way that makes the
|
|
* decoder produce more output than the caller expected. When it is
|
|
* (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
|
|
* is used instead of XZ_BUF_ERROR.
|
|
*/
|
|
enum xz_ret {
|
|
XZ_OK,
|
|
XZ_STREAM_END,
|
|
XZ_UNSUPPORTED_CHECK,
|
|
XZ_MEM_ERROR,
|
|
XZ_MEMLIMIT_ERROR,
|
|
XZ_FORMAT_ERROR,
|
|
XZ_OPTIONS_ERROR,
|
|
XZ_DATA_ERROR,
|
|
XZ_BUF_ERROR
|
|
};
|
|
|
|
/**
|
|
* struct xz_buf - Passing input and output buffers to XZ code
|
|
* @in: Beginning of the input buffer. This may be NULL if and only
|
|
* if in_pos is equal to in_size.
|
|
* @in_pos: Current position in the input buffer. This must not exceed
|
|
* in_size.
|
|
* @in_size: Size of the input buffer
|
|
* @out: Beginning of the output buffer. This may be NULL if and only
|
|
* if out_pos is equal to out_size.
|
|
* @out_pos: Current position in the output buffer. This must not exceed
|
|
* out_size.
|
|
* @out_size: Size of the output buffer
|
|
*
|
|
* Only the contents of the output buffer from out[out_pos] onward, and
|
|
* the variables in_pos and out_pos are modified by the XZ code.
|
|
*/
|
|
struct xz_buf {
|
|
const uint8_t *in;
|
|
size_t in_pos;
|
|
size_t in_size;
|
|
|
|
uint8_t *out;
|
|
size_t out_pos;
|
|
size_t out_size;
|
|
};
|
|
|
|
/**
|
|
* struct xz_dec - Opaque type to hold the XZ decoder state
|
|
*/
|
|
struct xz_dec;
|
|
|
|
/**
|
|
* xz_dec_init() - Allocate and initialize a XZ decoder state
|
|
* @mode: Operation mode
|
|
* @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for
|
|
* multi-call decoding. This is ignored in single-call mode
|
|
* (mode == XZ_SINGLE). LZMA2 dictionary is always 2^n bytes
|
|
* or 2^n + 2^(n-1) bytes (the latter sizes are less common
|
|
* in practice), so other values for dict_max don't make sense.
|
|
* In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB,
|
|
* 512 KiB, and 1 MiB are probably the only reasonable values,
|
|
* except for kernel and initramfs images where a bigger
|
|
* dictionary can be fine and useful.
|
|
*
|
|
* Single-call mode (XZ_SINGLE): xz_dec_run() decodes the whole stream at
|
|
* once. The caller must provide enough output space or the decoding will
|
|
* fail. The output space is used as the dictionary buffer, which is why
|
|
* there is no need to allocate the dictionary as part of the decoder's
|
|
* internal state.
|
|
*
|
|
* Because the output buffer is used as the workspace, streams encoded using
|
|
* a big dictionary are not a problem in single-call mode. It is enough that
|
|
* the output buffer is big enough to hold the actual uncompressed data; it
|
|
* can be smaller than the dictionary size stored in the stream headers.
|
|
*
|
|
* Multi-call mode with preallocated dictionary (XZ_PREALLOC): dict_max bytes
|
|
* of memory is preallocated for the LZMA2 dictionary. This way there is no
|
|
* risk that xz_dec_run() could run out of memory, since xz_dec_run() will
|
|
* never allocate any memory. Instead, if the preallocated dictionary is too
|
|
* small for decoding the given input stream, xz_dec_run() will return
|
|
* XZ_MEMLIMIT_ERROR. Thus, it is important to know what kind of data will be
|
|
* decoded to avoid allocating excessive amount of memory for the dictionary.
|
|
*
|
|
* Multi-call mode with dynamically allocated dictionary (XZ_DYNALLOC):
|
|
* dict_max specifies the maximum allowed dictionary size that xz_dec_run()
|
|
* may allocate once it has parsed the dictionary size from the stream
|
|
* headers. This way excessive allocations can be avoided while still
|
|
* limiting the maximum memory usage to a sane value to prevent running the
|
|
* system out of memory when decompressing streams from untrusted sources.
|
|
*
|
|
* On success, xz_dec_init() returns a pointer to struct xz_dec, which is
|
|
* ready to be used with xz_dec_run(). If memory allocation fails,
|
|
* xz_dec_init() returns NULL.
|
|
*/
|
|
XZ_EXTERN struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max);
|
|
|
|
/**
|
|
* xz_dec_run() - Run the XZ decoder
|
|
* @s: Decoder state allocated using xz_dec_init()
|
|
* @b: Input and output buffers
|
|
*
|
|
* The possible return values depend on build options and operation mode.
|
|
* See enum xz_ret for details.
|
|
*
|
|
* Note that if an error occurs in single-call mode (return value is not
|
|
* XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the
|
|
* contents of the output buffer from b->out[b->out_pos] onward are
|
|
* undefined. This is true even after XZ_BUF_ERROR, because with some filter
|
|
* chains, there may be a second pass over the output buffer, and this pass
|
|
* cannot be properly done if the output buffer is truncated. Thus, you
|
|
* cannot give the single-call decoder a too small buffer and then expect to
|
|
* get that amount valid data from the beginning of the stream. You must use
|
|
* the multi-call decoder if you don't want to uncompress the whole stream.
|
|
*/
|
|
XZ_EXTERN enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b);
|
|
|
|
/**
|
|
* xz_dec_reset() - Reset an already allocated decoder state
|
|
* @s: Decoder state allocated using xz_dec_init()
|
|
*
|
|
* This function can be used to reset the multi-call decoder state without
|
|
* freeing and reallocating memory with xz_dec_end() and xz_dec_init().
|
|
*
|
|
* In single-call mode, xz_dec_reset() is always called in the beginning of
|
|
* xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
|
|
* multi-call mode.
|
|
*/
|
|
XZ_EXTERN void xz_dec_reset(struct xz_dec *s);
|
|
|
|
/**
|
|
* xz_dec_end() - Free the memory allocated for the decoder state
|
|
* @s: Decoder state allocated using xz_dec_init(). If s is NULL,
|
|
* this function does nothing.
|
|
*/
|
|
XZ_EXTERN void xz_dec_end(struct xz_dec *s);
|
|
|
|
/*
|
|
* Standalone build (userspace build or in-kernel build for boot time use)
|
|
* needs a CRC32 implementation. For normal in-kernel use, kernel's own
|
|
* CRC32 module is used instead, and users of this module don't need to
|
|
* care about the functions below.
|
|
*/
|
|
#ifndef XZ_INTERNAL_CRC32
|
|
# ifdef __KERNEL__
|
|
# define XZ_INTERNAL_CRC32 0
|
|
# else
|
|
# define XZ_INTERNAL_CRC32 1
|
|
# endif
|
|
#endif
|
|
|
|
/*
|
|
* If CRC64 support has been enabled with XZ_USE_CRC64, a CRC64
|
|
* implementation is needed too.
|
|
*/
|
|
#ifndef XZ_USE_CRC64
|
|
# undef XZ_INTERNAL_CRC64
|
|
# define XZ_INTERNAL_CRC64 0
|
|
#endif
|
|
#ifndef XZ_INTERNAL_CRC64
|
|
# ifdef __KERNEL__
|
|
# error Using CRC64 in the kernel has not been implemented.
|
|
# else
|
|
# define XZ_INTERNAL_CRC64 1
|
|
# endif
|
|
#endif
|
|
|
|
#if XZ_INTERNAL_CRC32
|
|
/*
|
|
* This must be called before any other xz_* function to initialize
|
|
* the CRC32 lookup table.
|
|
*/
|
|
XZ_EXTERN void xz_crc32_init(void);
|
|
|
|
/*
|
|
* Update CRC32 value using the polynomial from IEEE-802.3. To start a new
|
|
* calculation, the third argument must be zero. To continue the calculation,
|
|
* the previously returned value is passed as the third argument.
|
|
*/
|
|
XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc);
|
|
#endif
|
|
|
|
#if XZ_INTERNAL_CRC64
|
|
/*
|
|
* This must be called before any other xz_* function (except xz_crc32_init())
|
|
* to initialize the CRC64 lookup table.
|
|
*/
|
|
XZ_EXTERN void xz_crc64_init(void);
|
|
|
|
/*
|
|
* Update CRC64 value using the polynomial from ECMA-182. To start a new
|
|
* calculation, the third argument must be zero. To continue the calculation,
|
|
* the previously returned value is passed as the third argument.
|
|
*/
|
|
XZ_EXTERN uint64_t xz_crc64(const uint8_t *buf, size_t size, uint64_t crc);
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
//END xz.h
|
|
|
|
//BEGIN xz_config.h
|
|
/*
|
|
* Private includes and definitions for userspace use of XZ Embedded
|
|
*
|
|
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
|
*
|
|
* This file has been put into the public domain.
|
|
* You can do whatever you want with this file.
|
|
*/
|
|
|
|
#ifndef XZ_CONFIG_H
|
|
#define XZ_CONFIG_H
|
|
|
|
/* Uncomment to enable CRC64 support. */
|
|
/* #define XZ_USE_CRC64 */
|
|
|
|
/* Uncomment as needed to enable BCJ filter decoders. */
|
|
/* #define XZ_DEC_X86 */
|
|
/* #define XZ_DEC_POWERPC */
|
|
/* #define XZ_DEC_IA64 */
|
|
/* #define XZ_DEC_ARM */
|
|
/* #define XZ_DEC_ARMTHUMB */
|
|
/* #define XZ_DEC_SPARC */
|
|
|
|
/*
|
|
* MSVC doesn't support modern C but XZ Embedded is mostly C89
|
|
* so these are enough.
|
|
*/
|
|
#ifdef _MSC_VER
|
|
typedef unsigned char bool;
|
|
# define true 1
|
|
# define false 0
|
|
# define inline __inline
|
|
#else
|
|
# include <stdbool.h>
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
//#include "xz.h"
|
|
|
|
#define kmalloc(size, flags) malloc(size)
|
|
#define kfree(ptr) free(ptr)
|
|
#define vmalloc(size) malloc(size)
|
|
#define vfree(ptr) free(ptr)
|
|
|
|
#define memeq(a, b, size) (memcmp(a, b, size) == 0)
|
|
#define memzero(buf, size) memset(buf, 0, size)
|
|
|
|
#ifndef min
|
|
# define min(x, y) ((x) < (y) ? (x) : (y))
|
|
#endif
|
|
#define min_t(type, x, y) min(x, y)
|
|
|
|
/*
|
|
* Some functions have been marked with __always_inline to keep the
|
|
* performance reasonable even when the compiler is optimizing for
|
|
* small code size. You may be able to save a few bytes by #defining
|
|
* __always_inline to plain inline, but don't complain if the code
|
|
* becomes slow.
|
|
*
|
|
* NOTE: System headers on GNU/Linux may #define this macro already,
|
|
* so if you want to change it, you need to #undef it first.
|
|
*/
|
|
#ifndef __always_inline
|
|
# ifdef __GNUC__
|
|
# define __always_inline \
|
|
inline __attribute__((__always_inline__))
|
|
# else
|
|
# define __always_inline inline
|
|
# endif
|
|
#endif
|
|
|
|
/* Inline functions to access unaligned unsigned 32-bit integers */
|
|
#ifndef get_unaligned_le32
|
|
static inline uint32_t get_unaligned_le32(const uint8_t *buf)
|
|
{
|
|
return (uint32_t)buf[0]
|
|
| ((uint32_t)buf[1] << 8)
|
|
| ((uint32_t)buf[2] << 16)
|
|
| ((uint32_t)buf[3] << 24);
|
|
}
|
|
#endif
|
|
|
|
#ifndef get_unaligned_be32
|
|
static inline uint32_t get_unaligned_be32(const uint8_t *buf)
|
|
{
|
|
return (uint32_t)(buf[0] << 24)
|
|
| ((uint32_t)buf[1] << 16)
|
|
| ((uint32_t)buf[2] << 8)
|
|
| (uint32_t)buf[3];
|
|
}
|
|
#endif
|
|
|
|
#ifndef put_unaligned_le32
|
|
static inline void put_unaligned_le32(uint32_t val, uint8_t *buf)
|
|
{
|
|
buf[0] = (uint8_t)val;
|
|
buf[1] = (uint8_t)(val >> 8);
|
|
buf[2] = (uint8_t)(val >> 16);
|
|
buf[3] = (uint8_t)(val >> 24);
|
|
}
|
|
#endif
|
|
|
|
#ifndef put_unaligned_be32
|
|
static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
|
|
{
|
|
buf[0] = (uint8_t)(val >> 24);
|
|
buf[1] = (uint8_t)(val >> 16);
|
|
buf[2] = (uint8_t)(val >> 8);
|
|
buf[3] = (uint8_t)val;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Use get_unaligned_le32() also for aligned access for simplicity. On
|
|
* little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr))
|
|
* could save a few bytes in code size.
|
|
*/
|
|
#ifndef get_le32
|
|
# define get_le32 get_unaligned_le32
|
|
#endif
|
|
|
|
#endif
|
|
//END xz_config.h
|
|
|
|
//BEGIN xz_private.h
|
|
/*
|
|
* Private includes and definitions
|
|
*
|
|
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
|
*
|
|
* This file has been put into the public domain.
|
|
* You can do whatever you want with this file.
|
|
*/
|
|
|
|
#ifndef XZ_PRIVATE_H
|
|
#define XZ_PRIVATE_H
|
|
|
|
#ifdef __KERNEL__
|
|
# include <linux/xz.h>
|
|
# include <linux/kernel.h>
|
|
# include <asm/unaligned.h>
|
|
/* XZ_PREBOOT may be defined only via decompress_unxz.c. */
|
|
# ifndef XZ_PREBOOT
|
|
# include <linux/slab.h>
|
|
# include <linux/vmalloc.h>
|
|
# include <linux/string.h>
|
|
# ifdef CONFIG_XZ_DEC_X86
|
|
# define XZ_DEC_X86
|
|
# endif
|
|
# ifdef CONFIG_XZ_DEC_POWERPC
|
|
# define XZ_DEC_POWERPC
|
|
# endif
|
|
# ifdef CONFIG_XZ_DEC_IA64
|
|
# define XZ_DEC_IA64
|
|
# endif
|
|
# ifdef CONFIG_XZ_DEC_ARM
|
|
# define XZ_DEC_ARM
|
|
# endif
|
|
# ifdef CONFIG_XZ_DEC_ARMTHUMB
|
|
# define XZ_DEC_ARMTHUMB
|
|
# endif
|
|
# ifdef CONFIG_XZ_DEC_SPARC
|
|
# define XZ_DEC_SPARC
|
|
# endif
|
|
# define memeq(a, b, size) (memcmp(a, b, size) == 0)
|
|
# define memzero(buf, size) memset(buf, 0, size)
|
|
# endif
|
|
# define get_le32(p) le32_to_cpup((const uint32_t *)(p))
|
|
#else
|
|
/*
|
|
* For userspace builds, use a separate header to define the required
|
|
* macros and functions. This makes it easier to adapt the code into
|
|
* different environments and avoids clutter in the Linux kernel tree.
|
|
*/
|
|
//# include "xz_config.h"
|
|
#endif
|
|
|
|
/* If no specific decoding mode is requested, enable support for all modes. */
|
|
#if !defined(XZ_DEC_SINGLE) && !defined(XZ_DEC_PREALLOC) \
|
|
&& !defined(XZ_DEC_DYNALLOC)
|
|
# define XZ_DEC_SINGLE
|
|
# define XZ_DEC_PREALLOC
|
|
# define XZ_DEC_DYNALLOC
|
|
#endif
|
|
|
|
/*
|
|
* The DEC_IS_foo(mode) macros are used in "if" statements. If only some
|
|
* of the supported modes are enabled, these macros will evaluate to true or
|
|
* false at compile time and thus allow the compiler to omit unneeded code.
|
|
*/
|
|
#ifdef XZ_DEC_SINGLE
|
|
# define DEC_IS_SINGLE(mode) ((mode) == XZ_SINGLE)
|
|
#else
|
|
# define DEC_IS_SINGLE(mode) (false)
|
|
#endif
|
|
|
|
#ifdef XZ_DEC_PREALLOC
|
|
# define DEC_IS_PREALLOC(mode) ((mode) == XZ_PREALLOC)
|
|
#else
|
|
# define DEC_IS_PREALLOC(mode) (false)
|
|
#endif
|
|
|
|
#ifdef XZ_DEC_DYNALLOC
|
|
# define DEC_IS_DYNALLOC(mode) ((mode) == XZ_DYNALLOC)
|
|
#else
|
|
# define DEC_IS_DYNALLOC(mode) (false)
|
|
#endif
|
|
|
|
#if !defined(XZ_DEC_SINGLE)
|
|
# define DEC_IS_MULTI(mode) (true)
|
|
#elif defined(XZ_DEC_PREALLOC) || defined(XZ_DEC_DYNALLOC)
|
|
# define DEC_IS_MULTI(mode) ((mode) != XZ_SINGLE)
|
|
#else
|
|
# define DEC_IS_MULTI(mode) (false)
|
|
#endif
|
|
|
|
/*
|
|
* If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
|
|
* XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
|
|
*/
|
|
#ifndef XZ_DEC_BCJ
|
|
# if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
|
|
|| defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
|
|
|| defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
|
|
|| defined(XZ_DEC_SPARC)
|
|
# define XZ_DEC_BCJ
|
|
# endif
|
|
#endif
|
|
|
|
/*
|
|
* Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
|
|
* before calling xz_dec_lzma2_run().
|
|
*/
|
|
XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
|
|
uint32_t dict_max);
|
|
|
|
/*
|
|
* Decode the LZMA2 properties (one byte) and reset the decoder. Return
|
|
* XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
|
|
* big enough, and XZ_OPTIONS_ERROR if props indicates something that this
|
|
* decoder doesn't support.
|
|
*/
|
|
XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s,
|
|
uint8_t props);
|
|
|
|
/* Decode raw LZMA2 stream from b->in to b->out. */
|
|
XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
|
|
struct xz_buf *b);
|
|
|
|
/* Free the memory allocated for the LZMA2 decoder. */
|
|
XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s);
|
|
|
|
#ifdef XZ_DEC_BCJ
|
|
/*
|
|
* Allocate memory for BCJ decoders. xz_dec_bcj_reset() must be used before
|
|
* calling xz_dec_bcj_run().
|
|
*/
|
|
XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call);
|
|
|
|
/*
|
|
* Decode the Filter ID of a BCJ filter. This implementation doesn't
|
|
* support custom start offsets, so no decoding of Filter Properties
|
|
* is needed. Returns XZ_OK if the given Filter ID is supported.
|
|
* Otherwise XZ_OPTIONS_ERROR is returned.
|
|
*/
|
|
XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);
|
|
|
|
/*
|
|
* Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
|
|
* a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
|
|
* must be called directly.
|
|
*/
|
|
XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
|
|
struct xz_dec_lzma2 *lzma2,
|
|
struct xz_buf *b);
|
|
|
|
/* Free the memory allocated for the BCJ filters. */
|
|
#define xz_dec_bcj_end(s) kfree(s)
|
|
#endif
|
|
|
|
#endif
|
|
//END xz_private.h
|
|
//BEGIN xz_stream.h
|
|
/*
|
|
* Definitions for handling the .xz file format
|
|
*
|
|
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
|
*
|
|
* This file has been put into the public domain.
|
|
* You can do whatever you want with this file.
|
|
*/
|
|
|
|
#ifndef XZ_STREAM_H
|
|
#define XZ_STREAM_H
|
|
|
|
#if defined(__KERNEL__) && !XZ_INTERNAL_CRC32
|
|
# include <linux/crc32.h>
|
|
# undef crc32
|
|
# define xz_crc32(buf, size, crc) \
|
|
(~crc32_le(~(uint32_t)(crc), buf, size))
|
|
#endif
|
|
|
|
/*
|
|
* See the .xz file format specification at
|
|
* http://tukaani.org/xz/xz-file-format.txt
|
|
* to understand the container format.
|
|
*/
|
|
|
|
#define STREAM_HEADER_SIZE 12
|
|
|
|
#define HEADER_MAGIC "\375""7zXZ"
|
|
#define HEADER_MAGIC_SIZE 6
|
|
|
|
#define FOOTER_MAGIC "YZ"
|
|
#define FOOTER_MAGIC_SIZE 2
|
|
|
|
/*
|
|
* Variable-length integer can hold a 63-bit unsigned integer or a special
|
|
* value indicating that the value is unknown.
|
|
*
|
|
* Experimental: vli_type can be defined to uint32_t to save a few bytes
|
|
* in code size (no effect on speed). Doing so limits the uncompressed and
|
|
* compressed size of the file to less than 256 MiB and may also weaken
|
|
* error detection slightly.
|
|
*/
|
|
typedef uint64_t vli_type;
|
|
|
|
#define VLI_MAX ((vli_type)-1 / 2)
|
|
#define VLI_UNKNOWN ((vli_type)-1)
|
|
|
|
/* Maximum encoded size of a VLI */
|
|
#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
|
|
|
|
/* Integrity Check types */
|
|
enum xz_check {
|
|
XZ_CHECK_NONE = 0,
|
|
XZ_CHECK_CRC32 = 1,
|
|
XZ_CHECK_CRC64 = 4,
|
|
XZ_CHECK_SHA256 = 10
|
|
};
|
|
|
|
/* Maximum possible Check ID */
|
|
#define XZ_CHECK_MAX 15
|
|
|
|
#endif
|
|
//END xz_stream.h
|
|
|
|
//BEGIN "xz_lzma2.h"
|
|
/*
|
|
* LZMA2 definitions
|
|
*
|
|
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
|
* Igor Pavlov <http://7-zip.org/>
|
|
*
|
|
* This file has been put into the public domain.
|
|
* You can do whatever you want with this file.
|
|
*/
|
|
|
|
#ifndef XZ_LZMA2_H
|
|
#define XZ_LZMA2_H
|
|
|
|
/* Range coder constants */
|
|
#define RC_SHIFT_BITS 8
|
|
#define RC_TOP_BITS 24
|
|
#define RC_TOP_VALUE (1 << RC_TOP_BITS)
|
|
#define RC_BIT_MODEL_TOTAL_BITS 11
|
|
#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
|
|
#define RC_MOVE_BITS 5
|
|
|
|
/*
|
|
* Maximum number of position states. A position state is the lowest pb
|
|
* number of bits of the current uncompressed offset. In some places there
|
|
* are different sets of probabilities for different position states.
|
|
*/
|
|
#define POS_STATES_MAX (1 << 4)
|
|
|
|
/*
|
|
* This enum is used to track which LZMA symbols have occurred most recently
|
|
* and in which order. This information is used to predict the next symbol.
|
|
*
|
|
* Symbols:
|
|
* - Literal: One 8-bit byte
|
|
* - Match: Repeat a chunk of data at some distance
|
|
* - Long repeat: Multi-byte match at a recently seen distance
|
|
* - Short repeat: One-byte repeat at a recently seen distance
|
|
*
|
|
* The symbol names are in from STATE_oldest_older_previous. REP means
|
|
* either short or long repeated match, and NONLIT means any non-literal.
|
|
*/
|
|
enum lzma_state {
|
|
STATE_LIT_LIT,
|
|
STATE_MATCH_LIT_LIT,
|
|
STATE_REP_LIT_LIT,
|
|
STATE_SHORTREP_LIT_LIT,
|
|
STATE_MATCH_LIT,
|
|
STATE_REP_LIT,
|
|
STATE_SHORTREP_LIT,
|
|
STATE_LIT_MATCH,
|
|
STATE_LIT_LONGREP,
|
|
STATE_LIT_SHORTREP,
|
|
STATE_NONLIT_MATCH,
|
|
STATE_NONLIT_REP
|
|
};
|
|
|
|
/* Total number of states */
|
|
#define STATES 12
|
|
|
|
/* The lowest 7 states indicate that the previous state was a literal. */
|
|
#define LIT_STATES 7
|
|
|
|
/* Indicate that the latest symbol was a literal. */
|
|
static inline void lzma_state_literal(enum lzma_state *state)
|
|
{
|
|
if (*state <= STATE_SHORTREP_LIT_LIT)
|
|
*state = STATE_LIT_LIT;
|
|
else if (*state <= STATE_LIT_SHORTREP)
|
|
*state -= 3;
|
|
else
|
|
*state -= 6;
|
|
}
|
|
|
|
/* Indicate that the latest symbol was a match. */
|
|
static inline void lzma_state_match(enum lzma_state *state)
|
|
{
|
|
*state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
|
|
}
|
|
|
|
/* Indicate that the latest state was a long repeated match. */
|
|
static inline void lzma_state_long_rep(enum lzma_state *state)
|
|
{
|
|
*state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
|
|
}
|
|
|
|
/* Indicate that the latest symbol was a short match. */
|
|
static inline void lzma_state_short_rep(enum lzma_state *state)
|
|
{
|
|
*state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
|
|
}
|
|
|
|
/* Test if the previous symbol was a literal. */
|
|
static inline bool lzma_state_is_literal(enum lzma_state state)
|
|
{
|
|
return state < LIT_STATES;
|
|
}
|
|
|
|
/* Each literal coder is divided in three sections:
|
|
* - 0x001-0x0FF: Without match byte
|
|
* - 0x101-0x1FF: With match byte; match bit is 0
|
|
* - 0x201-0x2FF: With match byte; match bit is 1
|
|
*
|
|
* Match byte is used when the previous LZMA symbol was something else than
|
|
* a literal (that is, it was some kind of match).
|
|
*/
|
|
#define LITERAL_CODER_SIZE 0x300
|
|
|
|
/* Maximum number of literal coders */
|
|
#define LITERAL_CODERS_MAX (1 << 4)
|
|
|
|
/* Minimum length of a match is two bytes. */
|
|
#define MATCH_LEN_MIN 2
|
|
|
|
/* Match length is encoded with 4, 5, or 10 bits.
|
|
*
|
|
* Length Bits
|
|
* 2-9 4 = Choice=0 + 3 bits
|
|
* 10-17 5 = Choice=1 + Choice2=0 + 3 bits
|
|
* 18-273 10 = Choice=1 + Choice2=1 + 8 bits
|
|
*/
|
|
#define LEN_LOW_BITS 3
|
|
#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
|
|
#define LEN_MID_BITS 3
|
|
#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
|
|
#define LEN_HIGH_BITS 8
|
|
#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
|
|
#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
|
|
|
|
/*
|
|
* Maximum length of a match is 273 which is a result of the encoding
|
|
* described above.
|
|
*/
|
|
#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
|
|
|
|
/*
|
|
* Different sets of probabilities are used for match distances that have
|
|
* very short match length: Lengths of 2, 3, and 4 bytes have a separate
|
|
* set of probabilities for each length. The matches with longer length
|
|
* use a shared set of probabilities.
|
|
*/
|
|
#define DIST_STATES 4
|
|
|
|
/*
|
|
* Get the index of the appropriate probability array for decoding
|
|
* the distance slot.
|
|
*/
|
|
static inline uint32_t lzma_get_dist_state(uint32_t len)
|
|
{
|
|
return len < DIST_STATES + MATCH_LEN_MIN
|
|
? len - MATCH_LEN_MIN : DIST_STATES - 1;
|
|
}
|
|
|
|
/*
|
|
* The highest two bits of a 32-bit match distance are encoded using six bits.
|
|
* This six-bit value is called a distance slot. This way encoding a 32-bit
|
|
* value takes 6-36 bits, larger values taking more bits.
|
|
*/
|
|
#define DIST_SLOT_BITS 6
|
|
#define DIST_SLOTS (1 << DIST_SLOT_BITS)
|
|
|
|
/* Match distances up to 127 are fully encoded using probabilities. Since
|
|
* the highest two bits (distance slot) are always encoded using six bits,
|
|
* the distances 0-3 don't need any additional bits to encode, since the
|
|
* distance slot itself is the same as the actual distance. DIST_MODEL_START
|
|
* indicates the first distance slot where at least one additional bit is
|
|
* needed.
|
|
*/
|
|
#define DIST_MODEL_START 4
|
|
|
|
/*
|
|
* Match distances greater than 127 are encoded in three pieces:
|
|
* - distance slot: the highest two bits
|
|
* - direct bits: 2-26 bits below the highest two bits
|
|
* - alignment bits: four lowest bits
|
|
*
|
|
* Direct bits don't use any probabilities.
|
|
*
|
|
* The distance slot value of 14 is for distances 128-191.
|
|
*/
|
|
#define DIST_MODEL_END 14
|
|
|
|
/* Distance slots that indicate a distance <= 127. */
|
|
#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
|
|
#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
|
|
|
|
/*
|
|
* For match distances greater than 127, only the highest two bits and the
|
|
* lowest four bits (alignment) is encoded using probabilities.
|
|
*/
|
|
#define ALIGN_BITS 4
|
|
#define ALIGN_SIZE (1 << ALIGN_BITS)
|
|
#define ALIGN_MASK (ALIGN_SIZE - 1)
|
|
|
|
/* Total number of all probability variables */
|
|
#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)
|
|
|
|
/*
|
|
* LZMA remembers the four most recent match distances. Reusing these
|
|
* distances tends to take less space than re-encoding the actual
|
|
* distance value.
|
|
*/
|
|
#define REPS 4
|
|
|
|
#endif
|
|
|
|
//END xz_lzma2.h
|
|
//BEGIN xz_dec_stream.c
|
|
|
|
/*
|
|
* .xz Stream decoder
|
|
*
|
|
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
|
*
|
|
* This file has been put into the public domain.
|
|
* You can do whatever you want with this file.
|
|
*/
|
|
|
|
#ifdef XZ_USE_CRC64
|
|
# define IS_CRC64(check_type) ((check_type) == XZ_CHECK_CRC64)
|
|
#else
|
|
# define IS_CRC64(check_type) false
|
|
#endif
|
|
|
|
/* Hash used to validate the Index field */
|
|
struct xz_dec_hash {
|
|
vli_type unpadded;
|
|
vli_type uncompressed;
|
|
uint32_t crc32;
|
|
};
|
|
|
|
struct xz_dec {
|
|
/* Position in dec_main() */
|
|
enum {
|
|
SEQ_STREAM_HEADER,
|
|
SEQ_BLOCK_START,
|
|
SEQ_BLOCK_HEADER,
|
|
SEQ_BLOCK_UNCOMPRESS,
|
|
SEQ_BLOCK_PADDING,
|
|
SEQ_BLOCK_CHECK,
|
|
SEQ_INDEX,
|
|
SEQ_INDEX_PADDING,
|
|
SEQ_INDEX_CRC32,
|
|
SEQ_STREAM_FOOTER
|
|
} sequence;
|
|
|
|
/* Position in variable-length integers and Check fields */
|
|
uint32_t pos;
|
|
|
|
/* Variable-length integer decoded by dec_vli() */
|
|
vli_type vli;
|
|
|
|
/* Saved in_pos and out_pos */
|
|
size_t in_start;
|
|
size_t out_start;
|
|
|
|
#ifdef XZ_USE_CRC64
|
|
/* CRC32 or CRC64 value in Block or CRC32 value in Index */
|
|
uint64_t crc;
|
|
#else
|
|
/* CRC32 value in Block or Index */
|
|
uint32_t crc;
|
|
#endif
|
|
|
|
/* Type of the integrity check calculated from uncompressed data */
|
|
enum xz_check check_type;
|
|
|
|
/* Operation mode */
|
|
enum xz_mode mode;
|
|
|
|
/*
|
|
* True if the next call to xz_dec_run() is allowed to return
|
|
* XZ_BUF_ERROR.
|
|
*/
|
|
bool allow_buf_error;
|
|
|
|
/* Information stored in Block Header */
|
|
struct {
|
|
/*
|
|
* Value stored in the Compressed Size field, or
|
|
* VLI_UNKNOWN if Compressed Size is not present.
|
|
*/
|
|
vli_type compressed;
|
|
|
|
/*
|
|
* Value stored in the Uncompressed Size field, or
|
|
* VLI_UNKNOWN if Uncompressed Size is not present.
|
|
*/
|
|
vli_type uncompressed;
|
|
|
|
/* Size of the Block Header field */
|
|
uint32_t size;
|
|
} block_header;
|
|
|
|
/* Information collected when decoding Blocks */
|
|
struct {
|
|
/* Observed compressed size of the current Block */
|
|
vli_type compressed;
|
|
|
|
/* Observed uncompressed size of the current Block */
|
|
vli_type uncompressed;
|
|
|
|
/* Number of Blocks decoded so far */
|
|
vli_type count;
|
|
|
|
/*
|
|
* Hash calculated from the Block sizes. This is used to
|
|
* validate the Index field.
|
|
*/
|
|
struct xz_dec_hash hash;
|
|
} block;
|
|
|
|
/* Variables needed when verifying the Index field */
|
|
struct {
|
|
/* Position in dec_index() */
|
|
enum {
|
|
SEQ_INDEX_COUNT,
|
|
SEQ_INDEX_UNPADDED,
|
|
SEQ_INDEX_UNCOMPRESSED
|
|
} sequence;
|
|
|
|
/* Size of the Index in bytes */
|
|
vli_type size;
|
|
|
|
/* Number of Records (matches block.count in valid files) */
|
|
vli_type count;
|
|
|
|
/*
|
|
* Hash calculated from the Records (matches block.hash in
|
|
* valid files).
|
|
*/
|
|
struct xz_dec_hash hash;
|
|
} index;
|
|
|
|
/*
|
|
* Temporary buffer needed to hold Stream Header, Block Header,
|
|
* and Stream Footer. The Block Header is the biggest (1 KiB)
|
|
* so we reserve space according to that. buf[] has to be aligned
|
|
* to a multiple of four bytes; the size_t variables before it
|
|
* should guarantee this.
|
|
*/
|
|
struct {
|
|
size_t pos;
|
|
size_t size;
|
|
uint8_t buf[1024];
|
|
} temp;
|
|
|
|
struct xz_dec_lzma2 *lzma2;
|
|
|
|
#ifdef XZ_DEC_BCJ
|
|
struct xz_dec_bcj *bcj;
|
|
bool bcj_active;
|
|
#endif
|
|
};
|
|
|
|
#ifdef XZ_DEC_ANY_CHECK
|
|
/* Sizes of the Check field with different Check IDs */
|
|
static const uint8_t check_sizes[16] = {
|
|
0,
|
|
4, 4, 4,
|
|
8, 8, 8,
|
|
16, 16, 16,
|
|
32, 32, 32,
|
|
64, 64, 64
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
|
|
* must have set s->temp.pos to indicate how much data we are supposed
|
|
* to copy into s->temp.buf. Return true once s->temp.pos has reached
|
|
* s->temp.size.
|
|
*/
|
|
static bool fill_temp(struct xz_dec *s, struct xz_buf *b)
|
|
{
|
|
size_t copy_size = min_t(size_t,
|
|
b->in_size - b->in_pos, s->temp.size - s->temp.pos);
|
|
|
|
memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
|
|
b->in_pos += copy_size;
|
|
s->temp.pos += copy_size;
|
|
|
|
if (s->temp.pos == s->temp.size) {
|
|
s->temp.pos = 0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Decode a variable-length integer (little-endian base-128 encoding) */
|
|
static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
|
|
size_t *in_pos, size_t in_size)
|
|
{
|
|
uint8_t byte;
|
|
|
|
if (s->pos == 0)
|
|
s->vli = 0;
|
|
|
|
while (*in_pos < in_size) {
|
|
byte = in[*in_pos];
|
|
++*in_pos;
|
|
|
|
s->vli |= (vli_type)(byte & 0x7F) << s->pos;
|
|
|
|
if ((byte & 0x80) == 0) {
|
|
/* Don't allow non-minimal encodings. */
|
|
if (byte == 0 && s->pos != 0)
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->pos = 0;
|
|
return XZ_STREAM_END;
|
|
}
|
|
|
|
s->pos += 7;
|
|
if (s->pos == 7 * VLI_BYTES_MAX)
|
|
return XZ_DATA_ERROR;
|
|
}
|
|
|
|
return XZ_OK;
|
|
}
|
|
|
|
/*
|
|
* Decode the Compressed Data field from a Block. Update and validate
|
|
* the observed compressed and uncompressed sizes of the Block so that
|
|
* they don't exceed the values possibly stored in the Block Header
|
|
* (validation assumes that no integer overflow occurs, since vli_type
|
|
* is normally uint64_t). Update the CRC32 or CRC64 value if presence of
|
|
* the CRC32 or CRC64 field was indicated in Stream Header.
|
|
*
|
|
* Once the decoding is finished, validate that the observed sizes match
|
|
* the sizes possibly stored in the Block Header. Update the hash and
|
|
* Block count, which are later used to validate the Index field.
|
|
*/
|
|
static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b)
|
|
{
|
|
enum xz_ret ret;
|
|
|
|
s->in_start = b->in_pos;
|
|
s->out_start = b->out_pos;
|
|
|
|
#ifdef XZ_DEC_BCJ
|
|
if (s->bcj_active)
|
|
ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
|
|
else
|
|
#endif
|
|
ret = xz_dec_lzma2_run(s->lzma2, b);
|
|
|
|
s->block.compressed += b->in_pos - s->in_start;
|
|
s->block.uncompressed += b->out_pos - s->out_start;
|
|
|
|
/*
|
|
* There is no need to separately check for VLI_UNKNOWN, since
|
|
* the observed sizes are always smaller than VLI_UNKNOWN.
|
|
*/
|
|
if (s->block.compressed > s->block_header.compressed
|
|
|| s->block.uncompressed
|
|
> s->block_header.uncompressed)
|
|
return XZ_DATA_ERROR;
|
|
|
|
if (s->check_type == XZ_CHECK_CRC32)
|
|
s->crc = xz_crc32(b->out + s->out_start,
|
|
b->out_pos - s->out_start, s->crc);
|
|
#ifdef XZ_USE_CRC64
|
|
else if (s->check_type == XZ_CHECK_CRC64)
|
|
s->crc = xz_crc64(b->out + s->out_start,
|
|
b->out_pos - s->out_start, s->crc);
|
|
#endif
|
|
|
|
if (ret == XZ_STREAM_END) {
|
|
if (s->block_header.compressed != VLI_UNKNOWN
|
|
&& s->block_header.compressed
|
|
!= s->block.compressed)
|
|
return XZ_DATA_ERROR;
|
|
|
|
if (s->block_header.uncompressed != VLI_UNKNOWN
|
|
&& s->block_header.uncompressed
|
|
!= s->block.uncompressed)
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->block.hash.unpadded += s->block_header.size
|
|
+ s->block.compressed;
|
|
|
|
#ifdef XZ_DEC_ANY_CHECK
|
|
s->block.hash.unpadded += check_sizes[s->check_type];
|
|
#else
|
|
if (s->check_type == XZ_CHECK_CRC32)
|
|
s->block.hash.unpadded += 4;
|
|
else if (IS_CRC64(s->check_type))
|
|
s->block.hash.unpadded += 8;
|
|
#endif
|
|
|
|
s->block.hash.uncompressed += s->block.uncompressed;
|
|
s->block.hash.crc32 = xz_crc32(
|
|
(const uint8_t *)&s->block.hash,
|
|
sizeof(s->block.hash), s->block.hash.crc32);
|
|
|
|
++s->block.count;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Update the Index size and the CRC32 value. */
|
|
static void index_update(struct xz_dec *s, const struct xz_buf *b)
|
|
{
|
|
size_t in_used = b->in_pos - s->in_start;
|
|
s->index.size += in_used;
|
|
s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc);
|
|
}
|
|
|
|
/*
|
|
* Decode the Number of Records, Unpadded Size, and Uncompressed Size
|
|
* fields from the Index field. That is, Index Padding and CRC32 are not
|
|
* decoded by this function.
|
|
*
|
|
* This can return XZ_OK (more input needed), XZ_STREAM_END (everything
|
|
* successfully decoded), or XZ_DATA_ERROR (input is corrupt).
|
|
*/
|
|
static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
|
|
{
|
|
enum xz_ret ret;
|
|
|
|
do {
|
|
ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
|
|
if (ret != XZ_STREAM_END) {
|
|
index_update(s, b);
|
|
return ret;
|
|
}
|
|
|
|
switch (s->index.sequence) {
|
|
case SEQ_INDEX_COUNT:
|
|
s->index.count = s->vli;
|
|
|
|
/*
|
|
* Validate that the Number of Records field
|
|
* indicates the same number of Records as
|
|
* there were Blocks in the Stream.
|
|
*/
|
|
if (s->index.count != s->block.count)
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->index.sequence = SEQ_INDEX_UNPADDED;
|
|
break;
|
|
|
|
case SEQ_INDEX_UNPADDED:
|
|
s->index.hash.unpadded += s->vli;
|
|
s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
|
|
break;
|
|
|
|
case SEQ_INDEX_UNCOMPRESSED:
|
|
s->index.hash.uncompressed += s->vli;
|
|
s->index.hash.crc32 = xz_crc32(
|
|
(const uint8_t *)&s->index.hash,
|
|
sizeof(s->index.hash),
|
|
s->index.hash.crc32);
|
|
--s->index.count;
|
|
s->index.sequence = SEQ_INDEX_UNPADDED;
|
|
break;
|
|
}
|
|
} while (s->index.count > 0);
|
|
|
|
return XZ_STREAM_END;
|
|
}
|
|
|
|
/*
|
|
* Validate that the next four or eight input bytes match the value
|
|
* of s->crc. s->pos must be zero when starting to validate the first byte.
|
|
* The "bits" argument allows using the same code for both CRC32 and CRC64.
|
|
*/
|
|
static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b,
|
|
uint32_t bits)
|
|
{
|
|
do {
|
|
if (b->in_pos == b->in_size)
|
|
return XZ_OK;
|
|
|
|
if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++])
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->pos += 8;
|
|
|
|
} while (s->pos < bits);
|
|
|
|
s->crc = 0;
|
|
s->pos = 0;
|
|
|
|
return XZ_STREAM_END;
|
|
}
|
|
|
|
#ifdef XZ_DEC_ANY_CHECK
|
|
/*
|
|
* Skip over the Check field when the Check ID is not supported.
|
|
* Returns true once the whole Check field has been skipped over.
|
|
*/
|
|
static bool check_skip(struct xz_dec *s, struct xz_buf *b)
|
|
{
|
|
while (s->pos < check_sizes[s->check_type]) {
|
|
if (b->in_pos == b->in_size)
|
|
return false;
|
|
|
|
++b->in_pos;
|
|
++s->pos;
|
|
}
|
|
|
|
s->pos = 0;
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
|
|
static enum xz_ret dec_stream_header(struct xz_dec *s)
|
|
{
|
|
if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
|
|
return XZ_FORMAT_ERROR;
|
|
|
|
if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
|
|
!= get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
|
|
return XZ_DATA_ERROR;
|
|
|
|
if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
|
|
return XZ_OPTIONS_ERROR;
|
|
|
|
/*
|
|
* Of integrity checks, we support none (Check ID = 0),
|
|
* CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4).
|
|
* However, if XZ_DEC_ANY_CHECK is defined, we will accept other
|
|
* check types too, but then the check won't be verified and
|
|
* a warning (XZ_UNSUPPORTED_CHECK) will be given.
|
|
*/
|
|
s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
|
|
|
|
#ifdef XZ_DEC_ANY_CHECK
|
|
if (s->check_type > XZ_CHECK_MAX)
|
|
return XZ_OPTIONS_ERROR;
|
|
|
|
if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
|
|
return XZ_UNSUPPORTED_CHECK;
|
|
#else
|
|
if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
|
|
return XZ_OPTIONS_ERROR;
|
|
#endif
|
|
|
|
return XZ_OK;
|
|
}
|
|
|
|
/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
|
|
static enum xz_ret dec_stream_footer(struct xz_dec *s)
|
|
{
|
|
if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
|
|
return XZ_DATA_ERROR;
|
|
|
|
if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
|
|
return XZ_DATA_ERROR;
|
|
|
|
/*
|
|
* Validate Backward Size. Note that we never added the size of the
|
|
* Index CRC32 field to s->index.size, thus we use s->index.size / 4
|
|
* instead of s->index.size / 4 - 1.
|
|
*/
|
|
if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
|
|
return XZ_DATA_ERROR;
|
|
|
|
if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
|
|
return XZ_DATA_ERROR;
|
|
|
|
/*
|
|
* Use XZ_STREAM_END instead of XZ_OK to be more convenient
|
|
* for the caller.
|
|
*/
|
|
return XZ_STREAM_END;
|
|
}
|
|
|
|
/* Decode the Block Header and initialize the filter chain. */
|
|
static enum xz_ret dec_block_header(struct xz_dec *s)
|
|
{
|
|
enum xz_ret ret;
|
|
|
|
/*
|
|
* Validate the CRC32. We know that the temp buffer is at least
|
|
* eight bytes so this is safe.
|
|
*/
|
|
s->temp.size -= 4;
|
|
if (xz_crc32(s->temp.buf, s->temp.size, 0)
|
|
!= get_le32(s->temp.buf + s->temp.size))
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->temp.pos = 2;
|
|
|
|
/*
|
|
* Catch unsupported Block Flags. We support only one or two filters
|
|
* in the chain, so we catch that with the same test.
|
|
*/
|
|
#ifdef XZ_DEC_BCJ
|
|
if (s->temp.buf[1] & 0x3E)
|
|
#else
|
|
if (s->temp.buf[1] & 0x3F)
|
|
#endif
|
|
return XZ_OPTIONS_ERROR;
|
|
|
|
/* Compressed Size */
|
|
if (s->temp.buf[1] & 0x40) {
|
|
if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
|
|
!= XZ_STREAM_END)
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->block_header.compressed = s->vli;
|
|
} else {
|
|
s->block_header.compressed = VLI_UNKNOWN;
|
|
}
|
|
|
|
/* Uncompressed Size */
|
|
if (s->temp.buf[1] & 0x80) {
|
|
if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
|
|
!= XZ_STREAM_END)
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->block_header.uncompressed = s->vli;
|
|
} else {
|
|
s->block_header.uncompressed = VLI_UNKNOWN;
|
|
}
|
|
|
|
#ifdef XZ_DEC_BCJ
|
|
/* If there are two filters, the first one must be a BCJ filter. */
|
|
s->bcj_active = s->temp.buf[1] & 0x01;
|
|
if (s->bcj_active) {
|
|
if (s->temp.size - s->temp.pos < 2)
|
|
return XZ_OPTIONS_ERROR;
|
|
|
|
ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
|
|
if (ret != XZ_OK)
|
|
return ret;
|
|
|
|
/*
|
|
* We don't support custom start offset,
|
|
* so Size of Properties must be zero.
|
|
*/
|
|
if (s->temp.buf[s->temp.pos++] != 0x00)
|
|
return XZ_OPTIONS_ERROR;
|
|
}
|
|
#endif
|
|
|
|
/* Valid Filter Flags always take at least two bytes. */
|
|
if (s->temp.size - s->temp.pos < 2)
|
|
return XZ_DATA_ERROR;
|
|
|
|
/* Filter ID = LZMA2 */
|
|
if (s->temp.buf[s->temp.pos++] != 0x21)
|
|
return XZ_OPTIONS_ERROR;
|
|
|
|
/* Size of Properties = 1-byte Filter Properties */
|
|
if (s->temp.buf[s->temp.pos++] != 0x01)
|
|
return XZ_OPTIONS_ERROR;
|
|
|
|
/* Filter Properties contains LZMA2 dictionary size. */
|
|
if (s->temp.size - s->temp.pos < 1)
|
|
return XZ_DATA_ERROR;
|
|
|
|
ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
|
|
if (ret != XZ_OK)
|
|
return ret;
|
|
|
|
/* The rest must be Header Padding. */
|
|
while (s->temp.pos < s->temp.size)
|
|
if (s->temp.buf[s->temp.pos++] != 0x00)
|
|
return XZ_OPTIONS_ERROR;
|
|
|
|
s->temp.pos = 0;
|
|
s->block.compressed = 0;
|
|
s->block.uncompressed = 0;
|
|
|
|
return XZ_OK;
|
|
}
|
|
|
|
static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
|
|
{
|
|
enum xz_ret ret;
|
|
|
|
/*
|
|
* Store the start position for the case when we are in the middle
|
|
* of the Index field.
|
|
*/
|
|
s->in_start = b->in_pos;
|
|
|
|
while (true) {
|
|
switch (s->sequence) {
|
|
case SEQ_STREAM_HEADER:
|
|
/*
|
|
* Stream Header is copied to s->temp, and then
|
|
* decoded from there. This way if the caller
|
|
* gives us only little input at a time, we can
|
|
* still keep the Stream Header decoding code
|
|
* simple. Similar approach is used in many places
|
|
* in this file.
|
|
*/
|
|
if (!fill_temp(s, b))
|
|
return XZ_OK;
|
|
|
|
/*
|
|
* If dec_stream_header() returns
|
|
* XZ_UNSUPPORTED_CHECK, it is still possible
|
|
* to continue decoding if working in multi-call
|
|
* mode. Thus, update s->sequence before calling
|
|
* dec_stream_header().
|
|
*/
|
|
s->sequence = SEQ_BLOCK_START;
|
|
|
|
ret = dec_stream_header(s);
|
|
if (ret != XZ_OK)
|
|
return ret;
|
|
|
|
case SEQ_BLOCK_START:
|
|
/* We need one byte of input to continue. */
|
|
if (b->in_pos == b->in_size)
|
|
return XZ_OK;
|
|
|
|
/* See if this is the beginning of the Index field. */
|
|
if (b->in[b->in_pos] == 0) {
|
|
s->in_start = b->in_pos++;
|
|
s->sequence = SEQ_INDEX;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Calculate the size of the Block Header and
|
|
* prepare to decode it.
|
|
*/
|
|
s->block_header.size
|
|
= ((uint32_t)b->in[b->in_pos] + 1) * 4;
|
|
|
|
s->temp.size = s->block_header.size;
|
|
s->temp.pos = 0;
|
|
s->sequence = SEQ_BLOCK_HEADER;
|
|
|
|
case SEQ_BLOCK_HEADER:
|
|
if (!fill_temp(s, b))
|
|
return XZ_OK;
|
|
|
|
ret = dec_block_header(s);
|
|
if (ret != XZ_OK)
|
|
return ret;
|
|
|
|
s->sequence = SEQ_BLOCK_UNCOMPRESS;
|
|
|
|
case SEQ_BLOCK_UNCOMPRESS:
|
|
ret = dec_block(s, b);
|
|
if (ret != XZ_STREAM_END)
|
|
return ret;
|
|
|
|
s->sequence = SEQ_BLOCK_PADDING;
|
|
|
|
case SEQ_BLOCK_PADDING:
|
|
/*
|
|
* Size of Compressed Data + Block Padding
|
|
* must be a multiple of four. We don't need
|
|
* s->block.compressed for anything else
|
|
* anymore, so we use it here to test the size
|
|
* of the Block Padding field.
|
|
*/
|
|
while (s->block.compressed & 3) {
|
|
if (b->in_pos == b->in_size)
|
|
return XZ_OK;
|
|
|
|
if (b->in[b->in_pos++] != 0)
|
|
return XZ_DATA_ERROR;
|
|
|
|
++s->block.compressed;
|
|
}
|
|
|
|
s->sequence = SEQ_BLOCK_CHECK;
|
|
|
|
case SEQ_BLOCK_CHECK:
|
|
if (s->check_type == XZ_CHECK_CRC32) {
|
|
ret = crc_validate(s, b, 32);
|
|
if (ret != XZ_STREAM_END)
|
|
return ret;
|
|
}
|
|
else if (IS_CRC64(s->check_type)) {
|
|
ret = crc_validate(s, b, 64);
|
|
if (ret != XZ_STREAM_END)
|
|
return ret;
|
|
}
|
|
#ifdef XZ_DEC_ANY_CHECK
|
|
else if (!check_skip(s, b)) {
|
|
return XZ_OK;
|
|
}
|
|
#endif
|
|
|
|
s->sequence = SEQ_BLOCK_START;
|
|
break;
|
|
|
|
case SEQ_INDEX:
|
|
ret = dec_index(s, b);
|
|
if (ret != XZ_STREAM_END)
|
|
return ret;
|
|
|
|
s->sequence = SEQ_INDEX_PADDING;
|
|
|
|
case SEQ_INDEX_PADDING:
|
|
while ((s->index.size + (b->in_pos - s->in_start))
|
|
& 3) {
|
|
if (b->in_pos == b->in_size) {
|
|
index_update(s, b);
|
|
return XZ_OK;
|
|
}
|
|
|
|
if (b->in[b->in_pos++] != 0)
|
|
return XZ_DATA_ERROR;
|
|
}
|
|
|
|
/* Finish the CRC32 value and Index size. */
|
|
index_update(s, b);
|
|
|
|
/* Compare the hashes to validate the Index field. */
|
|
if (!memeq(&s->block.hash, &s->index.hash,
|
|
sizeof(s->block.hash)))
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->sequence = SEQ_INDEX_CRC32;
|
|
|
|
case SEQ_INDEX_CRC32:
|
|
ret = crc_validate(s, b, 32);
|
|
if (ret != XZ_STREAM_END)
|
|
return ret;
|
|
|
|
s->temp.size = STREAM_HEADER_SIZE;
|
|
s->sequence = SEQ_STREAM_FOOTER;
|
|
|
|
case SEQ_STREAM_FOOTER:
|
|
if (!fill_temp(s, b))
|
|
return XZ_OK;
|
|
|
|
return dec_stream_footer(s);
|
|
}
|
|
}
|
|
|
|
/* Never reached */
|
|
}
|
|
|
|
/*
|
|
* xz_dec_run() is a wrapper for dec_main() to handle some special cases in
|
|
* multi-call and single-call decoding.
|
|
*
|
|
* In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
|
|
* are not going to make any progress anymore. This is to prevent the caller
|
|
* from calling us infinitely when the input file is truncated or otherwise
|
|
* corrupt. Since zlib-style API allows that the caller fills the input buffer
|
|
* only when the decoder doesn't produce any new output, we have to be careful
|
|
* to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
|
|
* after the second consecutive call to xz_dec_run() that makes no progress.
|
|
*
|
|
* In single-call mode, if we couldn't decode everything and no error
|
|
* occurred, either the input is truncated or the output buffer is too small.
|
|
* Since we know that the last input byte never produces any output, we know
|
|
* that if all the input was consumed and decoding wasn't finished, the file
|
|
* must be corrupt. Otherwise the output buffer has to be too small or the
|
|
* file is corrupt in a way that decoding it produces too big output.
|
|
*
|
|
* If single-call decoding fails, we reset b->in_pos and b->out_pos back to
|
|
* their original values. This is because with some filter chains there won't
|
|
* be any valid uncompressed data in the output buffer unless the decoding
|
|
* actually succeeds (that's the price to pay of using the output buffer as
|
|
* the workspace).
|
|
*/
|
|
XZ_EXTERN enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b)
|
|
{
|
|
size_t in_start;
|
|
size_t out_start;
|
|
enum xz_ret ret;
|
|
|
|
if (DEC_IS_SINGLE(s->mode))
|
|
xz_dec_reset(s);
|
|
|
|
in_start = b->in_pos;
|
|
out_start = b->out_pos;
|
|
ret = dec_main(s, b);
|
|
|
|
if (DEC_IS_SINGLE(s->mode)) {
|
|
if (ret == XZ_OK)
|
|
ret = b->in_pos == b->in_size
|
|
? XZ_DATA_ERROR : XZ_BUF_ERROR;
|
|
|
|
if (ret != XZ_STREAM_END) {
|
|
b->in_pos = in_start;
|
|
b->out_pos = out_start;
|
|
}
|
|
|
|
} else if (ret == XZ_OK && in_start == b->in_pos
|
|
&& out_start == b->out_pos) {
|
|
if (s->allow_buf_error)
|
|
ret = XZ_BUF_ERROR;
|
|
|
|
s->allow_buf_error = true;
|
|
} else {
|
|
s->allow_buf_error = false;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
XZ_EXTERN struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max)
|
|
{
|
|
struct xz_dec *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
|
if (s == NULL)
|
|
return NULL;
|
|
|
|
s->mode = mode;
|
|
|
|
#ifdef XZ_DEC_BCJ
|
|
s->bcj = xz_dec_bcj_create(DEC_IS_SINGLE(mode));
|
|
if (s->bcj == NULL)
|
|
goto error_bcj;
|
|
#endif
|
|
|
|
s->lzma2 = xz_dec_lzma2_create(mode, dict_max);
|
|
if (s->lzma2 == NULL)
|
|
goto error_lzma2;
|
|
|
|
xz_dec_reset(s);
|
|
return s;
|
|
|
|
error_lzma2:
|
|
#ifdef XZ_DEC_BCJ
|
|
xz_dec_bcj_end(s->bcj);
|
|
error_bcj:
|
|
#endif
|
|
kfree(s);
|
|
return NULL;
|
|
}
|
|
|
|
XZ_EXTERN void xz_dec_reset(struct xz_dec *s)
|
|
{
|
|
s->sequence = SEQ_STREAM_HEADER;
|
|
s->allow_buf_error = false;
|
|
s->pos = 0;
|
|
s->crc = 0;
|
|
memzero(&s->block, sizeof(s->block));
|
|
memzero(&s->index, sizeof(s->index));
|
|
s->temp.pos = 0;
|
|
s->temp.size = STREAM_HEADER_SIZE;
|
|
}
|
|
|
|
XZ_EXTERN void xz_dec_end(struct xz_dec *s)
|
|
{
|
|
if (s != NULL) {
|
|
xz_dec_lzma2_end(s->lzma2);
|
|
#ifdef XZ_DEC_BCJ
|
|
xz_dec_bcj_end(s->bcj);
|
|
#endif
|
|
kfree(s);
|
|
}
|
|
}
|
|
|
|
//END xz_dec_stream.c
|
|
//BEGIN xz_dec_lzma2.c
|
|
/*
|
|
* LZMA2 decoder
|
|
*
|
|
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
|
* Igor Pavlov <http://7-zip.org/>
|
|
*
|
|
* This file has been put into the public domain.
|
|
* You can do whatever you want with this file.
|
|
*/
|
|
|
|
/*
|
|
* Range decoder initialization eats the first five bytes of each LZMA chunk.
|
|
*/
|
|
#define RC_INIT_BYTES 5
|
|
|
|
/*
|
|
* Minimum number of usable input buffer to safely decode one LZMA symbol.
|
|
* The worst case is that we decode 22 bits using probabilities and 26
|
|
* direct bits. This may decode at maximum of 20 bytes of input. However,
|
|
* lzma_main() does an extra normalization before returning, thus we
|
|
* need to put 21 here.
|
|
*/
|
|
#define LZMA_IN_REQUIRED 21
|
|
|
|
/*
|
|
* Dictionary (history buffer)
|
|
*
|
|
* These are always true:
|
|
* start <= pos <= full <= end
|
|
* pos <= limit <= end
|
|
*
|
|
* In multi-call mode, also these are true:
|
|
* end == size
|
|
* size <= size_max
|
|
* allocated <= size
|
|
*
|
|
* Most of these variables are size_t to support single-call mode,
|
|
* in which the dictionary variables address the actual output
|
|
* buffer directly.
|
|
*/
|
|
struct dictionary {
|
|
/* Beginning of the history buffer */
|
|
uint8_t *buf;
|
|
|
|
/* Old position in buf (before decoding more data) */
|
|
size_t start;
|
|
|
|
/* Position in buf */
|
|
size_t pos;
|
|
|
|
/*
|
|
* How full dictionary is. This is used to detect corrupt input that
|
|
* would read beyond the beginning of the uncompressed stream.
|
|
*/
|
|
size_t full;
|
|
|
|
/* Write limit; we don't write to buf[limit] or later bytes. */
|
|
size_t limit;
|
|
|
|
/*
|
|
* End of the dictionary buffer. In multi-call mode, this is
|
|
* the same as the dictionary size. In single-call mode, this
|
|
* indicates the size of the output buffer.
|
|
*/
|
|
size_t end;
|
|
|
|
/*
|
|
* Size of the dictionary as specified in Block Header. This is used
|
|
* together with "full" to detect corrupt input that would make us
|
|
* read beyond the beginning of the uncompressed stream.
|
|
*/
|
|
uint32_t size;
|
|
|
|
/*
|
|
* Maximum allowed dictionary size in multi-call mode.
|
|
* This is ignored in single-call mode.
|
|
*/
|
|
uint32_t size_max;
|
|
|
|
/*
|
|
* Amount of memory currently allocated for the dictionary.
|
|
* This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
|
|
* size_max is always the same as the allocated size.)
|
|
*/
|
|
uint32_t allocated;
|
|
|
|
/* Operation mode */
|
|
enum xz_mode mode;
|
|
};
|
|
|
|
/* Range decoder */
|
|
struct rc_dec {
|
|
uint32_t range;
|
|
uint32_t code;
|
|
|
|
/*
|
|
* Number of initializing bytes remaining to be read
|
|
* by rc_read_init().
|
|
*/
|
|
uint32_t init_bytes_left;
|
|
|
|
/*
|
|
* Buffer from which we read our input. It can be either
|
|
* temp.buf or the caller-provided input buffer.
|
|
*/
|
|
const uint8_t *in;
|
|
size_t in_pos;
|
|
size_t in_limit;
|
|
};
|
|
|
|
/* Probabilities for a length decoder. */
|
|
struct lzma_len_dec {
|
|
/* Probability of match length being at least 10 */
|
|
uint16_t choice;
|
|
|
|
/* Probability of match length being at least 18 */
|
|
uint16_t choice2;
|
|
|
|
/* Probabilities for match lengths 2-9 */
|
|
uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
|
|
|
|
/* Probabilities for match lengths 10-17 */
|
|
uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
|
|
|
|
/* Probabilities for match lengths 18-273 */
|
|
uint16_t high[LEN_HIGH_SYMBOLS];
|
|
};
|
|
|
|
struct lzma_dec {
|
|
/* Distances of latest four matches */
|
|
uint32_t rep0;
|
|
uint32_t rep1;
|
|
uint32_t rep2;
|
|
uint32_t rep3;
|
|
|
|
/* Types of the most recently seen LZMA symbols */
|
|
enum lzma_state state;
|
|
|
|
/*
|
|
* Length of a match. This is updated so that dict_repeat can
|
|
* be called again to finish repeating the whole match.
|
|
*/
|
|
uint32_t len;
|
|
|
|
/*
|
|
* LZMA properties or related bit masks (number of literal
|
|
* context bits, a mask dervied from the number of literal
|
|
* position bits, and a mask dervied from the number
|
|
* position bits)
|
|
*/
|
|
uint32_t lc;
|
|
uint32_t literal_pos_mask; /* (1 << lp) - 1 */
|
|
uint32_t pos_mask; /* (1 << pb) - 1 */
|
|
|
|
/* If 1, it's a match. Otherwise it's a single 8-bit literal. */
|
|
uint16_t is_match[STATES][POS_STATES_MAX];
|
|
|
|
/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
|
|
uint16_t is_rep[STATES];
|
|
|
|
/*
|
|
* If 0, distance of a repeated match is rep0.
|
|
* Otherwise check is_rep1.
|
|
*/
|
|
uint16_t is_rep0[STATES];
|
|
|
|
/*
|
|
* If 0, distance of a repeated match is rep1.
|
|
* Otherwise check is_rep2.
|
|
*/
|
|
uint16_t is_rep1[STATES];
|
|
|
|
/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
|
|
uint16_t is_rep2[STATES];
|
|
|
|
/*
|
|
* If 1, the repeated match has length of one byte. Otherwise
|
|
* the length is decoded from rep_len_decoder.
|
|
*/
|
|
uint16_t is_rep0_long[STATES][POS_STATES_MAX];
|
|
|
|
/*
|
|
* Probability tree for the highest two bits of the match
|
|
* distance. There is a separate probability tree for match
|
|
* lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
|
|
*/
|
|
uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
|
|
|
|
/*
|
|
* Probility trees for additional bits for match distance
|
|
* when the distance is in the range [4, 127].
|
|
*/
|
|
uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
|
|
|
|
/*
|
|
* Probability tree for the lowest four bits of a match
|
|
* distance that is equal to or greater than 128.
|
|
*/
|
|
uint16_t dist_align[ALIGN_SIZE];
|
|
|
|
/* Length of a normal match */
|
|
struct lzma_len_dec match_len_dec;
|
|
|
|
/* Length of a repeated match */
|
|
struct lzma_len_dec rep_len_dec;
|
|
|
|
/* Probabilities of literals */
|
|
uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
|
|
};
|
|
|
|
struct lzma2_dec {
|
|
/* Position in xz_dec_lzma2_run(). */
|
|
enum lzma2_seq {
|
|
SEQ_CONTROL,
|
|
SEQ_UNCOMPRESSED_1,
|
|
SEQ_UNCOMPRESSED_2,
|
|
SEQ_COMPRESSED_0,
|
|
SEQ_COMPRESSED_1,
|
|
SEQ_PROPERTIES,
|
|
SEQ_LZMA_PREPARE,
|
|
SEQ_LZMA_RUN,
|
|
SEQ_COPY
|
|
} sequence;
|
|
|
|
/* Next position after decoding the compressed size of the chunk. */
|
|
enum lzma2_seq next_sequence;
|
|
|
|
/* Uncompressed size of LZMA chunk (2 MiB at maximum) */
|
|
uint32_t uncompressed;
|
|
|
|
/*
|
|
* Compressed size of LZMA chunk or compressed/uncompressed
|
|
* size of uncompressed chunk (64 KiB at maximum)
|
|
*/
|
|
uint32_t compressed;
|
|
|
|
/*
|
|
* True if dictionary reset is needed. This is false before
|
|
* the first chunk (LZMA or uncompressed).
|
|
*/
|
|
bool need_dict_reset;
|
|
|
|
/*
|
|
* True if new LZMA properties are needed. This is false
|
|
* before the first LZMA chunk.
|
|
*/
|
|
bool need_props;
|
|
};
|
|
|
|
struct xz_dec_lzma2 {
|
|
/*
|
|
* The order below is important on x86 to reduce code size and
|
|
* it shouldn't hurt on other platforms. Everything up to and
|
|
* including lzma.pos_mask are in the first 128 bytes on x86-32,
|
|
* which allows using smaller instructions to access those
|
|
* variables. On x86-64, fewer variables fit into the first 128
|
|
* bytes, but this is still the best order without sacrificing
|
|
* the readability by splitting the structures.
|
|
*/
|
|
struct rc_dec rc;
|
|
struct dictionary dict;
|
|
struct lzma2_dec lzma2;
|
|
struct lzma_dec lzma;
|
|
|
|
/*
|
|
* Temporary buffer which holds small number of input bytes between
|
|
* decoder calls. See lzma2_lzma() for details.
|
|
*/
|
|
struct {
|
|
uint32_t size;
|
|
uint8_t buf[3 * LZMA_IN_REQUIRED];
|
|
} temp;
|
|
};
|
|
|
|
/**************
|
|
* Dictionary *
|
|
**************/
|
|
|
|
/*
|
|
* Reset the dictionary state. When in single-call mode, set up the beginning
|
|
* of the dictionary to point to the actual output buffer.
|
|
*/
|
|
static void dict_reset(struct dictionary *dict, struct xz_buf *b)
|
|
{
|
|
if (DEC_IS_SINGLE(dict->mode)) {
|
|
dict->buf = b->out + b->out_pos;
|
|
dict->end = b->out_size - b->out_pos;
|
|
}
|
|
|
|
dict->start = 0;
|
|
dict->pos = 0;
|
|
dict->limit = 0;
|
|
dict->full = 0;
|
|
}
|
|
|
|
/* Set dictionary write limit */
|
|
static void dict_limit(struct dictionary *dict, size_t out_max)
|
|
{
|
|
if (dict->end - dict->pos <= out_max)
|
|
dict->limit = dict->end;
|
|
else
|
|
dict->limit = dict->pos + out_max;
|
|
}
|
|
|
|
/* Return true if at least one byte can be written into the dictionary. */
|
|
static inline bool dict_has_space(const struct dictionary *dict)
|
|
{
|
|
return dict->pos < dict->limit;
|
|
}
|
|
|
|
/*
|
|
* Get a byte from the dictionary at the given distance. The distance is
|
|
* assumed to valid, or as a special case, zero when the dictionary is
|
|
* still empty. This special case is needed for single-call decoding to
|
|
* avoid writing a '\0' to the end of the destination buffer.
|
|
*/
|
|
static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
|
|
{
|
|
size_t offset = dict->pos - dist - 1;
|
|
|
|
if (dist >= dict->pos)
|
|
offset += dict->end;
|
|
|
|
return dict->full > 0 ? dict->buf[offset] : 0;
|
|
}
|
|
|
|
/*
|
|
* Put one byte into the dictionary. It is assumed that there is space for it.
|
|
*/
|
|
static inline void dict_put(struct dictionary *dict, uint8_t byte)
|
|
{
|
|
dict->buf[dict->pos++] = byte;
|
|
|
|
if (dict->full < dict->pos)
|
|
dict->full = dict->pos;
|
|
}
|
|
|
|
/*
|
|
* Repeat given number of bytes from the given distance. If the distance is
|
|
* invalid, false is returned. On success, true is returned and *len is
|
|
* updated to indicate how many bytes were left to be repeated.
|
|
*/
|
|
static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
|
|
{
|
|
size_t back;
|
|
uint32_t left;
|
|
|
|
if (dist >= dict->full || dist >= dict->size)
|
|
return false;
|
|
|
|
left = min_t(size_t, dict->limit - dict->pos, *len);
|
|
*len -= left;
|
|
|
|
back = dict->pos - dist - 1;
|
|
if (dist >= dict->pos)
|
|
back += dict->end;
|
|
|
|
do {
|
|
dict->buf[dict->pos++] = dict->buf[back++];
|
|
if (back == dict->end)
|
|
back = 0;
|
|
} while (--left > 0);
|
|
|
|
if (dict->full < dict->pos)
|
|
dict->full = dict->pos;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Copy uncompressed data as is from input to dictionary and output buffers. */
|
|
static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
|
|
uint32_t *left)
|
|
{
|
|
size_t copy_size;
|
|
|
|
while (*left > 0 && b->in_pos < b->in_size
|
|
&& b->out_pos < b->out_size) {
|
|
copy_size = min(b->in_size - b->in_pos,
|
|
b->out_size - b->out_pos);
|
|
if (copy_size > dict->end - dict->pos)
|
|
copy_size = dict->end - dict->pos;
|
|
if (copy_size > *left)
|
|
copy_size = *left;
|
|
|
|
*left -= copy_size;
|
|
|
|
memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
|
|
dict->pos += copy_size;
|
|
|
|
if (dict->full < dict->pos)
|
|
dict->full = dict->pos;
|
|
|
|
if (DEC_IS_MULTI(dict->mode)) {
|
|
if (dict->pos == dict->end)
|
|
dict->pos = 0;
|
|
|
|
memcpy(b->out + b->out_pos, b->in + b->in_pos,
|
|
copy_size);
|
|
}
|
|
|
|
dict->start = dict->pos;
|
|
|
|
b->out_pos += copy_size;
|
|
b->in_pos += copy_size;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush pending data from dictionary to b->out. It is assumed that there is
|
|
* enough space in b->out. This is guaranteed because caller uses dict_limit()
|
|
* before decoding data into the dictionary.
|
|
*/
|
|
static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
|
|
{
|
|
size_t copy_size = dict->pos - dict->start;
|
|
|
|
if (DEC_IS_MULTI(dict->mode)) {
|
|
if (dict->pos == dict->end)
|
|
dict->pos = 0;
|
|
|
|
memcpy(b->out + b->out_pos, dict->buf + dict->start,
|
|
copy_size);
|
|
}
|
|
|
|
dict->start = dict->pos;
|
|
b->out_pos += copy_size;
|
|
return copy_size;
|
|
}
|
|
|
|
/*****************
|
|
* Range decoder *
|
|
*****************/
|
|
|
|
/* Reset the range decoder. */
|
|
static void rc_reset(struct rc_dec *rc)
|
|
{
|
|
rc->range = (uint32_t)-1;
|
|
rc->code = 0;
|
|
rc->init_bytes_left = RC_INIT_BYTES;
|
|
}
|
|
|
|
/*
|
|
* Read the first five initial bytes into rc->code if they haven't been
|
|
* read already. (Yes, the first byte gets completely ignored.)
|
|
*/
|
|
static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
|
|
{
|
|
while (rc->init_bytes_left > 0) {
|
|
if (b->in_pos == b->in_size)
|
|
return false;
|
|
|
|
rc->code = (rc->code << 8) + b->in[b->in_pos++];
|
|
--rc->init_bytes_left;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true if there may not be enough input for the next decoding loop. */
|
|
static inline bool rc_limit_exceeded(const struct rc_dec *rc)
|
|
{
|
|
return rc->in_pos > rc->in_limit;
|
|
}
|
|
|
|
/*
|
|
* Return true if it is possible (from point of view of range decoder) that
|
|
* we have reached the end of the LZMA chunk.
|
|
*/
|
|
static inline bool rc_is_finished(const struct rc_dec *rc)
|
|
{
|
|
return rc->code == 0;
|
|
}
|
|
|
|
/* Read the next input byte if needed. */
|
|
static __always_inline void rc_normalize(struct rc_dec *rc)
|
|
{
|
|
if (rc->range < RC_TOP_VALUE) {
|
|
rc->range <<= RC_SHIFT_BITS;
|
|
rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decode one bit. In some versions, this function has been splitted in three
|
|
* functions so that the compiler is supposed to be able to more easily avoid
|
|
* an extra branch. In this particular version of the LZMA decoder, this
|
|
* doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
|
|
* on x86). Using a non-splitted version results in nicer looking code too.
|
|
*
|
|
* NOTE: This must return an int. Do not make it return a bool or the speed
|
|
* of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
|
|
* and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
|
|
*/
|
|
static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
|
|
{
|
|
uint32_t bound;
|
|
int bit;
|
|
|
|
rc_normalize(rc);
|
|
bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
|
|
if (rc->code < bound) {
|
|
rc->range = bound;
|
|
*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
|
|
bit = 0;
|
|
} else {
|
|
rc->range -= bound;
|
|
rc->code -= bound;
|
|
*prob -= *prob >> RC_MOVE_BITS;
|
|
bit = 1;
|
|
}
|
|
|
|
return bit;
|
|
}
|
|
|
|
/* Decode a bittree starting from the most significant bit. */
|
|
static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
|
|
uint16_t *probs, uint32_t limit)
|
|
{
|
|
uint32_t symbol = 1;
|
|
|
|
do {
|
|
if (rc_bit(rc, &probs[symbol]))
|
|
symbol = (symbol << 1) + 1;
|
|
else
|
|
symbol <<= 1;
|
|
} while (symbol < limit);
|
|
|
|
return symbol;
|
|
}
|
|
|
|
/* Decode a bittree starting from the least significant bit. */
|
|
static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
|
|
uint16_t *probs,
|
|
uint32_t *dest, uint32_t limit)
|
|
{
|
|
uint32_t symbol = 1;
|
|
uint32_t i = 0;
|
|
|
|
do {
|
|
if (rc_bit(rc, &probs[symbol])) {
|
|
symbol = (symbol << 1) + 1;
|
|
*dest += 1 << i;
|
|
} else {
|
|
symbol <<= 1;
|
|
}
|
|
} while (++i < limit);
|
|
}
|
|
|
|
/* Decode direct bits (fixed fifty-fifty probability) */
|
|
static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
|
|
{
|
|
uint32_t mask;
|
|
|
|
do {
|
|
rc_normalize(rc);
|
|
rc->range >>= 1;
|
|
rc->code -= rc->range;
|
|
mask = (uint32_t)0 - (rc->code >> 31);
|
|
rc->code += rc->range & mask;
|
|
*dest = (*dest << 1) + (mask + 1);
|
|
} while (--limit > 0);
|
|
}
|
|
|
|
/********
|
|
* LZMA *
|
|
********/
|
|
|
|
/* Get pointer to literal coder probability array. */
|
|
static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
|
|
{
|
|
uint32_t prev_byte = dict_get(&s->dict, 0);
|
|
uint32_t low = prev_byte >> (8 - s->lzma.lc);
|
|
uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
|
|
return s->lzma.literal[low + high];
|
|
}
|
|
|
|
/* Decode a literal (one 8-bit byte) */
|
|
static void lzma_literal(struct xz_dec_lzma2 *s)
|
|
{
|
|
uint16_t *probs;
|
|
uint32_t symbol;
|
|
uint32_t match_byte;
|
|
uint32_t match_bit;
|
|
uint32_t offset;
|
|
uint32_t i;
|
|
|
|
probs = lzma_literal_probs(s);
|
|
|
|
if (lzma_state_is_literal(s->lzma.state)) {
|
|
symbol = rc_bittree(&s->rc, probs, 0x100);
|
|
} else {
|
|
symbol = 1;
|
|
match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
|
|
offset = 0x100;
|
|
|
|
do {
|
|
match_bit = match_byte & offset;
|
|
match_byte <<= 1;
|
|
i = offset + match_bit + symbol;
|
|
|
|
if (rc_bit(&s->rc, &probs[i])) {
|
|
symbol = (symbol << 1) + 1;
|
|
offset &= match_bit;
|
|
} else {
|
|
symbol <<= 1;
|
|
offset &= ~match_bit;
|
|
}
|
|
} while (symbol < 0x100);
|
|
}
|
|
|
|
dict_put(&s->dict, (uint8_t)(symbol&0xff));
|
|
lzma_state_literal(&s->lzma.state);
|
|
}
|
|
|
|
/* Decode the length of the match into s->lzma.len. */
|
|
static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
|
|
uint32_t pos_state)
|
|
{
|
|
uint16_t *probs;
|
|
uint32_t limit;
|
|
|
|
if (!rc_bit(&s->rc, &l->choice)) {
|
|
probs = l->low[pos_state];
|
|
limit = LEN_LOW_SYMBOLS;
|
|
s->lzma.len = MATCH_LEN_MIN;
|
|
} else {
|
|
if (!rc_bit(&s->rc, &l->choice2)) {
|
|
probs = l->mid[pos_state];
|
|
limit = LEN_MID_SYMBOLS;
|
|
s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
|
|
} else {
|
|
probs = l->high;
|
|
limit = LEN_HIGH_SYMBOLS;
|
|
s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
|
|
+ LEN_MID_SYMBOLS;
|
|
}
|
|
}
|
|
|
|
s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
|
|
}
|
|
|
|
/* Decode a match. The distance will be stored in s->lzma.rep0. */
|
|
static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
|
|
{
|
|
uint16_t *probs;
|
|
uint32_t dist_slot;
|
|
uint32_t limit;
|
|
|
|
lzma_state_match(&s->lzma.state);
|
|
|
|
s->lzma.rep3 = s->lzma.rep2;
|
|
s->lzma.rep2 = s->lzma.rep1;
|
|
s->lzma.rep1 = s->lzma.rep0;
|
|
|
|
lzma_len(s, &s->lzma.match_len_dec, pos_state);
|
|
|
|
probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
|
|
dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
|
|
|
|
if (dist_slot < DIST_MODEL_START) {
|
|
s->lzma.rep0 = dist_slot;
|
|
} else {
|
|
limit = (dist_slot >> 1) - 1;
|
|
s->lzma.rep0 = 2 + (dist_slot & 1);
|
|
|
|
if (dist_slot < DIST_MODEL_END) {
|
|
s->lzma.rep0 <<= limit;
|
|
probs = s->lzma.dist_special + s->lzma.rep0
|
|
- dist_slot - 1;
|
|
rc_bittree_reverse(&s->rc, probs,
|
|
&s->lzma.rep0, limit);
|
|
} else {
|
|
rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
|
|
s->lzma.rep0 <<= ALIGN_BITS;
|
|
rc_bittree_reverse(&s->rc, s->lzma.dist_align,
|
|
&s->lzma.rep0, ALIGN_BITS);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decode a repeated match. The distance is one of the four most recently
|
|
* seen matches. The distance will be stored in s->lzma.rep0.
|
|
*/
|
|
static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
|
|
if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
|
|
s->lzma.state][pos_state])) {
|
|
lzma_state_short_rep(&s->lzma.state);
|
|
s->lzma.len = 1;
|
|
return;
|
|
}
|
|
} else {
|
|
if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
|
|
tmp = s->lzma.rep1;
|
|
} else {
|
|
if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
|
|
tmp = s->lzma.rep2;
|
|
} else {
|
|
tmp = s->lzma.rep3;
|
|
s->lzma.rep3 = s->lzma.rep2;
|
|
}
|
|
|
|
s->lzma.rep2 = s->lzma.rep1;
|
|
}
|
|
|
|
s->lzma.rep1 = s->lzma.rep0;
|
|
s->lzma.rep0 = tmp;
|
|
}
|
|
|
|
lzma_state_long_rep(&s->lzma.state);
|
|
lzma_len(s, &s->lzma.rep_len_dec, pos_state);
|
|
}
|
|
|
|
/* LZMA decoder core */
|
|
static bool lzma_main(struct xz_dec_lzma2 *s)
|
|
{
|
|
uint32_t pos_state;
|
|
|
|
/*
|
|
* If the dictionary was reached during the previous call, try to
|
|
* finish the possibly pending repeat in the dictionary.
|
|
*/
|
|
if (dict_has_space(&s->dict) && s->lzma.len > 0)
|
|
dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
|
|
|
|
/*
|
|
* Decode more LZMA symbols. One iteration may consume up to
|
|
* LZMA_IN_REQUIRED - 1 bytes.
|
|
*/
|
|
while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
|
|
pos_state = s->dict.pos & s->lzma.pos_mask;
|
|
|
|
if (!rc_bit(&s->rc, &s->lzma.is_match[
|
|
s->lzma.state][pos_state])) {
|
|
lzma_literal(s);
|
|
} else {
|
|
if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
|
|
lzma_rep_match(s, pos_state);
|
|
else
|
|
lzma_match(s, pos_state);
|
|
|
|
if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Having the range decoder always normalized when we are outside
|
|
* this function makes it easier to correctly handle end of the chunk.
|
|
*/
|
|
rc_normalize(&s->rc);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Reset the LZMA decoder and range decoder state. Dictionary is nore reset
|
|
* here, because LZMA state may be reset without resetting the dictionary.
|
|
*/
|
|
static void lzma_reset(struct xz_dec_lzma2 *s)
|
|
{
|
|
uint16_t *probs;
|
|
size_t i;
|
|
|
|
s->lzma.state = STATE_LIT_LIT;
|
|
s->lzma.rep0 = 0;
|
|
s->lzma.rep1 = 0;
|
|
s->lzma.rep2 = 0;
|
|
s->lzma.rep3 = 0;
|
|
|
|
/*
|
|
* All probabilities are initialized to the same value. This hack
|
|
* makes the code smaller by avoiding a separate loop for each
|
|
* probability array.
|
|
*
|
|
* This could be optimized so that only that part of literal
|
|
* probabilities that are actually required. In the common case
|
|
* we would write 12 KiB less.
|
|
*/
|
|
probs = s->lzma.is_match[0];
|
|
for (i = 0; i < PROBS_TOTAL; ++i)
|
|
probs[i] = RC_BIT_MODEL_TOTAL / 2;
|
|
|
|
rc_reset(&s->rc);
|
|
}
|
|
|
|
/*
|
|
* Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
|
|
* from the decoded lp and pb values. On success, the LZMA decoder state is
|
|
* reset and true is returned.
|
|
*/
|
|
static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
|
|
{
|
|
if (props > (4 * 5 + 4) * 9 + 8)
|
|
return false;
|
|
|
|
s->lzma.pos_mask = 0;
|
|
while (props >= 9 * 5) {
|
|
props -= 9 * 5;
|
|
++s->lzma.pos_mask;
|
|
}
|
|
|
|
s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
|
|
|
|
s->lzma.literal_pos_mask = 0;
|
|
while (props >= 9) {
|
|
props -= 9;
|
|
++s->lzma.literal_pos_mask;
|
|
}
|
|
|
|
s->lzma.lc = props;
|
|
|
|
if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
|
|
return false;
|
|
|
|
s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
|
|
|
|
lzma_reset(s);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*********
|
|
* LZMA2 *
|
|
*********/
|
|
|
|
/*
|
|
* The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
|
|
* been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
|
|
* wrapper function takes care of making the LZMA decoder's assumption safe.
|
|
*
|
|
* As long as there is plenty of input left to be decoded in the current LZMA
|
|
* chunk, we decode directly from the caller-supplied input buffer until
|
|
* there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
|
|
* s->temp.buf, which (hopefully) gets filled on the next call to this
|
|
* function. We decode a few bytes from the temporary buffer so that we can
|
|
* continue decoding from the caller-supplied input buffer again.
|
|
*/
|
|
static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
|
|
{
|
|
size_t in_avail;
|
|
uint32_t tmp;
|
|
|
|
in_avail = b->in_size - b->in_pos;
|
|
if (s->temp.size > 0 || s->lzma2.compressed == 0) {
|
|
tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
|
|
if (tmp > s->lzma2.compressed - s->temp.size)
|
|
tmp = s->lzma2.compressed - s->temp.size;
|
|
if (tmp > in_avail)
|
|
tmp = in_avail;
|
|
|
|
memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
|
|
|
|
if (s->temp.size + tmp == s->lzma2.compressed) {
|
|
memzero(s->temp.buf + s->temp.size + tmp,
|
|
sizeof(s->temp.buf)
|
|
- s->temp.size - tmp);
|
|
s->rc.in_limit = s->temp.size + tmp;
|
|
} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
|
|
s->temp.size += tmp;
|
|
b->in_pos += tmp;
|
|
return true;
|
|
} else {
|
|
s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
|
|
}
|
|
|
|
s->rc.in = s->temp.buf;
|
|
s->rc.in_pos = 0;
|
|
|
|
if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
|
|
return false;
|
|
|
|
s->lzma2.compressed -= s->rc.in_pos;
|
|
|
|
if (s->rc.in_pos < s->temp.size) {
|
|
s->temp.size -= s->rc.in_pos;
|
|
memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
|
|
s->temp.size);
|
|
return true;
|
|
}
|
|
|
|
b->in_pos += s->rc.in_pos - s->temp.size;
|
|
s->temp.size = 0;
|
|
}
|
|
|
|
in_avail = b->in_size - b->in_pos;
|
|
if (in_avail >= LZMA_IN_REQUIRED) {
|
|
s->rc.in = b->in;
|
|
s->rc.in_pos = b->in_pos;
|
|
|
|
if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
|
|
s->rc.in_limit = b->in_pos + s->lzma2.compressed;
|
|
else
|
|
s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
|
|
|
|
if (!lzma_main(s))
|
|
return false;
|
|
|
|
in_avail = s->rc.in_pos - b->in_pos;
|
|
if (in_avail > s->lzma2.compressed)
|
|
return false;
|
|
|
|
s->lzma2.compressed -= in_avail;
|
|
b->in_pos = s->rc.in_pos;
|
|
}
|
|
|
|
in_avail = b->in_size - b->in_pos;
|
|
if (in_avail < LZMA_IN_REQUIRED) {
|
|
if (in_avail > s->lzma2.compressed)
|
|
in_avail = s->lzma2.compressed;
|
|
|
|
memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
|
|
s->temp.size = in_avail;
|
|
b->in_pos += in_avail;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Take care of the LZMA2 control layer, and forward the job of actual LZMA
|
|
* decoding or copying of uncompressed chunks to other functions.
|
|
*/
|
|
XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
|
|
struct xz_buf *b)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
|
|
switch (s->lzma2.sequence) {
|
|
case SEQ_CONTROL:
|
|
/*
|
|
* LZMA2 control byte
|
|
*
|
|
* Exact values:
|
|
* 0x00 End marker
|
|
* 0x01 Dictionary reset followed by
|
|
* an uncompressed chunk
|
|
* 0x02 Uncompressed chunk (no dictionary reset)
|
|
*
|
|
* Highest three bits (s->control & 0xE0):
|
|
* 0xE0 Dictionary reset, new properties and state
|
|
* reset, followed by LZMA compressed chunk
|
|
* 0xC0 New properties and state reset, followed
|
|
* by LZMA compressed chunk (no dictionary
|
|
* reset)
|
|
* 0xA0 State reset using old properties,
|
|
* followed by LZMA compressed chunk (no
|
|
* dictionary reset)
|
|
* 0x80 LZMA chunk (no dictionary or state reset)
|
|
*
|
|
* For LZMA compressed chunks, the lowest five bits
|
|
* (s->control & 1F) are the highest bits of the
|
|
* uncompressed size (bits 16-20).
|
|
*
|
|
* A new LZMA2 stream must begin with a dictionary
|
|
* reset. The first LZMA chunk must set new
|
|
* properties and reset the LZMA state.
|
|
*
|
|
* Values that don't match anything described above
|
|
* are invalid and we return XZ_DATA_ERROR.
|
|
*/
|
|
tmp = b->in[b->in_pos++];
|
|
|
|
if (tmp == 0x00)
|
|
return XZ_STREAM_END;
|
|
|
|
if (tmp >= 0xE0 || tmp == 0x01) {
|
|
s->lzma2.need_props = true;
|
|
s->lzma2.need_dict_reset = false;
|
|
dict_reset(&s->dict, b);
|
|
} else if (s->lzma2.need_dict_reset) {
|
|
return XZ_DATA_ERROR;
|
|
}
|
|
|
|
if (tmp >= 0x80) {
|
|
s->lzma2.uncompressed = (tmp & 0x1F) << 16;
|
|
s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
|
|
|
|
if (tmp >= 0xC0) {
|
|
/*
|
|
* When there are new properties,
|
|
* state reset is done at
|
|
* SEQ_PROPERTIES.
|
|
*/
|
|
s->lzma2.need_props = false;
|
|
s->lzma2.next_sequence
|
|
= SEQ_PROPERTIES;
|
|
|
|
} else if (s->lzma2.need_props) {
|
|
return XZ_DATA_ERROR;
|
|
|
|
} else {
|
|
s->lzma2.next_sequence
|
|
= SEQ_LZMA_PREPARE;
|
|
if (tmp >= 0xA0)
|
|
lzma_reset(s);
|
|
}
|
|
} else {
|
|
if (tmp > 0x02)
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->lzma2.sequence = SEQ_COMPRESSED_0;
|
|
s->lzma2.next_sequence = SEQ_COPY;
|
|
}
|
|
|
|
break;
|
|
|
|
case SEQ_UNCOMPRESSED_1:
|
|
s->lzma2.uncompressed
|
|
+= (uint32_t)b->in[b->in_pos++] << 8;
|
|
s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
|
|
break;
|
|
|
|
case SEQ_UNCOMPRESSED_2:
|
|
s->lzma2.uncompressed
|
|
+= (uint32_t)b->in[b->in_pos++] + 1;
|
|
s->lzma2.sequence = SEQ_COMPRESSED_0;
|
|
break;
|
|
|
|
case SEQ_COMPRESSED_0:
|
|
s->lzma2.compressed
|
|
= (uint32_t)b->in[b->in_pos++] << 8;
|
|
s->lzma2.sequence = SEQ_COMPRESSED_1;
|
|
break;
|
|
|
|
case SEQ_COMPRESSED_1:
|
|
s->lzma2.compressed
|
|
+= (uint32_t)b->in[b->in_pos++] + 1;
|
|
s->lzma2.sequence = s->lzma2.next_sequence;
|
|
break;
|
|
|
|
case SEQ_PROPERTIES:
|
|
if (!lzma_props(s, b->in[b->in_pos++]))
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->lzma2.sequence = SEQ_LZMA_PREPARE;
|
|
|
|
case SEQ_LZMA_PREPARE:
|
|
if (s->lzma2.compressed < RC_INIT_BYTES)
|
|
return XZ_DATA_ERROR;
|
|
|
|
if (!rc_read_init(&s->rc, b))
|
|
return XZ_OK;
|
|
|
|
s->lzma2.compressed -= RC_INIT_BYTES;
|
|
s->lzma2.sequence = SEQ_LZMA_RUN;
|
|
|
|
case SEQ_LZMA_RUN:
|
|
/*
|
|
* Set dictionary limit to indicate how much we want
|
|
* to be encoded at maximum. Decode new data into the
|
|
* dictionary. Flush the new data from dictionary to
|
|
* b->out. Check if we finished decoding this chunk.
|
|
* In case the dictionary got full but we didn't fill
|
|
* the output buffer yet, we may run this loop
|
|
* multiple times without changing s->lzma2.sequence.
|
|
*/
|
|
dict_limit(&s->dict, min_t(size_t,
|
|
b->out_size - b->out_pos,
|
|
s->lzma2.uncompressed));
|
|
if (!lzma2_lzma(s, b))
|
|
return XZ_DATA_ERROR;
|
|
|
|
s->lzma2.uncompressed -= dict_flush(&s->dict, b);
|
|
|
|
if (s->lzma2.uncompressed == 0) {
|
|
if (s->lzma2.compressed > 0 || s->lzma.len > 0
|
|
|| !rc_is_finished(&s->rc))
|
|
return XZ_DATA_ERROR;
|
|
|
|
rc_reset(&s->rc);
|
|
s->lzma2.sequence = SEQ_CONTROL;
|
|
|
|
} else if (b->out_pos == b->out_size
|
|
|| (b->in_pos == b->in_size
|
|
&& s->temp.size
|
|
< s->lzma2.compressed)) {
|
|
return XZ_OK;
|
|
}
|
|
|
|
break;
|
|
|
|
case SEQ_COPY:
|
|
dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
|
|
if (s->lzma2.compressed > 0)
|
|
return XZ_OK;
|
|
|
|
s->lzma2.sequence = SEQ_CONTROL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return XZ_OK;
|
|
}
|
|
|
|
XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
|
|
uint32_t dict_max)
|
|
{
|
|
struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
|
if (s == NULL)
|
|
return NULL;
|
|
|
|
s->dict.mode = mode;
|
|
s->dict.size_max = dict_max;
|
|
|
|
if (DEC_IS_PREALLOC(mode)) {
|
|
s->dict.buf = vmalloc(dict_max);
|
|
if (s->dict.buf == NULL) {
|
|
kfree(s);
|
|
return NULL;
|
|
}
|
|
} else if (DEC_IS_DYNALLOC(mode)) {
|
|
s->dict.buf = NULL;
|
|
s->dict.allocated = 0;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
|
|
{
|
|
/* This limits dictionary size to 3 GiB to keep parsing simpler. */
|
|
if (props > 39)
|
|
return XZ_OPTIONS_ERROR;
|
|
|
|
s->dict.size = 2 + (props & 1);
|
|
s->dict.size <<= (props >> 1) + 11;
|
|
|
|
if (DEC_IS_MULTI(s->dict.mode)) {
|
|
if (s->dict.size > s->dict.size_max)
|
|
return XZ_MEMLIMIT_ERROR;
|
|
|
|
s->dict.end = s->dict.size;
|
|
|
|
if (DEC_IS_DYNALLOC(s->dict.mode)) {
|
|
if (s->dict.allocated < s->dict.size) {
|
|
vfree(s->dict.buf);
|
|
s->dict.buf = vmalloc(s->dict.size);
|
|
if (s->dict.buf == NULL) {
|
|
s->dict.allocated = 0;
|
|
return XZ_MEM_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
s->lzma.len = 0;
|
|
|
|
s->lzma2.sequence = SEQ_CONTROL;
|
|
s->lzma2.need_dict_reset = true;
|
|
|
|
s->temp.size = 0;
|
|
|
|
return XZ_OK;
|
|
}
|
|
|
|
XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
|
|
{
|
|
if (DEC_IS_MULTI(s->dict.mode))
|
|
vfree(s->dict.buf);
|
|
|
|
kfree(s);
|
|
}
|
|
|
|
//END xz_dec_lzma2.c
|
|
//BEGIN xz_crc32.c
|
|
|
|
/*
|
|
* CRC32 using the polynomial from IEEE-802.3
|
|
*
|
|
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
|
* Igor Pavlov <http://7-zip.org/>
|
|
*
|
|
* This file has been put into the public domain.
|
|
* You can do whatever you want with this file.
|
|
*/
|
|
|
|
/*
|
|
* This is not the fastest implementation, but it is pretty compact.
|
|
* The fastest versions of xz_crc32() on modern CPUs without hardware
|
|
* accelerated CRC instruction are 3-5 times as fast as this version,
|
|
* but they are bigger and use more memory for the lookup table.
|
|
*/
|
|
|
|
/*
|
|
* STATIC_RW_DATA is used in the pre-boot environment on some architectures.
|
|
* See <linux/decompress/mm.h> for details.
|
|
*/
|
|
#ifndef STATIC_RW_DATA
|
|
# define STATIC_RW_DATA static
|
|
#endif
|
|
|
|
STATIC_RW_DATA uint32_t xz_crc32_table[256];
|
|
|
|
XZ_EXTERN void xz_crc32_init(void)
|
|
{
|
|
const uint32_t poly = 0xEDB88320;
|
|
|
|
uint32_t i;
|
|
uint32_t j;
|
|
uint32_t r;
|
|
|
|
for (i = 0; i < 256; ++i) {
|
|
r = i;
|
|
for (j = 0; j < 8; ++j)
|
|
r = (r >> 1) ^ (poly & ~((r & 1) - 1));
|
|
|
|
xz_crc32_table[i] = r;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
|
|
{
|
|
crc = ~crc;
|
|
|
|
while (size != 0) {
|
|
crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
|
|
--size;
|
|
}
|
|
|
|
return ~crc;
|
|
}
|
|
//END xz_crc32.c
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//returns an unseekable write-only file that will decompress any data that is written to it.
|
|
//decompressed data will be written to the output
|
|
typedef struct
|
|
{
|
|
vfsfile_t vf;
|
|
vfsfile_t *outfile;
|
|
|
|
qbyte out[65536];
|
|
struct xz_buf b;
|
|
struct xz_dec *s;
|
|
} vf_xz_dec_t;
|
|
|
|
static qboolean QDECL FS_XZ_Dec_Close(vfsfile_t *f)
|
|
{
|
|
vf_xz_dec_t *n = (vf_xz_dec_t*)f;
|
|
VFS_CLOSE(n->outfile);
|
|
if (n->s)
|
|
xz_dec_end(n->s);
|
|
Z_Free(n);
|
|
return true;
|
|
}
|
|
static int QDECL FS_XZ_Dec_Write(vfsfile_t *f, const void *buffer, int len)
|
|
{
|
|
enum xz_ret ret;
|
|
vf_xz_dec_t *n = (vf_xz_dec_t*)f;
|
|
|
|
n->b.in = buffer;
|
|
n->b.in_size = len;
|
|
n->b.in_pos = 0;
|
|
|
|
while(n->b.in_pos < n->b.in_size)
|
|
{
|
|
ret = xz_dec_run(n->s, &n->b);
|
|
|
|
if (n->b.out_pos == sizeof(n->out))
|
|
{
|
|
if (VFS_WRITE(n->outfile, n->out, n->b.out_pos) != n->b.out_pos)
|
|
return -1;
|
|
|
|
n->b.out_pos = 0;
|
|
}
|
|
|
|
if (ret == XZ_OK)
|
|
continue;
|
|
|
|
#ifdef XZ_DEC_ANY_CHECK
|
|
if (ret == XZ_UNSUPPORTED_CHECK)
|
|
{
|
|
Con_Printf("XZ: Unsupported check; not verifying "
|
|
"file integrity\n");
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
if (VFS_WRITE(n->outfile, n->out, n->b.out_pos) != n->b.out_pos)
|
|
return -1;
|
|
n->b.out_pos = 0;
|
|
|
|
if (ret == XZ_STREAM_END)
|
|
continue;
|
|
|
|
|
|
switch (ret)
|
|
{
|
|
case XZ_STREAM_END:
|
|
xz_dec_end(n->s);
|
|
n->s = NULL;
|
|
break;
|
|
|
|
case XZ_MEM_ERROR:
|
|
Con_Printf("Memory allocation failed\n");
|
|
break;
|
|
|
|
case XZ_MEMLIMIT_ERROR:
|
|
Con_Printf("Memory usage limit reached\n");
|
|
break;
|
|
|
|
case XZ_FORMAT_ERROR:
|
|
Con_Printf("Not a .xz file\n");
|
|
break;
|
|
|
|
case XZ_OPTIONS_ERROR:
|
|
Con_Printf("Unsupported options in the .xz headers\n");
|
|
break;
|
|
|
|
case XZ_DATA_ERROR:
|
|
case XZ_BUF_ERROR:
|
|
Con_Printf("File is corrupt\n");
|
|
break;
|
|
|
|
default:
|
|
Con_Printf("Bug!\n");
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
return n->b.in_pos;
|
|
}
|
|
|
|
vfsfile_t *FS_XZ_DecompressWriteFilter(vfsfile_t *outfile)
|
|
{
|
|
vf_xz_dec_t *n = Z_Malloc(sizeof(*n));
|
|
xz_crc32_init();
|
|
#ifdef XZ_USE_CRC64
|
|
xz_crc64_init();
|
|
#endif
|
|
|
|
n->outfile = outfile;
|
|
|
|
n->s = xz_dec_init(XZ_DYNALLOC, 1 << 26);
|
|
if (!n->s)
|
|
{
|
|
Z_Free(n);
|
|
return NULL;
|
|
}
|
|
|
|
n->b.in = NULL;
|
|
n->b.in_pos = 0;
|
|
n->b.in_size = 0;
|
|
n->b.out = n->out;
|
|
n->b.out_pos = 0;
|
|
n->b.out_size = sizeof(n->out);
|
|
n->vf.Flush = NULL;
|
|
n->vf.GetLen = NULL;
|
|
n->vf.ReadBytes = NULL;
|
|
n->vf.Seek = NULL;
|
|
n->vf.Tell = NULL;
|
|
n->vf.Close = FS_XZ_Dec_Close;
|
|
n->vf.WriteBytes = FS_XZ_Dec_Write;
|
|
n->vf.seekingisabadplan = true;
|
|
|
|
return &n->vf;
|
|
}
|
|
#endif
|
|
|