mirror of
https://github.com/nzp-team/fteqw.git
synced 2024-11-14 00:10:46 +00:00
22bb395305
Fixed svc_setangles and sv_bigcoords. Model code is now responsible for transforming traces instead of it being generic. This fixes rotating things getting stuck in players in hexen2. The renderer now generates a list of surfaces to draw. Backend now performs rotations/scaling per entity. This fixes sorting order, at least when not using realtime lights. Hidden items in the hexen2 inventory that you do not have. Added colourmapping for hexen2. Should be easier to click on menu items for hexen2. git-svn-id: https://svn.code.sf.net/p/fteqw/code/branches/wip@3602 fc73d0e0-1445-4013-8a0c-d673dee63da5
1697 lines
40 KiB
C
1697 lines
40 KiB
C
/*
|
|
Copyright (C) 1996-1997 Id Software, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
// mathlib.c -- math primitives
|
|
|
|
#include "quakedef.h"
|
|
#include <math.h>
|
|
|
|
vec3_t vec3_origin = {0,0,0};
|
|
|
|
/*-----------------------------------------------------------------*/
|
|
|
|
#define DEG2RAD( a ) ( a * M_PI ) / 180.0F
|
|
|
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = 1.0F / DotProduct( normal, normal );
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - d * n[0];
|
|
dst[1] = p[1] - d * n[1];
|
|
dst[2] = p[2] - d * n[2];
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
void PerpendicularVector( vec3_t dst, const vec3_t src )
|
|
{
|
|
int pos;
|
|
int i;
|
|
float minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
*/
|
|
for ( pos = 0, i = 0; i < 3; i++ )
|
|
{
|
|
if ( fabs( src[i] ) < minelem )
|
|
{
|
|
pos = i;
|
|
minelem = fabs( src[i] );
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src
|
|
*/
|
|
ProjectPointOnPlane( dst, tempvec, src );
|
|
|
|
/*
|
|
** normalize the result
|
|
*/
|
|
VectorNormalize( dst );
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize( "", off )
|
|
#endif
|
|
|
|
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
|
|
{
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
zrot[0][0] = cos( DEG2RAD( degrees ) );
|
|
zrot[0][1] = sin( DEG2RAD( degrees ) );
|
|
zrot[1][0] = -sin( DEG2RAD( degrees ) );
|
|
zrot[1][1] = cos( DEG2RAD( degrees ) );
|
|
|
|
R_ConcatRotations( m, zrot, tmpmat );
|
|
R_ConcatRotations( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ )
|
|
{
|
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
|
}
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize( "", on )
|
|
#endif
|
|
|
|
/*-----------------------------------------------------------------*/
|
|
|
|
float anglemod(float a)
|
|
{
|
|
#if 0
|
|
if (a >= 0)
|
|
a -= 360*(int)(a/360);
|
|
else
|
|
a += 360*( 1 + (int)(-a/360) );
|
|
#endif
|
|
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
BOPS_Error
|
|
|
|
Split out like this for ASM to call.
|
|
==================
|
|
*/
|
|
void VARGS BOPS_Error (void)
|
|
{
|
|
Sys_Error ("BoxOnPlaneSide: Bad signbits");
|
|
}
|
|
|
|
#if !id386
|
|
|
|
/*
|
|
==================
|
|
BoxOnPlaneSide
|
|
|
|
Returns 1, 2, or 1 + 2
|
|
==================
|
|
*/
|
|
int VARGS BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, mplane_t *p)
|
|
{
|
|
float dist1, dist2;
|
|
int sides;
|
|
|
|
#if 0 // this is done by the BOX_ON_PLANE_SIDE macro before calling this
|
|
// function
|
|
// fast axial cases
|
|
if (p->type < 3)
|
|
{
|
|
if (p->dist <= emins[p->type])
|
|
return 1;
|
|
if (p->dist >= emaxs[p->type])
|
|
return 2;
|
|
return 3;
|
|
}
|
|
#endif
|
|
|
|
// general case
|
|
switch (p->signbits)
|
|
{
|
|
case 0:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 1:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 2:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 3:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 4:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 5:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 6:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 7:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
default:
|
|
dist1 = dist2 = 0; // shut up compiler
|
|
BOPS_Error ();
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
int i;
|
|
vec3_t corners[2];
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
if (plane->normal[i] < 0)
|
|
{
|
|
corners[0][i] = emins[i];
|
|
corners[1][i] = emaxs[i];
|
|
}
|
|
else
|
|
{
|
|
corners[1][i] = emins[i];
|
|
corners[0][i] = emaxs[i];
|
|
}
|
|
}
|
|
dist = DotProduct (plane->normal, corners[0]) - plane->dist;
|
|
dist2 = DotProduct (plane->normal, corners[1]) - plane->dist;
|
|
sides = 0;
|
|
if (dist1 >= 0)
|
|
sides = 1;
|
|
if (dist2 < 0)
|
|
sides |= 2;
|
|
|
|
#endif
|
|
|
|
sides = 0;
|
|
if (dist1 >= p->dist)
|
|
sides = 1;
|
|
if (dist2 < p->dist)
|
|
sides |= 2;
|
|
|
|
#ifdef PARANOID
|
|
if (sides == 0)
|
|
Sys_Error ("BoxOnPlaneSide: sides==0");
|
|
#endif
|
|
|
|
return sides;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
void VVPerpendicularVector(vec3_t dst, const vec3_t src)
|
|
{
|
|
if (!src[0])
|
|
{
|
|
dst[0] = 1;
|
|
dst[1] = dst[2] = 0;
|
|
}
|
|
else if (!src[1])
|
|
{
|
|
dst[1] = 1;
|
|
dst[0] = dst[2] = 0;
|
|
}
|
|
else if (!src[2])
|
|
{
|
|
dst[2] = 1;
|
|
dst[0] = dst[1] = 0;
|
|
}
|
|
else
|
|
{
|
|
dst[0] = -src[1];
|
|
dst[1] = src[0];
|
|
dst[2] = 0;
|
|
VectorNormalize(dst);
|
|
}
|
|
}
|
|
void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
VVPerpendicularVector(right, forward);
|
|
CrossProduct(right, forward, up);
|
|
}
|
|
|
|
void VectorAngles(float *forward, float *up, float *result) //up may be NULL
|
|
{
|
|
float yaw, pitch, roll;
|
|
|
|
if (forward[1] == 0 && forward[0] == 0)
|
|
{
|
|
if (forward[2] > 0)
|
|
{
|
|
pitch = 90;
|
|
yaw = up ? atan2(-up[1], -up[0]) : 0;
|
|
}
|
|
else
|
|
{
|
|
pitch = 270;
|
|
yaw = up ? atan2(up[1], up[0]) : 0;
|
|
}
|
|
roll = 0;
|
|
}
|
|
else
|
|
{
|
|
yaw = atan2(forward[1], forward[0]);
|
|
pitch = -atan2(forward[2], sqrt (forward[0]*forward[0] + forward[1]*forward[1]));
|
|
|
|
if (up)
|
|
{
|
|
vec_t cp = cos(pitch), sp = sin(pitch);
|
|
vec_t cy = cos(yaw), sy = sin(yaw);
|
|
vec3_t tleft, tup;
|
|
tleft[0] = -sy;
|
|
tleft[1] = cy;
|
|
tleft[2] = 0;
|
|
tup[0] = sp*cy;
|
|
tup[1] = sp*sy;
|
|
tup[2] = cp;
|
|
roll = -atan2(DotProduct(up, tleft), DotProduct(up, tup));
|
|
}
|
|
else
|
|
roll = 0;
|
|
}
|
|
|
|
pitch *= -180 / M_PI;
|
|
yaw *= 180 / M_PI;
|
|
roll *= 180 / M_PI;
|
|
if (pitch < 0)
|
|
pitch += 360;
|
|
if (yaw < 0)
|
|
yaw += 360;
|
|
if (roll < 0)
|
|
roll += 360;
|
|
|
|
result[0] = pitch;
|
|
result[1] = yaw;
|
|
result[2] = roll;
|
|
}
|
|
|
|
void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
|
|
if (forward)
|
|
{
|
|
forward[0] = cp*cy;
|
|
forward[1] = cp*sy;
|
|
forward[2] = -sp;
|
|
}
|
|
if (right)
|
|
{
|
|
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
|
|
right[1] = (-1*sr*sp*sy+-1*cr*cy);
|
|
right[2] = -1*sr*cp;
|
|
}
|
|
if (up)
|
|
{
|
|
up[0] = (cr*sp*cy+-sr*-sy);
|
|
up[1] = (cr*sp*sy+-sr*cy);
|
|
up[2] = cr*cp;
|
|
}
|
|
}
|
|
|
|
int VectorCompare (const vec3_t v1, const vec3_t v2)
|
|
{
|
|
int i;
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
if (v1[i] != v2[i])
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void _VectorMA (const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc)
|
|
{
|
|
vecc[0] = veca[0] + scale*vecb[0];
|
|
vecc[1] = veca[1] + scale*vecb[1];
|
|
vecc[2] = veca[2] + scale*vecb[2];
|
|
}
|
|
|
|
|
|
vec_t _DotProduct (vec3_t v1, vec3_t v2)
|
|
{
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out)
|
|
{
|
|
out[0] = veca[0]-vecb[0];
|
|
out[1] = veca[1]-vecb[1];
|
|
out[2] = veca[2]-vecb[2];
|
|
}
|
|
|
|
void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out)
|
|
{
|
|
out[0] = veca[0]+vecb[0];
|
|
out[1] = veca[1]+vecb[1];
|
|
out[2] = veca[2]+vecb[2];
|
|
}
|
|
|
|
void _VectorCopy (vec3_t in, vec3_t out)
|
|
{
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross)
|
|
{
|
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
|
|
vec_t Length(vec3_t v)
|
|
{
|
|
int i;
|
|
float length;
|
|
|
|
length = 0;
|
|
for (i=0 ; i< 3 ; i++)
|
|
length += v[i]*v[i];
|
|
length = sqrt (length); // FIXME
|
|
|
|
return length;
|
|
}
|
|
|
|
float Q_rsqrt(float number)
|
|
{
|
|
int i;
|
|
float x2, y;
|
|
const float threehalfs = 1.5F;
|
|
|
|
x2 = number * 0.5F;
|
|
y = number;
|
|
i = * (int *) &y; // evil floating point bit level hacking
|
|
i = 0x5f3759df - (i >> 1); // what the fuck?
|
|
y = * (float *) &i;
|
|
y = y * (threehalfs - (x2 * y * y)); // 1st iteration
|
|
// y = y * (threehalfs - (x2 * y * y)); // 2nd iteration, this can be removed
|
|
|
|
return y;
|
|
}
|
|
|
|
float VectorNormalize (vec3_t v)
|
|
{
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrt (length); // FIXME
|
|
|
|
if (length)
|
|
{
|
|
ilength = 1/length;
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
void VectorNormalizeFast(vec3_t v)
|
|
{
|
|
float ilength;
|
|
|
|
ilength = Q_rsqrt(DotProduct(v, v));
|
|
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
void VectorInverse (vec3_t v)
|
|
{
|
|
v[0] = -v[0];
|
|
v[1] = -v[1];
|
|
v[2] = -v[2];
|
|
}
|
|
|
|
|
|
int Q_log2(int val)
|
|
{
|
|
int answer=0;
|
|
while ((val>>=1) != 0)
|
|
answer++;
|
|
return answer;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_ConcatRotations
|
|
================
|
|
*/
|
|
void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_ConcatTransforms
|
|
================
|
|
*/
|
|
void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] +
|
|
in1[0][2] * in2[2][3] + in1[0][3];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] +
|
|
in1[1][2] * in2[2][3] + in1[1][3];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] +
|
|
in1[2][2] * in2[2][3] + in1[2][3];
|
|
}
|
|
|
|
void R_ConcatRotationsPad (float in1[3][4], float in2[3][4], float out[3][4])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
/*
|
|
===================
|
|
FloorDivMod
|
|
|
|
Returns mathematically correct (floor-based) quotient and remainder for
|
|
numer and denom, both of which should contain no fractional part. The
|
|
quotient must fit in 32 bits.
|
|
====================
|
|
*/
|
|
|
|
void FloorDivMod (double numer, double denom, int *quotient,
|
|
int *rem)
|
|
{
|
|
int q, r;
|
|
double x;
|
|
|
|
#ifndef PARANOID
|
|
if (denom <= 0.0)
|
|
Sys_Error ("FloorDivMod: bad denominator %f\n", denom);
|
|
|
|
// if ((floor(numer) != numer) || (floor(denom) != denom))
|
|
// Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n",
|
|
// numer, denom);
|
|
#endif
|
|
|
|
if (numer >= 0.0)
|
|
{
|
|
|
|
x = floor(numer / denom);
|
|
q = (int)x;
|
|
r = (int)floor(numer - (x * denom));
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// perform operations with positive values, and fix mod to make floor-based
|
|
//
|
|
x = floor(-numer / denom);
|
|
q = -(int)x;
|
|
r = (int)floor(-numer - (x * denom));
|
|
if (r != 0)
|
|
{
|
|
q--;
|
|
r = (int)denom - r;
|
|
}
|
|
}
|
|
|
|
*quotient = q;
|
|
*rem = r;
|
|
}
|
|
|
|
|
|
/*
|
|
===================
|
|
GreatestCommonDivisor
|
|
====================
|
|
*/
|
|
int GreatestCommonDivisor (int i1, int i2)
|
|
{
|
|
if (i1 > i2)
|
|
{
|
|
if (i2 == 0)
|
|
return (i1);
|
|
return GreatestCommonDivisor (i2, i1 % i2);
|
|
}
|
|
else
|
|
{
|
|
if (i1 == 0)
|
|
return (i2);
|
|
return GreatestCommonDivisor (i1, i2 % i1);
|
|
}
|
|
}
|
|
|
|
|
|
#if !id386
|
|
|
|
// TODO: move to nonintel.c
|
|
|
|
/*
|
|
===================
|
|
Invert24To16
|
|
|
|
Inverts an 8.24 value to a 16.16 value
|
|
====================
|
|
*/
|
|
|
|
fixed16_t Invert24To16(fixed16_t val)
|
|
{
|
|
if (val < 256)
|
|
return (0xFFFFFFFF);
|
|
|
|
return (fixed16_t)
|
|
(((double)0x10000 * (double)0x1000000 / (double)val) + 0.5);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void VectorTransform (const vec3_t in1, const matrix3x4 in2, vec3_t out)
|
|
{
|
|
out[0] = DotProduct(in1, in2[0]) + in2[0][3];
|
|
out[1] = DotProduct(in1, in2[1]) + in2[1][3];
|
|
out[2] = DotProduct(in1, in2[2]) + in2[2][3];
|
|
}
|
|
|
|
#ifdef HALFLIFEMODELS
|
|
|
|
void AngleQuaternion( const vec3_t angles, vec4_t quaternion )
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
// FIXME: rescale the inputs to 1/2 angle
|
|
angle = angles[2] * 0.5;
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
angle = angles[1] * 0.5;
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
angle = angles[0] * 0.5;
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
|
|
quaternion[0] = sr*cp*cy-cr*sp*sy; // X
|
|
quaternion[1] = cr*sp*cy+sr*cp*sy; // Y
|
|
quaternion[2] = cr*cp*sy-sr*sp*cy; // Z
|
|
quaternion[3] = cr*cp*cy+sr*sp*sy; // W
|
|
}
|
|
|
|
void QuaternionMatrix( const vec4_t quaternion, float (*matrix)[4] )
|
|
{
|
|
|
|
matrix[0][0] = 1.0 - 2.0 * quaternion[1] * quaternion[1] - 2.0 * quaternion[2] * quaternion[2];
|
|
matrix[1][0] = 2.0 * quaternion[0] * quaternion[1] + 2.0 * quaternion[3] * quaternion[2];
|
|
matrix[2][0] = 2.0 * quaternion[0] * quaternion[2] - 2.0 * quaternion[3] * quaternion[1];
|
|
|
|
matrix[0][1] = 2.0 * quaternion[0] * quaternion[1] - 2.0 * quaternion[3] * quaternion[2];
|
|
matrix[1][1] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[2] * quaternion[2];
|
|
matrix[2][1] = 2.0 * quaternion[1] * quaternion[2] + 2.0 * quaternion[3] * quaternion[0];
|
|
|
|
matrix[0][2] = 2.0 * quaternion[0] * quaternion[2] + 2.0 * quaternion[3] * quaternion[1];
|
|
matrix[1][2] = 2.0 * quaternion[1] * quaternion[2] - 2.0 * quaternion[3] * quaternion[0];
|
|
matrix[2][2] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[1] * quaternion[1];
|
|
}
|
|
|
|
void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt )
|
|
{
|
|
int i;
|
|
float omega, cosom, sinom, sclp, sclq;
|
|
|
|
// decide if one of the quaternions is backwards
|
|
float a = 0;
|
|
float b = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
a += (p[i]-q[i])*(p[i]-q[i]);
|
|
b += (p[i]+q[i])*(p[i]+q[i]);
|
|
}
|
|
if (a > b) {
|
|
for (i = 0; i < 4; i++) {
|
|
q[i] = -q[i];
|
|
}
|
|
}
|
|
|
|
cosom = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3];
|
|
|
|
if ((1.0 + cosom) > 0.00000001) {
|
|
if ((1.0 - cosom) > 0.00000001) {
|
|
omega = acos( cosom );
|
|
sinom = sin( omega );
|
|
sclp = sin( (1.0 - t)*omega) / sinom;
|
|
sclq = sin( t*omega ) / sinom;
|
|
}
|
|
else {
|
|
sclp = 1.0 - t;
|
|
sclq = t;
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
qt[i] = sclp * p[i] + sclq * q[i];
|
|
}
|
|
}
|
|
else {
|
|
qt[0] = -p[1];
|
|
qt[1] = p[0];
|
|
qt[2] = -p[3];
|
|
qt[3] = p[2];
|
|
sclp = sin( (1.0 - t) * 0.5 * M_PI);
|
|
sclq = sin( t * 0.5 * M_PI);
|
|
for (i = 0; i < 3; i++) {
|
|
qt[i] = sclp * p[i] + sclq * qt[i];
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//This function is GL stylie (use as 2nd arg to ML_MultMatrix4).
|
|
float *Matrix4_NewRotation(float a, float x, float y, float z)
|
|
{
|
|
static float ret[16];
|
|
float c = cos(a* M_PI / 180.0);
|
|
float s = sin(a* M_PI / 180.0);
|
|
|
|
ret[0] = x*x*(1-c)+c;
|
|
ret[4] = x*y*(1-c)-z*s;
|
|
ret[8] = x*z*(1-c)+y*s;
|
|
ret[12] = 0;
|
|
|
|
ret[1] = y*x*(1-c)+z*s;
|
|
ret[5] = y*y*(1-c)+c;
|
|
ret[9] = y*z*(1-c)-x*s;
|
|
ret[13] = 0;
|
|
|
|
ret[2] = x*z*(1-c)-y*s;
|
|
ret[6] = y*z*(1-c)+x*s;
|
|
ret[10] = z*z*(1-c)+c;
|
|
ret[14] = 0;
|
|
|
|
ret[3] = 0;
|
|
ret[7] = 0;
|
|
ret[11] = 0;
|
|
ret[15] = 1;
|
|
return ret;
|
|
}
|
|
|
|
//This function is GL stylie (use as 2nd arg to ML_MultMatrix4).
|
|
float *Matrix4_NewTranslation(float x, float y, float z)
|
|
{
|
|
static float ret[16];
|
|
ret[0] = 1;
|
|
ret[4] = 0;
|
|
ret[8] = 0;
|
|
ret[12] = x;
|
|
|
|
ret[1] = 0;
|
|
ret[5] = 1;
|
|
ret[9] = 0;
|
|
ret[13] = y;
|
|
|
|
ret[2] = 0;
|
|
ret[6] = 0;
|
|
ret[10] = 1;
|
|
ret[14] = z;
|
|
|
|
ret[3] = 0;
|
|
ret[7] = 0;
|
|
ret[11] = 0;
|
|
ret[15] = 1;
|
|
return ret;
|
|
}
|
|
|
|
//be aware that this generates two sorts of matricies depending on order of a+b
|
|
void Matrix4_Multiply(const float *a, const float *b, float *out)
|
|
{
|
|
out[0] = a[0] * b[0] + a[4] * b[1] + a[8] * b[2] + a[12] * b[3];
|
|
out[1] = a[1] * b[0] + a[5] * b[1] + a[9] * b[2] + a[13] * b[3];
|
|
out[2] = a[2] * b[0] + a[6] * b[1] + a[10] * b[2] + a[14] * b[3];
|
|
out[3] = a[3] * b[0] + a[7] * b[1] + a[11] * b[2] + a[15] * b[3];
|
|
|
|
out[4] = a[0] * b[4] + a[4] * b[5] + a[8] * b[6] + a[12] * b[7];
|
|
out[5] = a[1] * b[4] + a[5] * b[5] + a[9] * b[6] + a[13] * b[7];
|
|
out[6] = a[2] * b[4] + a[6] * b[5] + a[10] * b[6] + a[14] * b[7];
|
|
out[7] = a[3] * b[4] + a[7] * b[5] + a[11] * b[6] + a[15] * b[7];
|
|
|
|
out[8] = a[0] * b[8] + a[4] * b[9] + a[8] * b[10] + a[12] * b[11];
|
|
out[9] = a[1] * b[8] + a[5] * b[9] + a[9] * b[10] + a[13] * b[11];
|
|
out[10] = a[2] * b[8] + a[6] * b[9] + a[10] * b[10] + a[14] * b[11];
|
|
out[11] = a[3] * b[8] + a[7] * b[9] + a[11] * b[10] + a[15] * b[11];
|
|
|
|
out[12] = a[0] * b[12] + a[4] * b[13] + a[8] * b[14] + a[12] * b[15];
|
|
out[13] = a[1] * b[12] + a[5] * b[13] + a[9] * b[14] + a[13] * b[15];
|
|
out[14] = a[2] * b[12] + a[6] * b[13] + a[10] * b[14] + a[14] * b[15];
|
|
out[15] = a[3] * b[12] + a[7] * b[13] + a[11] * b[14] + a[15] * b[15];
|
|
}
|
|
|
|
//transform 4d vector by a 4d matrix.
|
|
void Matrix4_Transform4(const float *matrix, const float *vector, float *product)
|
|
{
|
|
product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2] + matrix[12]*vector[3];
|
|
product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2] + matrix[13]*vector[3];
|
|
product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2] + matrix[14]*vector[3];
|
|
product[3] = matrix[3]*vector[0] + matrix[7]*vector[1] + matrix[11]*vector[2] + matrix[15]*vector[3];
|
|
}
|
|
|
|
void Matrix4_Transform3(const float *matrix, const float *vector, float *product)
|
|
{
|
|
product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2] + matrix[12];
|
|
product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2] + matrix[13];
|
|
product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2] + matrix[14];
|
|
}
|
|
|
|
void Matrix4_ModelViewMatrix(float *modelview, const vec3_t viewangles, const vec3_t vieworg)
|
|
{
|
|
float tempmat[16];
|
|
//load identity.
|
|
memset(modelview, 0, sizeof(*modelview)*16);
|
|
#if FULLYGL
|
|
modelview[0] = 1;
|
|
modelview[5] = 1;
|
|
modelview[10] = 1;
|
|
modelview[15] = 1;
|
|
|
|
Matrix4_Multiply(modelview, Matrix4_NewRotation(-90, 1, 0, 0), tempmat); // put Z going up
|
|
Matrix4_Multiply(tempmat, Matrix4_NewRotation(90, 0, 0, 1), modelview); // put Z going up
|
|
#else
|
|
//use this lame wierd and crazy identity matrix..
|
|
modelview[2] = -1;
|
|
modelview[4] = -1;
|
|
modelview[9] = 1;
|
|
modelview[15] = 1;
|
|
#endif
|
|
//figure out the current modelview matrix
|
|
|
|
//I would if some of these, but then I'd still need a couple of copys
|
|
Matrix4_Multiply(modelview, Matrix4_NewRotation(-viewangles[2], 1, 0, 0), tempmat);
|
|
Matrix4_Multiply(tempmat, Matrix4_NewRotation(-viewangles[0], 0, 1, 0), modelview);
|
|
Matrix4_Multiply(modelview, Matrix4_NewRotation(-viewangles[1], 0, 0, 1), tempmat);
|
|
|
|
Matrix4_Multiply(tempmat, Matrix4_NewTranslation(-vieworg[0], -vieworg[1], -vieworg[2]), modelview); // put Z going up
|
|
}
|
|
|
|
void Matrix4_CreateTranslate (float *out, float x, float y, float z)
|
|
{
|
|
memcpy(out, Matrix4_NewTranslation(x, y, z), 16*sizeof(float));
|
|
}
|
|
|
|
void Matrix4Q_CreateTranslate (float *out, float x, float y, float z)
|
|
{
|
|
out[0] = 1;
|
|
out[4] = 0;
|
|
out[8] = 0;
|
|
out[12] = 0;
|
|
|
|
out[1] = 0;
|
|
out[5] = 1;
|
|
out[9] = 0;
|
|
out[13] = 0;
|
|
|
|
out[2] = 0;
|
|
out[6] = 0;
|
|
out[10] = 1;
|
|
out[14] = 0;
|
|
|
|
out[3] = x;
|
|
out[7] = y;
|
|
out[11] = z;
|
|
out[15] = 1;
|
|
}
|
|
|
|
void Matrix4_ModelViewMatrixFromAxis(float *modelview, const vec3_t pn, const vec3_t right, const vec3_t up, const vec3_t vieworg)
|
|
{
|
|
float tempmat[16];
|
|
|
|
tempmat[ 0] = right[0];
|
|
tempmat[ 1] = up[0];
|
|
tempmat[ 2] = -pn[0];
|
|
tempmat[ 3] = 0;
|
|
tempmat[ 4] = right[1];
|
|
tempmat[ 5] = up[1];
|
|
tempmat[ 6] = -pn[1];
|
|
tempmat[ 7] = 0;
|
|
tempmat[ 8] = right[2];
|
|
tempmat[ 9] = up[2];
|
|
tempmat[10] = -pn[2];
|
|
tempmat[11] = 0;
|
|
tempmat[12] = 0;
|
|
tempmat[13] = 0;
|
|
tempmat[14] = 0;
|
|
tempmat[15] = 1;
|
|
|
|
Matrix4_Multiply(tempmat, Matrix4_NewTranslation(-vieworg[0], -vieworg[1], -vieworg[2]), modelview); // put Z going up
|
|
}
|
|
|
|
|
|
void Matrix4Q_ToVectors(const float *in, float vx[3], float vy[3], float vz[3], float t[3])
|
|
{
|
|
vx[0] = in[0];
|
|
vx[1] = in[4];
|
|
vx[2] = in[8];
|
|
|
|
vy[0] = in[1];
|
|
vy[1] = in[5];
|
|
vy[2] = in[9];
|
|
|
|
vz[0] = in[2];
|
|
vz[1] = in[6];
|
|
vz[2] = in[10];
|
|
|
|
t [0] = in[3];
|
|
t [1] = in[7];
|
|
t [2] = in[11];
|
|
}
|
|
|
|
void Matrix4Q_FromVectors(float *out, const float vx[3], const float vy[3], const float vz[3], const float t[3])
|
|
{
|
|
out[0] = vx[0];
|
|
out[1] = vy[0];
|
|
out[2] = vz[0];
|
|
out[3] = t[0];
|
|
out[4] = vx[1];
|
|
out[5] = vy[1];
|
|
out[6] = vz[1];
|
|
out[7] = t[1];
|
|
out[8] = vx[2];
|
|
out[9] = vy[2];
|
|
out[10] = vz[2];
|
|
out[11] = t[2];
|
|
out[12] = 0.0f;
|
|
out[13] = 0.0f;
|
|
out[14] = 0.0f;
|
|
out[15] = 1.0f;
|
|
}
|
|
|
|
void Matrix4_ModelMatrixFromAxis(float *modelview, const vec3_t pn, const vec3_t right, const vec3_t up, const vec3_t vieworg)
|
|
{
|
|
float tempmat[16];
|
|
|
|
tempmat[ 0] = pn[0];
|
|
tempmat[ 1] = pn[1];
|
|
tempmat[ 2] = pn[2];
|
|
tempmat[ 3] = 0;
|
|
tempmat[ 4] = right[0];
|
|
tempmat[ 5] = right[1];
|
|
tempmat[ 6] = right[2];
|
|
tempmat[ 7] = 0;
|
|
tempmat[ 8] = up[0];
|
|
tempmat[ 9] = up[1];
|
|
tempmat[10] = up[2];
|
|
tempmat[11] = 0;
|
|
tempmat[12] = 0;
|
|
tempmat[13] = 0;
|
|
tempmat[14] = 0;
|
|
tempmat[15] = 1;
|
|
|
|
Matrix4_Multiply(Matrix4_NewTranslation(vieworg[0], vieworg[1], vieworg[2]), tempmat, modelview); // put Z going up
|
|
}
|
|
|
|
void Matrix4_ModelMatrix(float *modelview, vec_t x, vec_t y, vec_t z, vec_t pitch, vec_t yaw, vec_t roll, vec_t scale)
|
|
{
|
|
float tempmat[16];
|
|
//load identity.
|
|
memset(modelview, 0, sizeof(*modelview)*16);
|
|
#if FULLYGL
|
|
modelview[0] = 1;
|
|
modelview[5] = 1;
|
|
modelview[10] = 1;
|
|
modelview[15] = 1;
|
|
|
|
Matrix4_Multiply(modelview, Matrix4_NewRotation(-90, 1, 0, 0), tempmat); // put Z going up
|
|
Matrix4_Multiply(tempmat, Matrix4_NewRotation(90, 0, 0, 1), modelview); // put Z going up
|
|
#else
|
|
//use this lame wierd and crazy identity matrix..
|
|
modelview[2] = -1;
|
|
modelview[4] = -1;
|
|
modelview[9] = 1;
|
|
modelview[15] = 1;
|
|
#endif
|
|
//figure out the current modelview matrix
|
|
|
|
//I would if some of these, but then I'd still need a couple of copys
|
|
Matrix4_Multiply(modelview, Matrix4_NewRotation(-roll, 1, 0, 0), tempmat);
|
|
Matrix4_Multiply(tempmat, Matrix4_NewRotation(-pitch, 0, 1, 0), modelview);
|
|
Matrix4_Multiply(modelview, Matrix4_NewRotation(-yaw, 0, 0, 1), tempmat);
|
|
|
|
Matrix4_Multiply(tempmat, Matrix4_NewTranslation(x, y, z), modelview);
|
|
}
|
|
|
|
void Matrix4_Identity(float *outm)
|
|
{
|
|
outm[ 0] = 1;
|
|
outm[ 1] = 0;
|
|
outm[ 2] = 0;
|
|
outm[ 3] = 0;
|
|
outm[ 4] = 0;
|
|
outm[ 5] = 1;
|
|
outm[ 6] = 0;
|
|
outm[ 7] = 0;
|
|
outm[ 8] = 0;
|
|
outm[ 9] = 0;
|
|
outm[10] = 1;
|
|
outm[11] = 0;
|
|
outm[12] = 0;
|
|
outm[13] = 0;
|
|
outm[14] = 0;
|
|
outm[15] = 1;
|
|
}
|
|
|
|
void Matrix4_Projection_Far(float *proj, float fovx, float fovy, float neard, float fard)
|
|
{
|
|
double xmin, xmax, ymin, ymax;
|
|
|
|
//proj
|
|
ymax = neard * tan( fovy * M_PI / 360.0 );
|
|
ymin = -ymax;
|
|
|
|
if (fovx == fovy)
|
|
{
|
|
xmax = ymax;
|
|
xmin = ymin;
|
|
}
|
|
else
|
|
{
|
|
xmax = neard * tan( fovx * M_PI / 360.0 );
|
|
xmin = -xmax;
|
|
}
|
|
|
|
proj[0] = (2*neard) / (xmax - xmin);
|
|
proj[4] = 0;
|
|
proj[8] = (xmax + xmin) / (xmax - xmin);
|
|
proj[12] = 0;
|
|
|
|
proj[1] = 0;
|
|
proj[5] = (2*neard) / (ymax - ymin);
|
|
proj[9] = (ymax + ymin) / (ymax - ymin);
|
|
proj[13] = 0;
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = (fard+neard)/(neard-fard);
|
|
proj[14] = (2*fard*neard)/(neard-fard);
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = -1;
|
|
proj[15] = 0;
|
|
}
|
|
|
|
void Matrix4_Projection_Inf(float *proj, float fovx, float fovy, float neard)
|
|
{
|
|
float xmin, xmax, ymin, ymax;
|
|
float nudge = 1;
|
|
|
|
//proj
|
|
ymax = neard * tan( fovy * M_PI / 360.0 );
|
|
ymin = -ymax;
|
|
|
|
if (fovx == fovy)
|
|
{
|
|
xmax = ymax;
|
|
xmin = ymin;
|
|
}
|
|
else
|
|
{
|
|
xmax = neard * tan( fovx * M_PI / 360.0 );
|
|
xmin = -xmax;
|
|
}
|
|
|
|
proj[0] = (2*neard) / (xmax - xmin);
|
|
proj[4] = 0;
|
|
proj[8] = (xmax + xmin) / (xmax - xmin);
|
|
proj[12] = 0;
|
|
|
|
proj[1] = 0;
|
|
proj[5] = (2*neard) / (ymax - ymin);
|
|
proj[9] = (ymax + ymin) / (ymax - ymin);
|
|
proj[13] = 0;
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = -1 * nudge;
|
|
proj[14] = -2*neard * nudge;
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = -1;
|
|
proj[15] = 0;
|
|
}
|
|
void Matrix4_Projection2(float *proj, float fovx, float fovy, float neard)
|
|
{
|
|
float xmin, xmax, ymin, ymax;
|
|
float nudge = 1;
|
|
|
|
//proj
|
|
ymax = neard * tan( fovy * M_PI / 360.0 );
|
|
ymin = -ymax;
|
|
|
|
xmax = neard * tan( fovx * M_PI / 360.0 );
|
|
xmin = -xmax;
|
|
|
|
proj[0] = (2*neard) / (xmax - xmin);
|
|
proj[4] = 0;
|
|
proj[8] = (xmax + xmin) / (xmax - xmin);
|
|
proj[12] = 0;
|
|
|
|
proj[1] = 0;
|
|
proj[5] = (2*neard) / (ymax - ymin);
|
|
proj[9] = (ymax + ymin) / (ymax - ymin);
|
|
proj[13] = 0;
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = -1 * nudge;
|
|
proj[14] = -2*neard * nudge;
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = -1;
|
|
proj[15] = 0;
|
|
}
|
|
|
|
void Matrix4_Orthographic(float *proj, float xmin, float xmax, float ymax, float ymin,
|
|
float znear, float zfar)
|
|
{
|
|
proj[0] = 2/(xmax-xmin);
|
|
proj[4] = 0;
|
|
proj[8] = 0;
|
|
proj[12] = (xmax+xmin)/(xmax-xmin);
|
|
|
|
proj[1] = 0;
|
|
proj[5] = 2/(ymax-ymin);
|
|
proj[9] = 0;
|
|
proj[13] = (ymax+ymin)/(ymax-ymin);
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = -2/(zfar-znear);
|
|
proj[14] = (zfar+znear)/(zfar-znear);
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = 0;
|
|
proj[15] = 1;
|
|
}
|
|
void Matrix4_OrthographicD3D(float *proj, float xmin, float xmax, float ymax, float ymin,
|
|
float znear, float zfar)
|
|
{
|
|
proj[0] = 2/(xmax-xmin);
|
|
proj[4] = 0;
|
|
proj[8] = 0;
|
|
proj[12] = (xmax+xmin)/(xmin-xmax);
|
|
|
|
proj[1] = 0;
|
|
proj[5] = 2/(ymax-ymin);
|
|
proj[9] = 0;
|
|
proj[13] = (ymax+ymin)/(ymin-ymax);
|
|
|
|
proj[2] = 0;
|
|
proj[6] = 0;
|
|
proj[10] = 1/(znear-zfar);
|
|
proj[14] = znear/(znear-zfar);
|
|
|
|
proj[3] = 0;
|
|
proj[7] = 0;
|
|
proj[11] = 0;
|
|
proj[15] = 1;
|
|
}
|
|
/*
|
|
* Compute inverse of 4x4 transformation matrix.
|
|
* Code contributed by Jacques Leroy jle@star.be
|
|
* Return true for success, false for failure (singular matrix)
|
|
* This came to FTE via mesa's GLU.
|
|
*/
|
|
qboolean Matrix4_Invert(const float *m, float *out)
|
|
{
|
|
/* NB. OpenGL Matrices are COLUMN major. */
|
|
#define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; }
|
|
#define MAT(m,r,c) (m)[(c)*4+(r)]
|
|
|
|
float wtmp[4][8];
|
|
float m0, m1, m2, m3, s;
|
|
float *r0, *r1, *r2, *r3;
|
|
|
|
r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
|
|
|
|
r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1),
|
|
r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3),
|
|
r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
|
|
r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1),
|
|
r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3),
|
|
r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
|
|
r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1),
|
|
r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3),
|
|
r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
|
|
r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1),
|
|
r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3),
|
|
r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
|
|
|
|
/* choose pivot - or die */
|
|
if (fabs(r3[0]) > fabs(r2[0]))
|
|
SWAP_ROWS(r3, r2);
|
|
if (fabs(r2[0]) > fabs(r1[0]))
|
|
SWAP_ROWS(r2, r1);
|
|
if (fabs(r1[0]) > fabs(r0[0]))
|
|
SWAP_ROWS(r1, r0);
|
|
if (0.0 == r0[0])
|
|
return false;
|
|
|
|
/* eliminate first variable */
|
|
m1 = r1[0] / r0[0];
|
|
m2 = r2[0] / r0[0];
|
|
m3 = r3[0] / r0[0];
|
|
s = r0[1];
|
|
r1[1] -= m1 * s;
|
|
r2[1] -= m2 * s;
|
|
r3[1] -= m3 * s;
|
|
s = r0[2];
|
|
r1[2] -= m1 * s;
|
|
r2[2] -= m2 * s;
|
|
r3[2] -= m3 * s;
|
|
s = r0[3];
|
|
r1[3] -= m1 * s;
|
|
r2[3] -= m2 * s;
|
|
r3[3] -= m3 * s;
|
|
s = r0[4];
|
|
if (s != 0.0) {
|
|
r1[4] -= m1 * s;
|
|
r2[4] -= m2 * s;
|
|
r3[4] -= m3 * s;
|
|
}
|
|
s = r0[5];
|
|
if (s != 0.0) {
|
|
r1[5] -= m1 * s;
|
|
r2[5] -= m2 * s;
|
|
r3[5] -= m3 * s;
|
|
}
|
|
s = r0[6];
|
|
if (s != 0.0) {
|
|
r1[6] -= m1 * s;
|
|
r2[6] -= m2 * s;
|
|
r3[6] -= m3 * s;
|
|
}
|
|
s = r0[7];
|
|
if (s != 0.0) {
|
|
r1[7] -= m1 * s;
|
|
r2[7] -= m2 * s;
|
|
r3[7] -= m3 * s;
|
|
}
|
|
|
|
/* choose pivot - or die */
|
|
if (fabs(r3[1]) > fabs(r2[1]))
|
|
SWAP_ROWS(r3, r2);
|
|
if (fabs(r2[1]) > fabs(r1[1]))
|
|
SWAP_ROWS(r2, r1);
|
|
if (0.0 == r1[1])
|
|
return false;
|
|
|
|
/* eliminate second variable */
|
|
m2 = r2[1] / r1[1];
|
|
m3 = r3[1] / r1[1];
|
|
r2[2] -= m2 * r1[2];
|
|
r3[2] -= m3 * r1[2];
|
|
r2[3] -= m2 * r1[3];
|
|
r3[3] -= m3 * r1[3];
|
|
s = r1[4];
|
|
if (0.0 != s) {
|
|
r2[4] -= m2 * s;
|
|
r3[4] -= m3 * s;
|
|
}
|
|
s = r1[5];
|
|
if (0.0 != s) {
|
|
r2[5] -= m2 * s;
|
|
r3[5] -= m3 * s;
|
|
}
|
|
s = r1[6];
|
|
if (0.0 != s) {
|
|
r2[6] -= m2 * s;
|
|
r3[6] -= m3 * s;
|
|
}
|
|
s = r1[7];
|
|
if (0.0 != s) {
|
|
r2[7] -= m2 * s;
|
|
r3[7] -= m3 * s;
|
|
}
|
|
|
|
/* choose pivot - or die */
|
|
if (fabs(r3[2]) > fabs(r2[2]))
|
|
SWAP_ROWS(r3, r2);
|
|
if (0.0 == r2[2])
|
|
return false;
|
|
|
|
/* eliminate third variable */
|
|
m3 = r3[2] / r2[2];
|
|
r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
|
|
r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7];
|
|
|
|
/* last check */
|
|
if (0.0 == r3[3])
|
|
return false;
|
|
|
|
s = 1.0 / r3[3]; /* now back substitute row 3 */
|
|
r3[4] *= s;
|
|
r3[5] *= s;
|
|
r3[6] *= s;
|
|
r3[7] *= s;
|
|
|
|
m2 = r2[3]; /* now back substitute row 2 */
|
|
s = 1.0 / r2[2];
|
|
r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
|
|
r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
|
|
m1 = r1[3];
|
|
r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
|
|
r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
|
|
m0 = r0[3];
|
|
r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
|
|
r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
|
|
|
|
m1 = r1[2]; /* now back substitute row 1 */
|
|
s = 1.0 / r1[1];
|
|
r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
|
|
r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
|
|
m0 = r0[2];
|
|
r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
|
|
r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
|
|
|
|
m0 = r0[1]; /* now back substitute row 0 */
|
|
s = 1.0 / r0[0];
|
|
r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
|
|
r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
|
|
|
|
MAT(out, 0, 0) = r0[4];
|
|
MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6];
|
|
MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4];
|
|
MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6];
|
|
MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4];
|
|
MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6];
|
|
MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4];
|
|
MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6];
|
|
MAT(out, 3, 3) = r3[7];
|
|
|
|
return true;
|
|
|
|
#undef MAT
|
|
#undef SWAP_ROWS
|
|
}
|
|
|
|
void Matrix3_Invert_Simple (const vec3_t in1[3], vec3_t out[3])
|
|
{
|
|
// we only support uniform scaling, so assume the first row is enough
|
|
// (note the lack of sqrt here, because we're trying to undo the scaling,
|
|
// this means multiplying by the inverse scale twice - squaring it, which
|
|
// makes the sqrt a waste of time)
|
|
#if 1
|
|
double scale = 1.0 / (in1[0][0] * in1[0][0] + in1[0][1] * in1[0][1] + in1[0][2] * in1[0][2]);
|
|
#else
|
|
double scale = 3.0 / sqrt
|
|
(in1->m[0][0] * in1->m[0][0] + in1->m[0][1] * in1->m[0][1] + in1->m[0][2] * in1->m[0][2]
|
|
+ in1->m[1][0] * in1->m[1][0] + in1->m[1][1] * in1->m[1][1] + in1->m[1][2] * in1->m[1][2]
|
|
+ in1->m[2][0] * in1->m[2][0] + in1->m[2][1] * in1->m[2][1] + in1->m[2][2] * in1->m[2][2]);
|
|
scale *= scale;
|
|
#endif
|
|
|
|
// invert the rotation by transposing and multiplying by the squared
|
|
// recipricol of the input matrix scale as described above
|
|
out[0][0] = in1[0][0] * scale;
|
|
out[0][1] = in1[1][0] * scale;
|
|
out[0][2] = in1[2][0] * scale;
|
|
|
|
out[1][0] = in1[0][1] * scale;
|
|
out[1][1] = in1[1][1] * scale;
|
|
out[1][2] = in1[2][1] * scale;
|
|
|
|
out[2][0] = in1[0][2] * scale;
|
|
out[2][1] = in1[1][2] * scale;
|
|
out[2][2] = in1[2][2] * scale;
|
|
}
|
|
|
|
void Matrix4Q_Invert_Simple (const float *in1, float *out)
|
|
{
|
|
// we only support uniform scaling, so assume the first row is enough
|
|
// (note the lack of sqrt here, because we're trying to undo the scaling,
|
|
// this means multiplying by the inverse scale twice - squaring it, which
|
|
// makes the sqrt a waste of time)
|
|
#if 1
|
|
double scale = 1.0 / (in1[0] * in1[0] + in1[1] * in1[1] + in1[2] * in1[2]);
|
|
#else
|
|
double scale = 3.0 / sqrt
|
|
(in1->m[0][0] * in1->m[0][0] + in1->m[0][1] * in1->m[0][1] + in1->m[0][2] * in1->m[0][2]
|
|
+ in1->m[1][0] * in1->m[1][0] + in1->m[1][1] * in1->m[1][1] + in1->m[1][2] * in1->m[1][2]
|
|
+ in1->m[2][0] * in1->m[2][0] + in1->m[2][1] * in1->m[2][1] + in1->m[2][2] * in1->m[2][2]);
|
|
scale *= scale;
|
|
#endif
|
|
|
|
// invert the rotation by transposing and multiplying by the squared
|
|
// recipricol of the input matrix scale as described above
|
|
out[0] = in1[0] * scale;
|
|
out[1] = in1[4] * scale;
|
|
out[2] = in1[8] * scale;
|
|
out[4] = in1[1] * scale;
|
|
out[5] = in1[5] * scale;
|
|
out[6] = in1[9] * scale;
|
|
out[8] = in1[2] * scale;
|
|
out[9] = in1[6] * scale;
|
|
out[10] = in1[10] * scale;
|
|
|
|
#ifdef MATRIX4x4_OPENGLORIENTATION
|
|
// invert the translate
|
|
out->m[12] = -(in1[12] * out[0] + in1[13] * out[4] + in1[14] * out[8]);
|
|
out->m[13] = -(in1[12] * out[1] + in1[13] * out[5] + in1[14] * out[9]);
|
|
out->m[14] = -(in1[12] * out[2] + in1[13] * out[6] + in1[14] * out[10]);
|
|
|
|
// don't know if there's anything worth doing here
|
|
out[3] = 0;
|
|
out[7] = 0;
|
|
out[11] = 0;
|
|
out[15] = 1;
|
|
#else
|
|
// invert the translate
|
|
out[3] = -(in1[3] * out[0] + in1[7] * out[1] + in1[11] * out[2]);
|
|
out[7] = -(in1[3] * out[4] + in1[7] * out[5] + in1[11] * out[6]);
|
|
out[11] = -(in1[3] * out[8] + in1[7] * out[9] + in1[11] * out[10]);
|
|
|
|
// don't know if there's anything worth doing here
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 0;
|
|
out[15] = 1;
|
|
#endif
|
|
}
|
|
|
|
void Matrix3x4_InvertTo3x3(float *in, float *result)
|
|
{
|
|
float t1[16], tr[16];
|
|
memcpy(t1, in, sizeof(float)*12);
|
|
t1[12] = 0;
|
|
t1[13] = 0;
|
|
t1[14] = 0;
|
|
t1[15] = 1;
|
|
Matrix4_Invert(t1, tr);
|
|
VectorCopy(tr+0, result+0);
|
|
VectorCopy(tr+4, result+3);
|
|
VectorCopy(tr+8, result+6);
|
|
return;
|
|
/*
|
|
#define A(x,y) in[x+y*4]
|
|
#define result(x,y) result[x+y*3]
|
|
double determinant = +A(0,0)*(A(1,1)*A(2,2)-A(2,1)*A(1,2))
|
|
-A(0,1)*(A(1,0)*A(2,2)-A(1,2)*A(2,0))
|
|
+A(0,2)*(A(1,0)*A(2,1)-A(1,1)*A(2,0));
|
|
double invdet = 1/determinant;
|
|
result(0,0) = (A(1,1)*A(2,2)-A(2,1)*A(1,2))*invdet;
|
|
result(1,0) = -(A(0,1)*A(2,2)-A(0,2)*A(2,1))*invdet;
|
|
result(2,0) = (A(0,1)*A(1,2)-A(0,2)*A(1,1))*invdet;
|
|
result(0,1) = -(A(1,0)*A(2,2)-A(1,2)*A(2,0))*invdet;
|
|
result(1,1) = (A(0,0)*A(2,2)-A(0,2)*A(2,0))*invdet;
|
|
result(2,1) = -(A(0,0)*A(1,2)-A(1,0)*A(0,2))*invdet;
|
|
result(0,2) = (A(1,0)*A(2,1)-A(2,0)*A(1,1))*invdet;
|
|
result(1,2) = -(A(0,0)*A(2,1)-A(2,0)*A(0,1))*invdet;
|
|
result(2,2) = (A(0,0)*A(1,1)-A(1,0)*A(0,1))*invdet;
|
|
*/
|
|
}
|
|
|
|
//screen->3d
|
|
|
|
void Matrix4_UnProject(const vec3_t in, vec3_t out, const vec3_t viewangles, const vec3_t vieworg, float fovx, float fovy)
|
|
{
|
|
float modelview[16];
|
|
float proj[16];
|
|
float tempm[16];
|
|
|
|
Matrix4_ModelViewMatrix(modelview, viewangles, vieworg);
|
|
Matrix4_Projection_Inf(proj, fovx, fovy, 4);
|
|
Matrix4_Multiply(proj, modelview, tempm);
|
|
|
|
Matrix4_Invert(tempm, proj);
|
|
|
|
{
|
|
float v[4], tempv[4];
|
|
v[0] = in[0]*2-1;
|
|
v[1] = in[1]*2-1;
|
|
v[2] = in[2]*2-1;
|
|
v[3] = 1;
|
|
|
|
Matrix4_Transform4(proj, v, tempv);
|
|
|
|
out[0] = tempv[0];
|
|
out[1] = tempv[1];
|
|
out[2] = tempv[2];
|
|
}
|
|
}
|
|
|
|
//returns fractions of screen.
|
|
//uses GL style rotations and translations and stuff.
|
|
//3d -> screen (fixme: offscreen return values needed)
|
|
void Matrix4_Project (const vec3_t in, vec3_t out, const vec3_t viewangles, const vec3_t vieworg, float fovx, float fovy)
|
|
{
|
|
float modelview[16];
|
|
float proj[16];
|
|
|
|
Matrix4_ModelViewMatrix(modelview, viewangles, vieworg);
|
|
Matrix4_Projection_Inf(proj, fovx, fovy, 4);
|
|
|
|
{
|
|
float v[4], tempv[4];
|
|
v[0] = in[0];
|
|
v[1] = in[1];
|
|
v[2] = in[2];
|
|
v[3] = 1;
|
|
|
|
Matrix4_Transform4(modelview, v, tempv);
|
|
Matrix4_Transform4(proj, tempv, v);
|
|
|
|
v[0] /= v[3];
|
|
v[1] /= v[3];
|
|
v[2] /= v[3];
|
|
|
|
out[0] = (1+v[0])/2;
|
|
out[1] = (1+v[1])/2;
|
|
out[2] = (1+v[2])/2;
|
|
}
|
|
}
|
|
|
|
|
|
//I much prefer it to take float*...
|
|
void Matrix3_Multiply (vec3_t *in1, vec3_t *in2, vec3_t *out)
|
|
{
|
|
out[0][0] = in1[0][0]*in2[0][0] + in1[0][1]*in2[1][0] + in1[0][2]*in2[2][0];
|
|
out[0][1] = in1[0][0]*in2[0][1] + in1[0][1]*in2[1][1] + in1[0][2]*in2[2][1];
|
|
out[0][2] = in1[0][0]*in2[0][2] + in1[0][1]*in2[1][2] + in1[0][2]*in2[2][2];
|
|
out[1][0] = in1[1][0]*in2[0][0] + in1[1][1]*in2[1][0] + in1[1][2]*in2[2][0];
|
|
out[1][1] = in1[1][0]*in2[0][1] + in1[1][1]*in2[1][1] + in1[1][2]*in2[2][1];
|
|
out[1][2] = in1[1][0]*in2[0][2] + in1[1][1]*in2[1][2] + in1[1][2]*in2[2][2];
|
|
out[2][0] = in1[2][0]*in2[0][0] + in1[2][1]*in2[1][0] + in1[2][2]*in2[2][0];
|
|
out[2][1] = in1[2][0]*in2[0][1] + in1[2][1]*in2[1][1] + in1[2][2]*in2[2][1];
|
|
out[2][2] = in1[2][0]*in2[0][2] + in1[2][1]*in2[1][2] + in1[2][2]*in2[2][2];
|
|
}
|
|
|
|
vec_t VectorNormalize2 (const vec3_t v, vec3_t out)
|
|
{
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
|
|
if (length)
|
|
{
|
|
length = sqrt (length); // FIXME
|
|
ilength = 1/length;
|
|
out[0] = v[0]*ilength;
|
|
out[1] = v[1]*ilength;
|
|
out[2] = v[2]*ilength;
|
|
}
|
|
else
|
|
{
|
|
VectorClear (out);
|
|
}
|
|
|
|
return length;
|
|
}
|
|
float ColorNormalize (vec3_t in, vec3_t out)
|
|
{
|
|
float f = max (max (in[0], in[1]), in[2]);
|
|
|
|
if ( f > 1.0 ) {
|
|
f = 1.0 / f;
|
|
out[0] = in[0] * f;
|
|
out[1] = in[1] * f;
|
|
out[2] = in[2] * f;
|
|
} else {
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
return f;
|
|
}
|
|
|
|
void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
float d;
|
|
|
|
// this rotate and negat guarantees a vector
|
|
// not colinear with the original
|
|
right[1] = -forward[0];
|
|
right[2] = forward[1];
|
|
right[0] = forward[2];
|
|
|
|
d = DotProduct (right, forward);
|
|
VectorMA (right, -d, forward, right);
|
|
VectorNormalize (right);
|
|
CrossProduct (right, forward, up);
|
|
}
|
|
|