fteqw/engine/gl/gl_backend.c

2748 lines
63 KiB
C
Raw Normal View History

#include "quakedef.h"
#include "glquake.h"
#include "shader.h"
#ifdef RGLQUAKE
#define MAX_TEXTURE_UNITS 8
typedef struct {
GLenum currenttextures[MAX_TEXTURE_UNITS];
GLenum texenvmode[MAX_TEXTURE_UNITS];
int currenttmu;
qboolean in2d;
} gl_state_t;
gl_state_t gl_state;
extern int *lightmap_textures;
void GL_SelectTexture (GLenum target)
{
gl_state.currenttmu = target - mtexid0;
if (qglClientActiveTextureARB)
{
qglClientActiveTextureARB(target);
qglActiveTextureARB(target);
}
else
qglSelectTextureSGIS(target);
}
void GL_MBind( GLenum target, int texnum )
{
GL_SelectTexture( target );
// if ( gl_state.currenttextures[texnum-mtexid0] == texnum )
// return;
gl_state.currenttextures[texnum-mtexid0] = texnum;
bindTexFunc (GL_TEXTURE_2D, texnum);
}
void GL_Bind (int texnum)
{
if (gl_state.currenttextures[gl_state.currenttmu] == texnum)
return;
gl_state.currenttextures[gl_state.currenttmu] = texnum;
bindTexFunc (GL_TEXTURE_2D, texnum);
}
void GL_BindType (int type, int texnum)
{
bindTexFunc (type, texnum);
gl_state.currenttextures[gl_state.currenttmu] = -1;
}
//vid restarted.
void GL_FlushBinds(void)
{
int i;
for (i = 0; i < MAX_TEXTURE_UNITS; i++)
{
gl_state.currenttextures[i] = -1;
gl_state.texenvmode[i] = -1;
}
}
#ifndef Q3SHADERS
#define MAX_MESH_VERTS 8192
//we don't support multitexturing yet.
static float tempstarray[MAX_MESH_VERTS*3];
static vec4_t tempxyzarray[MAX_MESH_VERTS];
shader_t nullshader, wallbumpshader, modelbumpshader;
#define frand() (rand()&32767)* (1.0/32767)
#define FTABLE_SIZE 1024
#define FTABLE_CLAMP(x) (((int)((x)*FTABLE_SIZE) & (FTABLE_SIZE-1)))
#define FTABLE_EVALUATE(table,x) (table ? table[FTABLE_CLAMP(x)] : frand())//*((x)-floor(x)))
static float r_sintable[FTABLE_SIZE];
static float r_triangletable[FTABLE_SIZE];
static float r_squaretable[FTABLE_SIZE];
static float r_sawtoothtable[FTABLE_SIZE];
static float r_inversesawtoothtable[FTABLE_SIZE];
void R_BackendInit(void)
{
int i;
double t;
for ( i = 0; i < FTABLE_SIZE; i++ )
{
t = (double)i / (double)FTABLE_SIZE;
r_sintable[i] = sin ( t * M_PI*2 );
if (t < 0.25)
r_triangletable[i] = t * 4.0;
else if (t < 0.75)
r_triangletable[i] = 2 - 4.0 * t;
else
r_triangletable[i] = (t - 0.75) * 4.0 - 1.0;
if (t < 0.5)
r_squaretable[i] = 1.0f;
else
r_squaretable[i] = -1.0f;
r_sawtoothtable[i] = t;
r_inversesawtoothtable[i] = 1.0 - t;
}
{
nullshader.numdeforms = 0;//1;
nullshader.deforms[0].type = DEFORMV_WAVE;
nullshader.deforms[0].args[0] = 10;
nullshader.deforms[0].func.type = SHADER_FUNC_SIN;
nullshader.deforms[0].func.args[1] = 1;
nullshader.deforms[0].func.args[3] = 10;
nullshader.passes[0].texturetype = GL_TEXTURE_2D;
nullshader.passes[0].envmode = GL_MODULATE;
nullshader.passes[0].blendsrc = GL_SRC_ALPHA;
nullshader.passes[0].blenddst = GL_ONE_MINUS_SRC_ALPHA;
nullshader.passes[1].flags |= SHADER_PASS_BLEND;
nullshader.passes[1].tcgen = TC_GEN_LIGHTMAP;
nullshader.passes[1].blendsrc = GL_SRC_ALPHA;
nullshader.passes[1].blenddst = GL_ONE_MINUS_SRC_ALPHA;
nullshader.passes[1].texturetype = GL_TEXTURE_2D;
}
{
modelbumpshader.numpasses = 3;
if (1)
modelbumpshader.passes[0].numMergedPasses = 4;
else
modelbumpshader.passes[0].numMergedPasses = 2;
modelbumpshader.passes[2].numMergedPasses = 1;
modelbumpshader.passes[0].tcgen = TC_GEN_BASE;
modelbumpshader.passes[0].envmode = GL_COMBINE_ARB;
modelbumpshader.passes[0].combinesrc0 = GL_TEXTURE;
modelbumpshader.passes[0].combinemode = GL_REPLACE;
modelbumpshader.passes[0].blendsrc = GL_SRC_ALPHA;
modelbumpshader.passes[0].blenddst = GL_ONE_MINUS_SRC_ALPHA;
modelbumpshader.passes[0].anim_frames[0] = 0;//bumpmap
modelbumpshader.passes[0].texturetype = GL_TEXTURE_2D;
modelbumpshader.passes[1].tcgen = TC_GEN_DOTPRODUCT;
modelbumpshader.passes[1].envmode = GL_COMBINE_ARB;
modelbumpshader.passes[1].combinesrc0 = GL_TEXTURE;
modelbumpshader.passes[1].combinesrc1 = GL_PREVIOUS_ARB;
modelbumpshader.passes[1].combinemode = GL_DOT3_RGB_ARB;
modelbumpshader.passes[1].anim_frames[0] = 0;//delux
modelbumpshader.passes[1].texturetype = GL_TEXTURE_2D;
modelbumpshader.passes[2].flags |= SHADER_PASS_BLEND;
modelbumpshader.passes[2].tcgen = TC_GEN_BASE;
modelbumpshader.passes[2].envmode = GL_MODULATE;
modelbumpshader.passes[2].blendsrc = GL_DST_COLOR;
modelbumpshader.passes[2].blenddst = GL_ZERO;
modelbumpshader.passes[2].anim_frames[0] = 0;//texture
modelbumpshader.passes[2].texturetype = GL_TEXTURE_2D;
//gl_combine states that we need to use a textures.
modelbumpshader.passes[3].tcgen = TC_GEN_BASE; //multiply by colors
modelbumpshader.passes[3].envmode = GL_COMBINE_ARB;
modelbumpshader.passes[3].combinesrc0 = GL_PREVIOUS_ARB;
modelbumpshader.passes[3].combinesrc1 = GL_PRIMARY_COLOR_ARB;
modelbumpshader.passes[3].combinemode = GL_MODULATE;
modelbumpshader.passes[3].anim_frames[0] = 1; //any, has to be present
modelbumpshader.passes[3].texturetype = GL_TEXTURE_2D;
}
{
wallbumpshader.numpasses = 4;
if (1)
wallbumpshader.passes[0].numMergedPasses = 4;
else
wallbumpshader.passes[0].numMergedPasses = 2;
wallbumpshader.passes[2].numMergedPasses = 2;
wallbumpshader.passes[0].tcgen = TC_GEN_BASE;
wallbumpshader.passes[0].envmode = GL_COMBINE_ARB;
wallbumpshader.passes[0].combinesrc0 = GL_TEXTURE;
wallbumpshader.passes[0].combinemode = GL_REPLACE;
wallbumpshader.passes[0].anim_frames[0] = 0;//bumpmap
wallbumpshader.passes[0].blendsrc = GL_SRC_ALPHA;
wallbumpshader.passes[0].blenddst = GL_ONE_MINUS_SRC_ALPHA;
wallbumpshader.passes[0].texturetype = GL_TEXTURE_2D;
wallbumpshader.passes[1].tcgen = TC_GEN_LIGHTMAP;
wallbumpshader.passes[1].envmode = GL_COMBINE_ARB;
wallbumpshader.passes[1].combinesrc0 = GL_TEXTURE;
wallbumpshader.passes[1].combinesrc1 = GL_PREVIOUS_ARB;
wallbumpshader.passes[1].combinemode = GL_DOT3_RGB_ARB;
wallbumpshader.passes[1].anim_frames[0] = 0;//delux
wallbumpshader.passes[1].texturetype = GL_TEXTURE_2D;
wallbumpshader.passes[2].flags |= SHADER_PASS_BLEND;
wallbumpshader.passes[2].tcgen = TC_GEN_BASE;
wallbumpshader.passes[2].envmode = GL_MODULATE;
wallbumpshader.passes[2].blendsrc = GL_DST_COLOR;
wallbumpshader.passes[2].blenddst = GL_ZERO;
wallbumpshader.passes[2].anim_frames[0] = 0;//texture
wallbumpshader.passes[2].texturetype = GL_TEXTURE_2D;
wallbumpshader.passes[3].tcgen = TC_GEN_LIGHTMAP;
wallbumpshader.passes[3].envmode = GL_BLEND;
wallbumpshader.passes[3].anim_frames[0] = 0;//lightmap
wallbumpshader.passes[3].texturetype = GL_TEXTURE_2D;
}
}
static float *R_TableForFunc ( unsigned int func )
{
switch (func)
{
case SHADER_FUNC_SIN:
return r_sintable;
case SHADER_FUNC_TRIANGLE:
return r_triangletable;
case SHADER_FUNC_SQUARE:
return r_squaretable;
case SHADER_FUNC_SAWTOOTH:
return r_sawtoothtable;
case SHADER_FUNC_INVERSESAWTOOTH:
return r_inversesawtoothtable;
}
// assume noise
return NULL;
}
static void MakeDeforms(shader_t *shader, vec4_t *out, vec4_t *in, int number)
{
float *table;
int d, j;
float args[4], deflect;
deformv_t *dfrm = shader->deforms;
for (d = 0; d < shader->numdeforms; d++, dfrm++)
{
switch(dfrm->type)
{
case DEFORMV_WAVE:
args[0] = dfrm->func.args[0];
args[1] = dfrm->func.args[1];
args[3] = dfrm->func.args[2] + dfrm->func.args[3] * realtime;
table = R_TableForFunc ( dfrm->func.type );
for ( j = 0; j < number; j++ ) {
deflect = dfrm->args[0] * (in[j][0]+in[j][1]+in[j][2]) + args[3];
deflect = sin(deflect)/*FTABLE_EVALUATE ( table, deflect )*/ * args[1] + args[0];
out[j][0] = in[j][0]+deflect;
out[j][1] = in[j][1]+deflect;
out[j][2] = in[j][2]+deflect;
// Deflect vertex along its normal by wave amount
// VectorMA ( out[j], deflect, normalsArray[j], in[j] );
}
break;
case DEFORMV_MOVE:
table = R_TableForFunc ( dfrm->func.type );
deflect = dfrm->func.args[2] + realtime * dfrm->func.args[3];
deflect = FTABLE_EVALUATE (table, deflect) * dfrm->func.args[1] + dfrm->func.args[0];
for ( j = 0; j < number; j++ )
VectorMA ( out[j], deflect, dfrm->args, in[j] );
break;
default:
Sys_Error("Bad deform type %i\n", dfrm->type);
}
in = out;
}
}
static void Mesh_DeformTextureCoords(mesh_t *mesh, shaderpass_t *pass)
{
int d;
// tcmod_t *tcmod = pass->tcmod;
float *in, *out;
switch(pass->tcgen)
{
case TC_GEN_DOTPRODUCT: //take normals, use the dotproduct and produce texture coords for bumpmapping
{
out = tempstarray;
in = (float*)mesh->normals_array;
for (d = 0; d < mesh->numvertexes; d++)
{
out[d*3+0] = DotProduct((in+d*3), mesh->lightaxis[0]);
out[d*3+1] = DotProduct((in+d*3), mesh->lightaxis[1]);
out[d*3+2] = DotProduct((in+d*3), mesh->lightaxis[2]);
}
glTexCoordPointer(3, GL_FLOAT, 0, out);
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
}
return;
case TC_GEN_LIGHTMAP:
in = (float*)mesh->lmst_array;
if (in)
break; //fallthrought
case TC_GEN_BASE:
in = (float*)mesh->st_array;
break;
default:
Sys_Error("Mesh_DeformTextureCoords: Bad TC_GEN type\n");
return;
}
/*
for (d = 0; d < pass->numtcmods; d++, dfrm++)
{
}
*/
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
glTexCoordPointer(2, GL_FLOAT, 0, in);
}
static void Mesh_SetShaderpassState ( shaderpass_t *pass, qboolean mtex )
{
if ( (mtex && (pass->blendmode != GL_REPLACE)) || (pass->flags & SHADER_PASS_BLEND) )
{
glEnable (GL_BLEND);
glBlendFunc (pass->blendsrc, pass->blenddst);
}
else
{
// glDisable (GL_BLEND);
}
if (pass->flags & SHADER_PASS_ALPHAFUNC)
{
glEnable (GL_ALPHA_TEST);
if (pass->alphafunc == SHADER_ALPHA_GT0)
{
glAlphaFunc (GL_GREATER, 0);
}
else if (pass->alphafunc == SHADER_ALPHA_LT128)
{
glAlphaFunc (GL_LESS, 0.5f);
}
else if (pass->alphafunc == SHADER_ALPHA_GE128)
{
glAlphaFunc (GL_GEQUAL, 0.5f);
}
}
else
{
// glDisable (GL_ALPHA_TEST);
}
// glDepthFunc (pass->depthfunc);
if (pass->flags & SHADER_PASS_DEPTHWRITE)
{
glDepthMask (GL_TRUE);
}
else
{
// glDepthMask (GL_FALSE);
}
}
static void Mesh_DrawPass(shaderpass_t *pass, mesh_t *mesh)
{
Mesh_SetShaderpassState(pass, false);
if (pass->numMergedPasses>1 && gl_mtexarbable)
{
int p;
// Mesh_DrawPass(pass+2,mesh);
// return;
for (p = 0; p < pass->numMergedPasses; p++)
{
qglActiveTextureARB(GL_TEXTURE0_ARB+p);
qglClientActiveTextureARB(GL_TEXTURE0_ARB+p);
GL_BindType(pass[p].texturetype, pass[p].anim_frames[0]);
glEnable(pass[p].texturetype);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, pass[p].envmode);
if (pass[p].envmode == GL_COMBINE_ARB)
{
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, pass[p].combinesrc0);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, pass[p].combinesrc1);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, pass[p].combinemode);
}
Mesh_DeformTextureCoords(mesh, pass+p);
}
glDrawElements(GL_TRIANGLES, mesh->numindexes, GL_UNSIGNED_INT, mesh->indexes);
for (p = pass->numMergedPasses-1; p >= 0; p--)
{
qglActiveTextureARB(GL_TEXTURE0_ARB+p);
qglClientActiveTextureARB(GL_TEXTURE0_ARB+p);
glDisable(pass[p].texturetype);
glDisableClientState( GL_TEXTURE_COORD_ARRAY );
}
}
else
{
Mesh_DeformTextureCoords(mesh, pass);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, pass->envmode);
GL_Bind(pass->anim_frames[0]);
if (pass->texturetype != GL_TEXTURE_2D)
{
glDisable(pass->texturetype);
glEnable(pass->texturetype);
}
glDrawElements(GL_TRIANGLES, mesh->numindexes, GL_UNSIGNED_INT, mesh->indexes);
if (pass->texturetype != GL_TEXTURE_2D)
{
glDisable(pass->texturetype);
glEnable(GL_TEXTURE_2D);
}
glDisableClientState( GL_TEXTURE_COORD_ARRAY );
}
}
shader_t *currentshader;
void GL_PushShader(shader_t *shader)
{
if (!shader)
{
glDisableClientState( GL_VERTEX_ARRAY );
return;
}
glEnableClientState( GL_VERTEX_ARRAY );
}
void GL_PushMesh(mesh_t *mesh, int deluxnum, int lmnum)
{
}
void GL_DrawMesh(mesh_t *mesh, shader_t *shader, int texturenum, int lmtexturenum)
{
int i;
if (!shader)
{
shader = &nullshader;
shader->passes[0].anim_frames[0] = texturenum;
shader->passes[0].numMergedPasses=1;
if (lmtexturenum && !texturenum)
{
shader->passes[0].anim_frames[0] = lmtexturenum;
shader->numpasses = 1;
shader->passes[0].flags |= SHADER_PASS_BLEND;
}
else if (lmtexturenum)
{
shader->numpasses = 2;
shader->passes[1].anim_frames[0] = lmtexturenum;//lmtexture;
shader->passes[0].flags &= ~SHADER_PASS_BLEND;
}
else
{
shader->passes[0].flags &= ~SHADER_PASS_BLEND;
shader->numpasses = 1;
}
shader->passes[0].texturetype = GL_TEXTURE_2D;
}
if (!shader->numdeforms)
glVertexPointer(3, GL_FLOAT, 16, mesh->xyz_array);
else
{
MakeDeforms(shader, tempxyzarray, mesh->xyz_array, mesh->numvertexes);
glVertexPointer(3, GL_FLOAT, 16, tempxyzarray);
}
if (mesh->normals_array && glNormalPointer)
{
glNormalPointer(GL_FLOAT, 0, mesh->normals_array);
glEnableClientState( GL_NORMAL_ARRAY );
}
glEnableClientState( GL_VERTEX_ARRAY );
if (mesh->colors_array && glColorPointer)
{
glColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh->colors_array);
glEnableClientState( GL_COLOR_ARRAY );
}
for (i =0 ; i < shader->numpasses; i+=shader->passes[i].numMergedPasses)
Mesh_DrawPass(shader->passes+i, mesh);
glDisableClientState( GL_VERTEX_ARRAY );
glDisableClientState( GL_COLOR_ARRAY );
glDisableClientState( GL_NORMAL_ARRAY );
/* //show normals
if (mesh->normals_array)
{
glColor3f(1,1,1);
glDisable(GL_TEXTURE_2D);
glBegin(GL_LINES);
for (i = 0; i < mesh->numvertexes; i++)
{
glVertex3f( mesh->xyz_array[i][0],
mesh->xyz_array[i][1],
mesh->xyz_array[i][2]);
glVertex3f( mesh->xyz_array[i][0] + mesh->normals_array[i][0],
mesh->xyz_array[i][1] + mesh->normals_array[i][1],
mesh->xyz_array[i][2] + mesh->normals_array[i][2]);
}
glEnd();
glEnable(GL_TEXTURE_2D);
}
*/
}
void GL_DrawMeshBump(mesh_t *mesh, int texturenum, int lmtexturenum, int bumpnum, int deluxnum)
{
shader_t *shader;
extern int normalisationCubeMap;
if (lmtexturenum)
{
shader = &wallbumpshader;
shader->passes[3].anim_frames[0] = lmtexturenum;
}
else
shader = &modelbumpshader;
shader->passes[0].anim_frames[0] = bumpnum;
if (deluxnum)
{
shader->passes[1].anim_frames[0] = deluxnum;
shader->passes[1].tcgen = TC_GEN_LIGHTMAP;
shader->passes[1].texturetype = GL_TEXTURE_2D;
}
else
{
shader->passes[1].anim_frames[0] = normalisationCubeMap;
shader->passes[1].tcgen = TC_GEN_DOTPRODUCT;
shader->passes[1].texturetype = GL_TEXTURE_CUBE_MAP_ARB;
}
shader->passes[2].anim_frames[0] = texturenum;
// mesh->colors_array=NULL; //don't bother coloring it.
GL_DrawMesh(mesh, shader, 0, 0);
}
#else
/*
Copyright (C) 2002-2003 Victor Luchits
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#define MAX_ARRAY_VERTS 8192
#define MAX_ARRAY_INDEXES 8192
#define MAX_ARRAY_NEIGHBORS 8192
#define MAX_ARRAY_TRIANGLES (8192/3)
#define M_TWO_PI (M_PI*2)
cvar_t r_detailtextures = {"r_detailtextures", "1"};
cvar_t r_showtris = {"r_showtris", "1"};
cvar_t r_shownormals = {"r_shownormals", "1"};
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> 1 ); // what the fuck?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
return y;
}
void VectorNormalizeFast( vec3_t v )
{
float ilength;
ilength = Q_rsqrt( DotProduct( v, v ) );
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
void GL_TexEnv( GLenum mode )
{
static int lastmodes[MAX_TEXTURE_UNITS] = { -1, -1 };
if ( mode != lastmodes[gl_state.currenttmu] )
{
qglTexEnvf( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, mode );
lastmodes[gl_state.currenttmu] = mode;
}
}
typedef vec3_t mat3_t[3];
mat3_t axisDefault={{1, 0, 0},
{0, 1, 0},
{0, 0, 1}};
void Matrix3_Transpose (mat3_t in, mat3_t out)
{
out[0][0] = in[0][0];
out[1][1] = in[1][1];
out[2][2] = in[2][2];
out[0][1] = in[1][0];
out[0][2] = in[2][0];
out[1][0] = in[0][1];
out[1][2] = in[2][1];
out[2][0] = in[0][2];
out[2][1] = in[1][2];
}
void Matrix3_Multiply_Vec3 (mat3_t a, vec3_t b, vec3_t product)
{
product[0] = a[0][0]*b[0] + a[0][1]*b[1] + a[0][2]*b[2];
product[1] = a[1][0]*b[0] + a[1][1]*b[1] + a[1][2]*b[2];
product[2] = a[2][0]*b[0] + a[2][1]*b[1] + a[2][2]*b[2];
}
void Matrix3_Multiply (mat3_t in1, mat3_t in2, mat3_t out)
{
out[0][0] = in1[0][0]*in2[0][0] + in1[0][1]*in2[1][0] + in1[0][2]*in2[2][0];
out[0][1] = in1[0][0]*in2[0][1] + in1[0][1]*in2[1][1] + in1[0][2]*in2[2][1];
out[0][2] = in1[0][0]*in2[0][2] + in1[0][1]*in2[1][2] + in1[0][2]*in2[2][2];
out[1][0] = in1[1][0]*in2[0][0] + in1[1][1]*in2[1][0] + in1[1][2]*in2[2][0];
out[1][1] = in1[1][0]*in2[0][1] + in1[1][1]*in2[1][1] + in1[1][2]*in2[2][1];
out[1][2] = in1[1][0]*in2[0][2] + in1[1][1]*in2[1][2] + in1[1][2]*in2[2][2];
out[2][0] = in1[2][0]*in2[0][0] + in1[2][1]*in2[1][0] + in1[2][2]*in2[2][0];
out[2][1] = in1[2][0]*in2[0][1] + in1[2][1]*in2[1][1] + in1[2][2]*in2[2][1];
out[2][2] = in1[2][0]*in2[0][2] + in1[2][1]*in2[1][2] + in1[2][2]*in2[2][2];
}
int Matrix3_Compare(mat3_t in, mat3_t out)
{
return memcmp(in, out, sizeof(mat3_t));
}
extern model_t *currentmodel;
#define clamp(v,min,max) (v) = (((v)<(min))?(min):(((v)>(max))?(max):(v)))
#define bound(min,v,max) (((v)<(min))?(min):(((v)>(max))?(max):(v)))
extern qbyte FloatToByte( float x );
#define FTABLE_SIZE 1024
#define FTABLE_CLAMP(x) (((int)((x)*FTABLE_SIZE) & (FTABLE_SIZE-1)))
#define FTABLE_EVALUATE(table,x) (table ? table[FTABLE_CLAMP(x)] : frand()*((x)-floor(x)))
static float r_sintable[FTABLE_SIZE];
static float r_triangletable[FTABLE_SIZE];
static float r_squaretable[FTABLE_SIZE];
static float r_sawtoothtable[FTABLE_SIZE];
static float r_inversesawtoothtable[FTABLE_SIZE];
index_t *indexesArray;
int *neighborsArray;
vec3_t *trNormalsArray;
vec2_t *coordsArray;
vec2_t *lightmapCoordsArray;
vec4_t vertexArray[MAX_ARRAY_VERTS*2];
vec3_t normalsArray[MAX_ARRAY_VERTS];
vec4_t tempVertexArray[MAX_ARRAY_VERTS];
vec3_t tempNormalsArray[MAX_ARRAY_VERTS];
index_t tempIndexesArray[MAX_ARRAY_INDEXES];
index_t inIndexesArray[MAX_ARRAY_INDEXES];
int inNeighborsArray[MAX_ARRAY_NEIGHBORS];
vec3_t inTrNormalsArray[MAX_ARRAY_TRIANGLES];
vec2_t inCoordsArray[MAX_ARRAY_VERTS];
vec2_t inLightmapCoordsArray[MAX_ARRAY_VERTS];
byte_vec4_t inColorsArray[MAX_ARRAY_VERTS];
static vec2_t tUnitCoordsArray[MAX_TEXTURE_UNITS][MAX_ARRAY_VERTS];
static byte_vec4_t colorArray[MAX_ARRAY_VERTS];
int numVerts, numIndexes, numColors;
qboolean r_arrays_locked;
qboolean r_blocked;
int r_features;
static int r_lmtex;
static int r_texNums[SHADER_PASS_MAX];
static int r_numUnits;
index_t *currentIndex;
int *currentTrNeighbor;
float *currentTrNormal;
float *currentVertex;
float *currentNormal;
float *currentCoords;
float *currentLightmapCoords;
qbyte *currentColor;
static int r_identityLighting;
static float r_localShaderTime;
unsigned int r_numverts;
unsigned int r_numtris;
unsigned int r_numflushes;
int r_backendStart;
void R_ResetTexState (void)
{
coordsArray = inCoordsArray;
lightmapCoordsArray = inLightmapCoordsArray;
currentCoords = coordsArray[0];
currentLightmapCoords = lightmapCoordsArray[0];
numColors = 0;
currentColor = inColorsArray[0];
}
void R_PushIndexes ( index_t *indexes, int *neighbors, vec3_t *trnormals, int numindexes, int features )
{
int i;
int numTris;
// this is a fast path for non-batched geometry, use carefully
// used on pics, sprites, .dpm, .md3 and .md2 models
if ( features & MF_NONBATCHED ) {
if ( numindexes > MAX_ARRAY_INDEXES ) {
numindexes = MAX_ARRAY_INDEXES;
}
// simply change indexesArray to point at indexes
numIndexes = numindexes;
indexesArray = indexes;
currentIndex = indexesArray + numIndexes;
if ( neighbors ) {
neighborsArray = neighbors;
currentTrNeighbor = neighborsArray + numIndexes;
}
if ( trnormals && (features & MF_TRNORMALS) ) {
numTris = numIndexes / 3;
trNormalsArray = trnormals;
currentTrNormal = trNormalsArray[0] + numTris;
}
}
else
{
// clamp
if ( numIndexes + numindexes > MAX_ARRAY_INDEXES ) {
numindexes = MAX_ARRAY_INDEXES - numIndexes;
}
numTris = numindexes / 3;
numIndexes += numindexes;
// the following code assumes that R_PushIndexes is fed with triangles...
for ( i=0; i<numTris; i++, indexes += 3, currentIndex += 3 )
{
currentIndex[0] = numVerts + indexes[0];
currentIndex[1] = numVerts + indexes[1];
currentIndex[2] = numVerts + indexes[2];
if ( neighbors ) {
currentTrNeighbor[0] = numTris + neighbors[0];
currentTrNeighbor[1] = numTris + neighbors[1];
currentTrNeighbor[2] = numTris + neighbors[2];
neighbors += 3;
currentTrNeighbor += 3;
}
if ( trnormals && (features & MF_TRNORMALS) ) {
VectorCopy ( trnormals[i], currentTrNormal );
currentTrNormal += 3;
}
}
}
}
void R_PushMesh ( mesh_t *mesh, int features )
{
int numverts;
if ( !mesh->indexes || !mesh->xyz_array ) {
return;
}
r_features = features;
R_PushIndexes ( mesh->indexes, mesh->trneighbors, mesh->trnormals, mesh->numindexes, features );
numverts = mesh->numvertexes;
if ( numVerts + numverts > MAX_ARRAY_VERTS ) {
numverts = MAX_ARRAY_VERTS - numVerts;
}
memcpy ( currentVertex, mesh->xyz_array, numverts * sizeof(vec4_t) );
currentVertex += numverts * 4;
if ( mesh->normals_array && (features & MF_NORMALS) ) {
memcpy ( currentNormal, mesh->normals_array, numverts * sizeof(vec3_t) );
currentNormal += numverts * 3;
}
if ( mesh->st_array && (features & MF_STCOORDS) ) {
if ( features & MF_NONBATCHED ) {
coordsArray = mesh->st_array;
currentCoords = coordsArray[0];
} else {
memcpy ( currentCoords, mesh->st_array, numverts * sizeof(vec2_t) );
}
currentCoords += numverts * 2;
}
if ( mesh->lmst_array && (features & MF_LMCOORDS) ) {
if ( features & MF_NONBATCHED ) {
lightmapCoordsArray = mesh->lmst_array;
currentLightmapCoords = lightmapCoordsArray[0];
} else {
memcpy ( currentLightmapCoords, mesh->lmst_array, numverts * sizeof(vec2_t) );
}
currentLightmapCoords += numverts * 2;
}
if ( mesh->colors_array && (features & MF_COLORS) ) {
memcpy ( currentColor, mesh->colors_array, numverts * sizeof(byte_vec4_t) );
currentColor += numverts * 4;
}
numVerts += numverts;
r_numverts += numverts;
}
extern index_t r_quad_indexes[6];// = { 0, 1, 2, 0, 2, 3 };
void R_FinishMeshBuffer ( meshbuffer_t *mb );
static float frand(void)
{
return (rand()&32767)* (1.0/32767);
}
static float crand(void)
{
return (rand()&32767)* (2.0/32767) - 1;
}
/*
==============
R_BackendInit
==============
*/
void R_BackendInit (void)
{
int i;
double t;
numVerts = 0;
numIndexes = 0;
numColors = 0;
indexesArray = inIndexesArray;
currentIndex = indexesArray;
neighborsArray = inNeighborsArray;
trNormalsArray = inTrNormalsArray;
coordsArray = inCoordsArray;
lightmapCoordsArray = inLightmapCoordsArray;
currentTrNeighbor = neighborsArray;
currentTrNormal = trNormalsArray[0];
currentVertex = vertexArray[0];
currentNormal = normalsArray[0];
currentCoords = coordsArray[0];
currentLightmapCoords = lightmapCoordsArray[0];
currentColor = inColorsArray[0];
r_arrays_locked = false;
r_blocked = false;
qglVertexPointer( 3, GL_FLOAT, 16, vertexArray ); // padded for SIMD
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray );
qglEnableClientState( GL_VERTEX_ARRAY );
//FIZME: FTE already has some stuff along these lines, surly...
// if ( !r_ignorehwgamma->value )
// r_identityLighting = (int)(255.0f / pow(2, max(0, floor(r_overbrightbits->value))));
// else
r_identityLighting = 255;
for ( i = 0; i < FTABLE_SIZE; i++ ) {
t = (double)i / (double)FTABLE_SIZE;
r_sintable[i] = sin ( t * M_TWO_PI );
if (t < 0.25)
r_triangletable[i] = t * 4.0;
else if (t < 0.75)
r_triangletable[i] = 2 - 4.0 * t;
else
r_triangletable[i] = (t - 0.75) * 4.0 - 1.0;
if (t < 0.5)
r_squaretable[i] = 1.0f;
else
r_squaretable[i] = -1.0f;
r_sawtoothtable[i] = t;
r_inversesawtoothtable[i] = 1.0 - t;
}
}
void R_IBrokeTheArrays(void)
{
qglVertexPointer( 3, GL_FLOAT, 16, vertexArray ); // padded for SIMD
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray );
qglEnableClientState( GL_VERTEX_ARRAY );
}
/*
==============
R_BackendShutdown
==============
*/
void R_BackendShutdown (void)
{
}
/*
==============
R_FastSin
==============
*/
float R_FastSin ( float t )
{
return r_sintable[FTABLE_CLAMP(t)];
}
/*
==============
R_TableForFunc
==============
*/
static float *R_TableForFunc ( unsigned int func )
{
switch (func)
{
case SHADER_FUNC_SIN:
return r_sintable;
case SHADER_FUNC_TRIANGLE:
return r_triangletable;
case SHADER_FUNC_SQUARE:
return r_squaretable;
case SHADER_FUNC_SAWTOOTH:
return r_sawtoothtable;
case SHADER_FUNC_INVERSESAWTOOTH:
return r_inversesawtoothtable;
}
// assume noise
return NULL;
}
/*
==============
R_BackendStartFrame
==============
*/
void R_BackendStartFrame (void)
{
r_numverts = 0;
r_numtris = 0;
r_numflushes = 0;
// r_backendStart = Sys_Milliseconds();
}
/*
==============
R_BackendEndFrame
==============
*/
void R_BackendEndFrame (void)
{
if (r_speeds.value)
{
Con_Printf( "%4i wpoly %4i leafs %4i verts %4i tris %4i flushes\n",
c_brush_polys,
0/*c_world_leafs*/,
r_numverts,
r_numtris,
r_numflushes );
}
// time_backend = Sys_Milliseconds() - r_backendStart;
// r_backendStart = 0;
}
/*
==============
R_LockArrays
==============
*/
void R_LockArrays ( int numverts )
{
if ( r_arrays_locked )
return;
if ( qglLockArraysEXT != 0 ) {
qglLockArraysEXT( 0, numverts );
r_arrays_locked = true;
}
}
/*
==============
R_UnlockArrays
==============
*/
void R_UnlockArrays (void)
{
if ( !r_arrays_locked )
return;
if ( qglUnlockArraysEXT != 0 ) {
qglUnlockArraysEXT();
r_arrays_locked = false;
}
}
/*
==============
R_DrawTriangleStrips
This function looks for and sends tristrips.
Original code by Stephen C. Taylor (Aftershock 3D rendering engine)
==============
*/
void R_DrawTriangleStrips (index_t *indexes, int numindexes)
{
int toggle;
index_t a, b, c, *index;
c = 0;
index = indexes;
while ( c < numindexes ) {
toggle = 1;
qglBegin( GL_TRIANGLE_STRIP );
qglArrayElement( index[0] );
qglArrayElement( b = index[1] );
qglArrayElement( a = index[2] );
c += 3;
index += 3;
while ( c < numindexes ) {
if ( a != index[0] || b != index[1] ) {
break;
}
if ( toggle ) {
qglArrayElement( b = index[2] );
} else {
qglArrayElement( a = index[2] );
}
c += 3;
index += 3;
toggle = !toggle;
}
qglEnd();
}
}
/*
==============
R_ClearArrays
==============
*/
void R_ClearArrays (void)
{
numVerts = 0;
numIndexes = 0;
indexesArray = inIndexesArray;
currentIndex = indexesArray;
neighborsArray = inNeighborsArray;
trNormalsArray = inTrNormalsArray;
currentTrNeighbor = neighborsArray;
currentTrNormal = trNormalsArray[0];
currentVertex = vertexArray[0];
currentNormal = normalsArray[0];
R_ResetTexState ();
r_blocked = false;
}
/*
==============
R_FlushArrays
==============
*/
void R_FlushArrays (void)
{
if ( !numVerts || !numIndexes ) {
return;
}
if ( numColors > 1 ) {
qglEnableClientState( GL_COLOR_ARRAY );
} else if ( numColors == 1 ) {
qglColor4ubv ( colorArray[0] );
}
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
if ( !r_arrays_locked ) {
R_DrawTriangleStrips ( indexesArray, numIndexes );
} else {
qglDrawElements( GL_TRIANGLES, numIndexes, GL_UNSIGNED_INT, indexesArray );
}
r_numtris += numIndexes / 3;
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
if ( numColors > 1 ) {
qglDisableClientState( GL_COLOR_ARRAY );
}
r_numflushes++;
}
/*
==============
R_FlushArraysMtex
==============
*/
void R_FlushArraysMtex (void)
{
int i;
if ( !numVerts || !numIndexes ) {
return;
}
GL_MBind( mtexid0, r_texNums[0] );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
if ( numColors > 1 ) {
qglEnableClientState( GL_COLOR_ARRAY );
} else if ( numColors == 1 ) {
qglColor4ubv ( colorArray[0] );
}
for ( i = 1; i < r_numUnits; i++ )
{
GL_MBind( mtexid0 + i, r_texNums[i] );
qglEnable ( GL_TEXTURE_2D );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
}
if ( !r_arrays_locked ) {
R_DrawTriangleStrips ( indexesArray, numIndexes );
} else {
qglDrawElements( GL_TRIANGLES, numIndexes, GL_UNSIGNED_INT, indexesArray );
}
r_numtris += numIndexes / 3;
for ( i = r_numUnits - 1; i >= 0; i-- )
{
GL_SelectTexture ( mtexid0 + i );
if ( i ) {
qglDisable ( GL_TEXTURE_2D );
}
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
}
if ( numColors > 1 ) {
qglDisableClientState( GL_COLOR_ARRAY );
}
r_numflushes++;
}
/*
================
R_DeformVertices
================
*/
void R_DeformVertices ( meshbuffer_t *mb )
{
int i, j, k, pw, ph, p;
float args[4], deflect;
float *quad[4], *table;
shader_t *shader;
deformv_t *deformv;
vec3_t tv, rot_centre;
shader = mb->shader;
deformv = &shader->deforms[0];
for (i = 0; i < shader->numdeforms; i++, deformv++)
{
switch (deformv->type)
{
case DEFORMV_NONE:
break;
case DEFORMV_WAVE:
args[0] = deformv->func.args[0];
args[1] = deformv->func.args[1];
args[3] = deformv->func.args[2] + deformv->func.args[3] * r_localShaderTime;
table = R_TableForFunc ( deformv->func.type );
for ( j = 0; j < numVerts; j++ ) {
deflect = deformv->args[0] * (vertexArray[j][0]+vertexArray[j][1]+vertexArray[j][2]) + args[3];
deflect = FTABLE_EVALUATE ( table, deflect ) * args[1] + args[0];
// Deflect vertex along its normal by wave amount
VectorMA ( vertexArray[j], deflect, normalsArray[j], vertexArray[j] );
}
break;
case DEFORMV_NORMAL:
args[0] = deformv->args[1] * r_localShaderTime;
for ( j = 0; j < numVerts; j++ ) {
args[1] = normalsArray[j][2] * args[0];
deflect = deformv->args[0] * R_FastSin ( args[1] );
normalsArray[j][0] *= deflect;
deflect = deformv->args[0] * R_FastSin ( args[1] + 0.25 );
normalsArray[j][1] *= deflect;
VectorNormalizeFast ( normalsArray[j] );
}
break;
case DEFORMV_MOVE:
table = R_TableForFunc ( deformv->func.type );
deflect = deformv->func.args[2] + r_localShaderTime * deformv->func.args[3];
deflect = FTABLE_EVALUATE (table, deflect) * deformv->func.args[1] + deformv->func.args[0];
for ( j = 0; j < numVerts; j++ )
VectorMA ( vertexArray[j], deflect, deformv->args, vertexArray[j] );
break;
case DEFORMV_BULGE:
pw = mb->mesh->patchWidth;
ph = mb->mesh->patchHeight;
args[0] = deformv->args[0] / (float)ph;
args[1] = deformv->args[1];
args[2] = r_localShaderTime / (deformv->args[2]*pw);
for ( k = 0, p = 0; k < ph; k++ ) {
deflect = R_FastSin ( (float)k * args[0] + args[2] ) * args[1];
for ( j = 0; j < pw; j++, p++ )
VectorMA ( vertexArray[p], deflect, normalsArray[p], vertexArray[p] );
}
break;
case DEFORMV_AUTOSPRITE:
if ( numIndexes < 6 )
break;
for ( k = 0; k < numIndexes; k += 6 )
{
mat3_t m0, m1, result;
quad[0] = (float *)(vertexArray + indexesArray[k+0]);
quad[1] = (float *)(vertexArray + indexesArray[k+1]);
quad[2] = (float *)(vertexArray + indexesArray[k+2]);
for ( j = 2; j >= 0; j-- ) {
quad[3] = (float *)(vertexArray + indexesArray[k+3+j]);
if ( !VectorCompare (quad[3], quad[0]) &&
!VectorCompare (quad[3], quad[1]) &&
!VectorCompare (quad[3], quad[2]) ) {
break;
}
}
VectorSubtract ( quad[0], quad[1], m0[0] );
VectorSubtract ( quad[2], quad[1], m0[1] );
CrossProduct ( m0[0], m0[1], m0[2] );
VectorNormalizeFast ( m0[2] );
VectorVectors ( m0[2], m0[1], m0[0] );
VectorCopy ( (&r_world_matrix[0]), m1[0] );
VectorCopy ( (&r_world_matrix[4]), m1[1] );
VectorCopy ( (&r_world_matrix[8]), m1[2] );
Matrix3_Multiply ( m1, m0, result );
for ( j = 0; j < 3; j++ )
rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25 + currententity->origin[j];
for ( j = 0; j < 4; j++ ) {
VectorSubtract ( quad[j], rot_centre, tv );
Matrix3_Multiply_Vec3 ( result, tv, quad[j] );
VectorAdd ( rot_centre, quad[j], quad[j] );
}
}
break;
case DEFORMV_AUTOSPRITE2:
if ( numIndexes < 6 )
break;
for ( k = 0; k < numIndexes; k += 6 )
{
int long_axis, short_axis;
vec3_t axis;
float len[3];
mat3_t m0, m1, m2, result;
quad[0] = (float *)(vertexArray + indexesArray[k+0]);
quad[1] = (float *)(vertexArray + indexesArray[k+1]);
quad[2] = (float *)(vertexArray + indexesArray[k+2]);
for ( j = 2; j >= 0; j-- ) {
quad[3] = (float *)(vertexArray + indexesArray[k+3+j]);
if ( !VectorCompare (quad[3], quad[0]) &&
!VectorCompare (quad[3], quad[1]) &&
!VectorCompare (quad[3], quad[2]) ) {
break;
}
}
// build a matrix were the longest axis of the billboard is the Y-Axis
VectorSubtract ( quad[1], quad[0], m0[0] );
VectorSubtract ( quad[2], quad[0], m0[1] );
VectorSubtract ( quad[2], quad[1], m0[2] );
len[0] = DotProduct ( m0[0], m0[0] );
len[1] = DotProduct ( m0[1], m0[1] );
len[2] = DotProduct ( m0[2], m0[2] );
if ( (len[2] > len[1]) && (len[2] > len[0]) )
{
if ( len[1] > len[0] )
{
long_axis = 1;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 1;
}
}
else if ( (len[1] > len[2]) && (len[1] > len[0]) )
{
if ( len[2] > len[0] )
{
long_axis = 2;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 2;
}
}
else if ( (len[0] > len[1]) && (len[0] > len[2]) )
{
if ( len[2] > len[1] )
{
long_axis = 2;
short_axis = 1;
}
else
{
long_axis = 1;
short_axis = 2;
}
}
if ( DotProduct (m0[long_axis], m0[short_axis]) ) {
VectorNormalize2 ( m0[long_axis], axis );
VectorCopy ( axis, m0[1] );
if ( axis[0] || axis[1] ) {
VectorVectors ( m0[1], m0[2], m0[0] );
} else {
VectorVectors ( m0[1], m0[0], m0[2] );
}
} else {
VectorNormalize2 ( m0[long_axis], axis );
VectorNormalize2 ( m0[short_axis], m0[0] );
VectorCopy ( axis, m0[1] );
CrossProduct ( m0[0], m0[1], m0[2] );
}
for ( j = 0; j < 3; j++ )
rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25;
if ( currententity ) {
VectorAdd ( currententity->origin, rot_centre, tv );
} else {
VectorCopy ( rot_centre, tv );
}
VectorSubtract ( r_origin, tv, tv );
// filter any longest-axis-parts off the camera-direction
deflect = -DotProduct ( tv, axis );
VectorMA ( tv, deflect, axis, m1[2] );
VectorNormalizeFast ( m1[2] );
VectorCopy ( axis, m1[1] );
CrossProduct ( m1[1], m1[2], m1[0] );
Matrix3_Transpose ( m1, m2 );
Matrix3_Multiply ( m2, m0, result );
for ( j = 0; j < 4; j++ ) {
VectorSubtract ( quad[j], rot_centre, tv );
Matrix3_Multiply_Vec3 ( result, tv, quad[j] );
VectorAdd ( rot_centre, quad[j], quad[j] );
}
}
break;
case DEFORMV_PROJECTION_SHADOW:
break;
default:
break;
}
}
}
/*
==============
R_VertexTCBase
==============
*/
void R_VertexTCBase ( int tcgen, int unit )
{
int i;
vec3_t t, n;
float *outCoords;
vec3_t transform;
mat3_t inverse_axis;
mat3_t axis;
outCoords = tUnitCoordsArray[unit][0];
qglTexCoordPointer( 2, GL_FLOAT, 0, outCoords );
if ( tcgen == TC_GEN_BASE )
{
memcpy ( outCoords, coordsArray[0], sizeof(float) * 2 * numVerts );
} else if ( tcgen == TC_GEN_LIGHTMAP )
{
memcpy ( outCoords, lightmapCoordsArray[0], sizeof(float) * 2 * numVerts );
}
else if ( tcgen == TC_GEN_ENVIRONMENT )
{
if ( !currentmodel )
{
VectorSubtract ( vec3_origin, currententity->origin, transform );
AngleVectors(currententity->angles, axis[0], axis[1], axis[2]);
Matrix3_Transpose ( axis, inverse_axis );
}
else if ( currentmodel == cl.worldmodel )
{
VectorSubtract ( vec3_origin, r_origin, transform );
}
else if ( currentmodel->type == mod_brush )
{
VectorNegate ( currententity->origin, t );
VectorSubtract ( t, r_origin, transform );
AngleVectors(currententity->angles, axis[0], axis[1], axis[2]);
Matrix3_Transpose ( axis, inverse_axis );
}
else
{
VectorSubtract ( vec3_origin, currententity->origin, transform );
AngleVectors(currententity->angles, axis[0], axis[1], axis[2]);
Matrix3_Transpose ( axis, inverse_axis );
}
for ( i = 0; i < numVerts; i++, outCoords += 2 )
{
VectorAdd ( vertexArray[i], transform, t );
// project vector
if ( currentmodel && (currentmodel == cl.worldmodel) )
{
n[0] = normalsArray[i][0];
n[1] = normalsArray[i][1];
n[2] = Q_rsqrt ( DotProduct(t,t) );
}
else
{
n[0] = DotProduct ( normalsArray[i], inverse_axis[0] );
n[1] = DotProduct ( normalsArray[i], inverse_axis[1] );
n[2] = Q_rsqrt ( DotProduct(t,t) );
}
outCoords[0] = t[0]*n[2] - n[0];
outCoords[1] = t[1]*n[2] - n[1];
}
}
else if ( tcgen == TC_GEN_VECTOR )
{
for ( i = 0; i < numVerts; i++, outCoords += 2 )
{
static vec3_t tc_gen_s = { 1.0f, 0.0f, 0.0f };
static vec3_t tc_gen_t = { 0.0f, 1.0f, 0.0f };
outCoords[0] = DotProduct ( tc_gen_s, vertexArray[i] );
outCoords[1] = DotProduct ( tc_gen_t, vertexArray[i] );
}
}
}
/*
==============
R_ShaderpassTex
==============
*/
int R_ShaderpassTex ( shaderpass_t *pass )
{
if ( pass->flags & SHADER_PASS_ANIMMAP ) {
return pass->anim_frames[(int)(pass->anim_fps * r_localShaderTime) % pass->anim_numframes];
}
else if ( (pass->flags & SHADER_PASS_LIGHTMAP) && r_lmtex >= 0 )
{
return lightmap_textures[r_lmtex];
}
return pass->anim_frames[0] ? pass->anim_frames[0] : 0;
}
/*
================
R_ModifyTextureCoords
================
*/
void R_ModifyTextureCoords ( shaderpass_t *pass, int unit )
{
int i, j;
float *table;
float t1, t2, sint, cost;
float *tcArray;
tcmod_t *tcmod;
r_texNums[unit] = R_ShaderpassTex ( pass );
// we're smart enough not to copy data and simply switch the pointer
if ( !pass->numtcmods ) {
if ( pass->tcgen == TC_GEN_BASE ) {
qglTexCoordPointer( 2, GL_FLOAT, 0, coordsArray );
} else if ( pass->tcgen == TC_GEN_LIGHTMAP ) {
qglTexCoordPointer( 2, GL_FLOAT, 0, lightmapCoordsArray );
} else {
R_VertexTCBase ( pass->tcgen, unit );
}
return;
}
R_VertexTCBase ( pass->tcgen, unit );
for (i = 0, tcmod = pass->tcmods; i < pass->numtcmods; i++, tcmod++)
{
tcArray = tUnitCoordsArray[unit][0];
switch (tcmod->type)
{
case SHADER_TCMOD_ROTATE:
cost = tcmod->args[0] * r_localShaderTime;
sint = R_FastSin( cost );
cost = R_FastSin( cost + 0.25 );
for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
t1 = cost * (tcArray[0] - 0.5f) - sint * (tcArray[1] - 0.5f) + 0.5f;
t2 = cost * (tcArray[1] - 0.5f) + sint * (tcArray[0] - 0.5f) + 0.5f;
tcArray[0] = t1;
tcArray[1] = t2;
}
break;
case SHADER_TCMOD_SCALE:
t1 = tcmod->args[0];
t2 = tcmod->args[1];
for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
tcArray[0] = tcArray[0] * t1;
tcArray[1] = tcArray[1] * t2;
}
break;
case SHADER_TCMOD_TURB:
t1 = tcmod->args[2] + r_localShaderTime * tcmod->args[3];
t2 = tcmod->args[1];
for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
tcArray[0] = tcArray[0] + R_FastSin (tcArray[0]*t2+t1) * t2;
tcArray[1] = tcArray[1] + R_FastSin (tcArray[1]*t2+t1) * t2;
}
break;
case SHADER_TCMOD_STRETCH:
table = R_TableForFunc ( tcmod->args[0] );
t2 = tcmod->args[3] + r_localShaderTime * tcmod->args[4];
t1 = FTABLE_EVALUATE ( table, t2 ) * tcmod->args[2] + tcmod->args[1];
t1 = t1 ? 1.0f / t1 : 1.0f;
t2 = 0.5f - 0.5f * t1;
for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
tcArray[0] = tcArray[0] * t1 + t2;
tcArray[1] = tcArray[1] * t1 + t2;
}
break;
case SHADER_TCMOD_SCROLL:
t1 = tcmod->args[0] * r_localShaderTime;
t2 = tcmod->args[1] * r_localShaderTime;
for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
tcArray[0] = tcArray[0] + t1;
tcArray[1] = tcArray[1] + t2;
}
break;
case SHADER_TCMOD_TRANSFORM:
for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
t1 = tcArray[0];
t2 = tcArray[1];
tcArray[0] = t1 * tcmod->args[0] + t2 * tcmod->args[2] + tcmod->args[4];
tcArray[1] = t2 * tcmod->args[1] + t1 * tcmod->args[3] + tcmod->args[5];
}
break;
default:
break;
}
}
}
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
#define VectorScalef(a, b, c) c[0]=a[0]*b;c[1]=a[1]*b;c[2]=a[2]*b
/*
================
R_ModifyColor
================
*/
void R_ModifyColor ( meshbuffer_t *mb, shaderpass_t *pass )
{
int i, b;
float *table, c, a;
vec3_t t, v;
shader_t *shader;
qbyte *bArray, *vArray;
qboolean fogged, noArray;
shaderfunc_t *rgbgenfunc, *alphagenfunc;
shader = mb->shader;
fogged = mb->fog && (shader->sort >= SHADER_SORT_UNDERWATER) &&
!(pass->flags & SHADER_PASS_DEPTHWRITE) && !shader->fog_dist;
noArray = (pass->flags & SHADER_PASS_NOCOLORARRAY) && !fogged;
rgbgenfunc = &pass->rgbgen_func;
alphagenfunc = &pass->alphagen_func;
if ( noArray ) {
numColors = 1;
} else {
numColors = numVerts;
}
bArray = colorArray[0];
vArray = inColorsArray[0];
switch (pass->rgbgen)
{
case RGB_GEN_IDENTITY:
memset ( bArray, 255, sizeof(byte_vec4_t)*numColors );
break;
case RGB_GEN_IDENTITY_LIGHTING:
memset ( bArray, r_identityLighting, sizeof(byte_vec4_t)*numColors );
break;
case RGB_GEN_CONST:
for ( i = 0; i < numColors; i++, bArray += 4 ) {
bArray[0] = FloatToByte (rgbgenfunc->args[0]);
bArray[1] = FloatToByte (rgbgenfunc->args[1]);
bArray[2] = FloatToByte (rgbgenfunc->args[2]);
}
break;
case RGB_GEN_WAVE:
table = R_TableForFunc ( rgbgenfunc->type );
c = rgbgenfunc->args[2] + r_localShaderTime * rgbgenfunc->args[3];
c = FTABLE_EVALUATE ( table, c ) * rgbgenfunc->args[1] + rgbgenfunc->args[0];
clamp ( c, 0.0f, 1.0f );
memset ( bArray, FloatToByte (c), sizeof(byte_vec4_t)*numColors );
break;
case RGB_GEN_ENTITY:
Con_Printf("RGB_GEN_ENTITY\n");
break;
/* for ( i = 0; i < numColors; i++, bArray += 4 ) {
*(int *)bArray = *(int *)currententity->shaderRGBA;
}
break;
*/
case RGB_GEN_ONE_MINUS_ENTITY:
Con_Printf("RGB_GEN_ONE_MINUS_ENTITY\n");
break;
/* for ( i = 0; i < numColors; i++, bArray += 4 ) {
bArray[0] = 255 - currententity->shaderRGBA[0];
bArray[1] = 255 - currententity->shaderRGBA[1];
bArray[2] = 255 - currententity->shaderRGBA[2];
}
break;
*/
case RGB_GEN_VERTEX:
case RGB_GEN_EXACT_VERTEX:
memcpy ( bArray, vArray, sizeof(byte_vec4_t)*numColors );
break;
case RGB_GEN_ONE_MINUS_VERTEX:
for ( i = 0; i < numColors; i++, bArray += 4, vArray += 4 ) {
bArray[0] = 255 - vArray[0];
bArray[1] = 255 - vArray[1];
bArray[2] = 255 - vArray[2];
}
break;
case RGB_GEN_LIGHTING_DIFFUSE:
if ( !currententity )
{
memset ( bArray, 255, sizeof(byte_vec4_t)*numColors );
}
else
{
memcpy ( bArray, vArray, sizeof(byte_vec4_t)*numColors );
/*
vec3_t dif, amb, dir;
cl.worldmodel->funcs.LightPointValues(currententity->origin, dif, amb, dir);
bArray[0] = dif[0]*255;
bArray[1] = dif[1]*255;
bArray[2] = dif[2]*255;
//R_LightForEntity ( currententity, bArray );
*/
}
break;
default:
break;
}
bArray = colorArray[0];
vArray = inColorsArray[0];
switch (pass->alphagen)
{
case ALPHA_GEN_IDENTITY:
for ( i = 0; i < numColors; i++, bArray += 4 ) {
bArray[3] = 255;
}
break;
case ALPHA_GEN_CONST:
b = FloatToByte ( alphagenfunc->args[0] );
for ( i = 0; i < numColors; i++, bArray += 4 ) {
bArray[3] = b;
}
break;
case ALPHA_GEN_WAVE:
table = R_TableForFunc ( alphagenfunc->type );
a = alphagenfunc->args[2] + r_localShaderTime * alphagenfunc->args[3];
a = FTABLE_EVALUATE ( table, a ) * alphagenfunc->args[1] + alphagenfunc->args[0];
b = FloatToByte ( bound (0.0f, a, 1.0f) );
for ( i = 0; i < numColors; i++, bArray += 4 ) {
bArray[3] = b;
}
break;
case ALPHA_GEN_PORTAL:
VectorAdd ( vertexArray[0], currententity->origin, v );
VectorSubtract ( r_origin, v, t );
a = VectorLength ( t ) * (1.0 / 255.0);
clamp ( a, 0.0f, 1.0f );
b = FloatToByte ( a );
for ( i = 0; i < numColors; i++, bArray += 4 ) {
bArray[3] = b;
}
break;
case ALPHA_GEN_VERTEX:
for ( i = 0; i < numColors; i++, bArray += 4, vArray += 4 ) {
bArray[3] = vArray[3];
}
break;
case ALPHA_GEN_ENTITY:
for ( i = 0; i < numColors; i++, bArray += 4 ) {
bArray[3] = currententity->alpha*255;
}
break;
case ALPHA_GEN_SPECULAR:
{
mat3_t axis;
AngleVectors(currententity->angles, axis[0], axis[1], axis[2]);
VectorSubtract ( r_origin, currententity->origin, t );
if ( !Matrix3_Compare (axis, axisDefault) ) {
Matrix3_Multiply_Vec3 ( axis, t, v );
} else {
VectorCopy ( t, v );
}
for ( i = 0; i < numColors; i++, bArray += 4 ) {
VectorSubtract ( v, vertexArray[i], t );
a = DotProduct( t, normalsArray[i] ) * Q_rsqrt ( DotProduct(t,t) );
a = a * a * a * a * a;
bArray[3] = FloatToByte ( bound (0.0f, a, 1.0f) );
}
}
break;
}
if ( fogged )
{
float dist, vdist;
mplane_t *fogplane;
vec3_t diff, viewtofog, fog_vpn;
fogplane = mb->fog->visibleplane;
dist = PlaneDiff ( r_origin, fogplane );
if ( shader->flags & SHADER_SKY )
{
if ( dist > 0 )
VectorScale( fogplane->normal, -dist, viewtofog );
else
VectorClear( viewtofog );
}
else
{
VectorCopy ( currententity->origin, viewtofog );
}
VectorScalef ( vpn, mb->fog->shader->fog_dist, fog_vpn );
bArray = colorArray[0];
for ( i = 0; i < numColors; i++, bArray += 4 )
{
VectorAdd ( vertexArray[i], viewtofog, diff );
// camera is inside the fog
if ( dist < 0 ) {
VectorSubtract ( diff, r_origin, diff );
c = DotProduct ( diff, fog_vpn );
a = (1.0f - bound ( 0, c, 1.0f )) * (1.0 / 255.0);
} else {
vdist = PlaneDiff ( diff, fogplane );
if ( vdist < 0 ) {
VectorSubtract ( diff, r_origin, diff );
c = vdist / ( vdist - dist );
c *= DotProduct ( diff, fog_vpn );
a = (1.0f - bound ( 0, c, 1.0f )) * (1.0 / 255.0);
} else {
a = 1.0 / 255.0;
}
}
if ( pass->blendmode == GL_ADD ||
((pass->blendsrc == GL_ZERO) && (pass->blenddst == GL_ONE_MINUS_SRC_COLOR)) ) {
bArray[0] = FloatToByte ( (float)bArray[0]*a );
bArray[1] = FloatToByte ( (float)bArray[1]*a );
bArray[2] = FloatToByte ( (float)bArray[2]*a );
} else {
bArray[3] = FloatToByte ( (float)bArray[3]*a );
}
}
}
}
/*
================
R_SetShaderState
================
*/
void R_SetShaderState ( shader_t *shader )
{
// Face culling
if ( !gl_cull.value || (r_features & MF_NOCULL) )
{
qglDisable ( GL_CULL_FACE );
}
else
{
if ( shader->flags & SHADER_CULL_FRONT )
{
qglEnable ( GL_CULL_FACE );
qglCullFace ( GL_FRONT );
}
else if ( shader->flags & SHADER_CULL_BACK )
{
qglEnable ( GL_CULL_FACE );
qglCullFace ( GL_BACK );
}
else
{
qglDisable ( GL_CULL_FACE );
}
}
if ( shader->flags & SHADER_POLYGONOFFSET )
{
qglEnable ( GL_POLYGON_OFFSET_FILL );
}
else
{
qglDisable ( GL_POLYGON_OFFSET_FILL );
}
}
/*
================
R_SetShaderpassState
================
*/
void R_SetShaderpassState ( shaderpass_t *pass, qboolean mtex )
{
if ( (mtex && (pass->blendmode != GL_REPLACE)) || (pass->flags & SHADER_PASS_BLEND) )
{
qglEnable ( GL_BLEND );
qglBlendFunc ( pass->blendsrc, pass->blenddst );
}
else
{
qglDisable ( GL_BLEND );
}
if ( pass->flags & SHADER_PASS_ALPHAFUNC )
{
qglEnable ( GL_ALPHA_TEST );
if ( pass->alphafunc == SHADER_ALPHA_GT0 )
{
qglAlphaFunc ( GL_GREATER, 0 );
}
else if ( pass->alphafunc == SHADER_ALPHA_LT128 )
{
qglAlphaFunc ( GL_LESS, 0.5f );
}
else if ( pass->alphafunc == SHADER_ALPHA_GE128 )
{
qglAlphaFunc ( GL_GEQUAL, 0.5f );
}
}
else
{
qglDisable ( GL_ALPHA_TEST );
}
// nasty hack!!!
if ( !gl_state.in2d )
{
extern int gldepthfunc;
if (gldepthfunc == GL_LEQUAL)
qglDepthFunc ( pass->depthfunc );
else
{
switch(pass->depthfunc)
{
case GL_LESS:
qglDepthFunc ( GL_GREATER );
break;
case GL_LEQUAL:
qglDepthFunc ( GL_GEQUAL );
break;
case GL_GREATER:
qglDepthFunc ( GL_LESS );
break;
case GL_GEQUAL:
qglDepthFunc ( GL_LEQUAL );
break;
case GL_NEVER:
case GL_EQUAL:
case GL_ALWAYS:
case GL_NOTEQUAL:
default:
qglDepthFunc ( pass->depthfunc );
}
}
if ( pass->flags & SHADER_PASS_DEPTHWRITE )
{
qglDepthMask ( GL_TRUE );
}
else
{
qglDepthMask ( GL_FALSE );
}
}
}
/*
================
R_RenderMeshGeneric
================
*/
void R_RenderMeshGeneric ( meshbuffer_t *mb, shaderpass_t *pass )
{
R_SetShaderpassState ( pass, false );
R_ModifyTextureCoords ( pass, 0 );
R_ModifyColor ( mb, pass );
if ( pass->blendmode == GL_REPLACE )
GL_TexEnv( GL_REPLACE );
else
GL_TexEnv ( GL_MODULATE );
GL_Bind ( r_texNums[0] );
R_FlushArrays ();
}
/*
================
R_RenderMeshMultitextured
================
*/
void R_RenderMeshMultitextured ( meshbuffer_t *mb, shaderpass_t *pass )
{
int i;
r_numUnits = pass->numMergedPasses;
R_SetShaderpassState ( pass, true );
R_ModifyColor ( mb, pass );
R_ModifyTextureCoords ( pass, 0 );
GL_SelectTexture( mtexid0 );
if ( pass->blendmode == GL_REPLACE )
GL_TexEnv( GL_REPLACE );
else
GL_TexEnv( GL_MODULATE );
for ( i = 1, pass++; i < r_numUnits; i++, pass++ )
{
GL_SelectTexture( mtexid0 + i );
GL_TexEnv( pass->blendmode );
R_ModifyTextureCoords ( pass, i );
}
R_FlushArraysMtex ();
}
/*
================
R_RenderMeshCombined
================
*/
void R_RenderMeshCombined ( meshbuffer_t *mb, shaderpass_t *pass )
{
int i;
r_numUnits = pass->numMergedPasses;
R_SetShaderpassState ( pass, true );
R_ModifyColor ( mb, pass );
GL_SelectTexture( mtexid0 );
R_ModifyTextureCoords ( pass, 0 );
if ( pass->blendmode == GL_REPLACE )
GL_TexEnv( GL_REPLACE );
else
GL_TexEnv( GL_MODULATE );
for ( i = 1, pass++; i < r_numUnits; i++, pass++ )
{
GL_SelectTexture( mtexid1 + i );
if ( pass->blendmode )
{
switch ( pass->blendmode )
{
case GL_REPLACE:
case GL_MODULATE:
case GL_ADD:
// these modes are best set with TexEnv, Combine4 would need much more setup
GL_TexEnv (pass->blendmode);
break;
case GL_DECAL:
// mimics Alpha-Blending in upper texture stage, but instead of multiplying the alpha-channel, they<65>re added
// this way it can be possible to use GL_DECAL in both texture-units, while still looking good
// normal mutlitexturing would multiply the alpha-channel which looks ugly
GL_TexEnv (GL_COMBINE_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_INTERPOLATE_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_ADD);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_EXT, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE2_RGB_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_RGB_EXT, GL_SRC_ALPHA);
break;
}
}
else
{
GL_TexEnv (GL_COMBINE4_NV);
qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_ADD);
qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_ADD);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_EXT, GL_SRC_ALPHA);
switch ( pass->blendsrc )
{
case GL_ONE:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_ZERO:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
break;
case GL_DST_COLOR:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_DST_COLOR:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_SRC_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_SRC_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_DST_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_DST_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
break;
}
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE2_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE2_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_ALPHA_EXT, GL_SRC_ALPHA);
switch (pass->blenddst)
{
case GL_ONE:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_ZERO:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
break;
case GL_SRC_COLOR:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_SRC_COLOR:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_SRC_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_SRC_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_DST_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_DST_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
break;
}
}
R_ModifyTextureCoords ( pass, i );
}
R_FlushArraysMtex ();
}
/*
================
R_RenderMeshBuffer
================
*/
void R_RenderMeshBuffer ( meshbuffer_t *mb, qboolean shadowpass )
{
int i;
shader_t *shader;
shaderpass_t *pass;
if ( !numVerts ) {
return;
}
shader = mb->shader;
r_lmtex = mb->infokey;
#ifdef FIZME
if ( currententity && !gl_state.in2d ) {
r_localShaderTime = r_refdef.time * 0.001f - currententity->shaderTime;
} else {
r_localShaderTime = Sys_Milliseconds() * 0.001f;
}
#else
r_localShaderTime = realtime;
#endif
R_SetShaderState ( shader );
if ( shader->numdeforms ) {
R_DeformVertices ( mb );
}
if ( !numIndexes || shadowpass ) {
return;
}
R_LockArrays ( numVerts );
for ( i = 0, pass = shader->passes; i < shader->numpasses; )
{
if ( !(pass->flags & SHADER_PASS_DETAIL) || r_detailtextures.value ) {
pass->flush ( mb, pass );
}
i += pass->numMergedPasses;
pass += pass->numMergedPasses;
}
R_FinishMeshBuffer ( mb );
}
/*
================
R_RenderFogOnMesh
================
*/
int r_fogtexture;
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
void R_RenderFogOnMesh ( shader_t *shader, struct mfog_s *fog )
{
#define FOG_TEXTURE_HEIGHT 32
int i;
vec3_t diff, viewtofog, fog_vpn;
float dist, vdist;
shader_t *fogshader;
mplane_t *fogplane;
if ( !fog->numplanes || !fog->shader || !fog->visibleplane )
{
return;
}
R_ResetTexState ();
fogshader = fog->shader;
fogplane = fog->visibleplane;
GL_Bind( r_fogtexture );
qglBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
if ( !shader->numpasses || shader->fog_dist || (shader->flags & SHADER_SKY) )
{
qglDepthFunc ( GL_LEQUAL );
}
else
{
qglDepthFunc ( GL_EQUAL );
}
qglColor4ubv ( fogshader->fog_color );
// distance to fog
dist = PlaneDiff ( r_origin, fogplane );
if ( shader->flags & SHADER_SKY )
{
if ( dist > 0 )
VectorMA( r_origin, -dist, fogplane->normal, viewtofog );
else
VectorCopy( r_origin, viewtofog );
}
else
{
VectorCopy( currententity->origin, viewtofog );
}
VectorScale ( vpn, fogshader->fog_dist, fog_vpn );
for ( i = 0; i < numVerts; i++, currentCoords += 2 )
{
VectorAdd ( viewtofog, vertexArray[i], diff );
vdist = PlaneDiff ( diff, fogplane );
VectorSubtract ( diff, r_origin, diff );
if ( dist < 0 )
{ // camera is inside the fog brush
currentCoords[0] = DotProduct ( diff, fog_vpn );
}
else
{
if ( vdist < 0 )
{
currentCoords[0] = vdist / ( vdist - dist );
currentCoords[0] *= DotProduct ( diff, fog_vpn );
}
else
{
currentCoords[0] = 0.0f;
}
}
currentCoords[1] = -vdist * fogshader->fog_dist + 1.5f/(float)FOG_TEXTURE_HEIGHT;
}
if ( !shader->numpasses )
{
R_LockArrays ( numVerts );
}
R_FlushArrays ();
}
/*
================
R_DrawTriangleOutlines
================
*/
void R_DrawTriangleOutlines (void)
{
R_ResetTexState ();
qglDisable( GL_TEXTURE_2D );
qglDisable( GL_DEPTH_TEST );
qglColor4f( 1, 1, 1, 1 );
qglDisable ( GL_BLEND );
qglPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
R_FlushArrays ();
qglPolygonMode (GL_FRONT_AND_BACK, GL_FILL);
qglEnable( GL_DEPTH_TEST );
qglEnable( GL_TEXTURE_2D );
}
/*
================
R_DrawNormals
================
*/
void R_DrawNormals (void)
{
int i;
R_ResetTexState ();
qglDisable( GL_TEXTURE_2D );
qglColor4f( 1, 1, 1, 1 );
qglDisable( GL_BLEND );
if ( gl_state.in2d ) {
qglBegin ( GL_POINTS );
for ( i = 0; i < numVerts; i++ ) {
qglVertex3fv ( vertexArray[i] );
}
qglEnd ();
} else {
qglDisable( GL_DEPTH_TEST );
qglBegin ( GL_LINES );
for ( i = 0; i < numVerts; i++ ) {
qglVertex3fv ( vertexArray[i] );
qglVertex3f ( vertexArray[i][0] + normalsArray[i][0],
vertexArray[i][1] + normalsArray[i][1],
vertexArray[i][2] + normalsArray[i][2] );
}
qglEnd ();
qglEnable( GL_DEPTH_TEST );
}
qglEnable( GL_TEXTURE_2D );
}
/*
================
R_FinishMeshBuffer
Render dynamic lights, fog, triangle outlines, normals and clear arrays
================
*/
void R_FinishMeshBuffer ( meshbuffer_t *mb )
{
shader_t *shader;
qboolean fogged;
qboolean dlight;
shader = mb->shader;
dlight = (mb->dlightbits != 0) && !(shader->flags & SHADER_FLARE);
fogged = mb->fog && ((shader->sort < SHADER_SORT_UNDERWATER &&
(shader->flags & (SHADER_DEPTHWRITE|SHADER_SKY))) || shader->fog_dist);
if ( dlight || fogged ) {
GL_DisableMultitexture ( );
qglTexCoordPointer( 2, GL_FLOAT, 0, inCoordsArray[0] );
qglEnable ( GL_BLEND );
qglDisable ( GL_ALPHA_TEST );
qglDepthMask ( GL_FALSE );
//FIZME
// if ( dlight ) {
// R_AddDynamicLights ( mb );
// }
if ( fogged ) {
R_RenderFogOnMesh ( shader, mb->fog );
}
}
if ( r_showtris.value || r_shownormals.value ) {
GL_DisableMultitexture ( );
if ( r_showtris.value ) {
R_DrawTriangleOutlines ();
}
if ( r_shownormals.value ) {
R_DrawNormals ();
}
}
R_UnlockArrays ();
R_ClearArrays ();
}
#endif
#endif