dquakeplus/source/zone.c

1381 lines
30 KiB
C

/*
Copyright (C) 1996-2001 Id Software, Inc.
Copyright (C) 2002-2009 John Fitzgibbons and others
Copyright (C) 2010-2014 QuakeSpasm developers
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// zone.c
#include "quakedef.h"
// cypress -- who the fuck needs a 250kB zone block?? what?? restoring to 50kB.
#define DYNAMIC_SIZE 0xc000
#define ZONEID 0x1d4a11
#define MINFRAGMENT 64
typedef struct memblock_s
{
int size; // including the header and possibly tiny fragments
int tag; // a tag of 0 is a free block
int id; // should be ZONEID
int pad; // pad to 64 bit boundary
struct memblock_s *next, *prev;
} memblock_t;
typedef struct
{
int size; // total bytes malloced, including header
memblock_t blocklist; // start / end cap for linked list
memblock_t *rover;
} memzone_t;
void Cache_FreeLow (int new_low_hunk);
void Cache_FreeHigh (int new_high_hunk);
void* memcpy_vfpu( void* dst, void* src, unsigned int size )
{
u8* src8 = (u8*)src;
u8* dst8 = (u8*)dst;
// < 8 isn't worth trying any optimisations...
if (size<8) goto bytecopy;
// < 64 means we don't gain anything from using vfpu...
if (size<64)
{
// Align dst on 4 bytes or just resume if already done
while (((((u32)dst8) & 0x3)!=0) && size) {
*dst8++ = *src8++;
size--;
}
if (size<4) goto bytecopy;
// We are dst aligned now and >= 4 bytes to copy
u32* src32 = (u32*)src8;
u32* dst32 = (u32*)dst8;
switch(((u32)src8)&0x3)
{
case 0:
while (size&0xC)
{
*dst32++ = *src32++;
size -= 4;
}
if (size==0) return (dst); // fast out
while (size>=16)
{
*dst32++ = *src32++;
*dst32++ = *src32++;
*dst32++ = *src32++;
*dst32++ = *src32++;
size -= 16;
}
if (size==0) return (dst); // fast out
src8 = (u8*)src32;
dst8 = (u8*)dst32;
break;
default:
{
register u32 a, b, c, d;
while (size>=4)
{
a = *src8++;
b = *src8++;
c = *src8++;
d = *src8++;
*dst32++ = (d << 24) | (c << 16) | (b << 8) | a;
size -= 4;
}
if (size==0) return (dst); // fast out
dst8 = (u8*)dst32;
}
break;
}
goto bytecopy;
}
// Align dst on 16 bytes to gain from vfpu aligned stores
while ((((u32)dst8) & 0xF)!=0 && size) {
*dst8++ = *src8++;
size--;
}
// We use uncached dst to use VFPU writeback and free cpu cache for src only
u8* udst8 = (u8*)((u32)dst8 | 0x40000000);
// We need the 64 byte aligned address to make sure the dcache is invalidated correctly
u8* dst64a = (u8*)((u32)dst8&~0x3F);
// Invalidate the first line that matches up to the dst start
if (size>=64)
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"cache 0x1B, 0(%0)\n"
"addiu %0, %0, 64\n"
"sync\n"
".set pop\n"
:"+r"(dst64a));
switch(((u32)src8&0xF))
{
// src aligned on 16 bytes too? nice!
case 0:
while (size>=64)
{
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"cache 0x1B, 0(%2)\n" // Dcache writeback invalidate
"lv.q c000, 0(%1)\n"
"lv.q c010, 16(%1)\n"
"lv.q c020, 32(%1)\n"
"lv.q c030, 48(%1)\n"
"sync\n" // Wait for allegrex writeback
"sv.q c000, 0(%0), wb\n"
"sv.q c010, 16(%0), wb\n"
"sv.q c020, 32(%0), wb\n"
"sv.q c030, 48(%0), wb\n"
// Lots of variable updates... but get hidden in sv.q latency anyway
"addiu %3, %3, -64\n"
"addiu %2, %2, 64\n"
"addiu %1, %1, 64\n"
"addiu %0, %0, 64\n"
".set pop\n" // restore assembler option
:"+r"(udst8),"+r"(src8),"+r"(dst64a),"+r"(size)
:
:"memory"
);
}
if (size>16)
{
// Invalidate the last cache line where the max remaining 63 bytes are
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"cache 0x1B, 0(%0)\n"
"sync\n"
".set pop\n" // restore assembler option
::"r"(dst64a));
while (size>=16)
{
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"lv.q c000, 0(%1)\n"
"sv.q c000, 0(%0), wb\n"
// Lots of variable updates... but get hidden in sv.q latency anyway
"addiu %2, %2, -16\n"
"addiu %1, %1, 16\n"
"addiu %0, %0, 16\n"
".set pop\n" // restore assembler option
:"+r"(udst8),"+r"(src8),"+r"(size)
:
:"memory"
);
}
}
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"vflush\n" // Flush VFPU writeback cache
".set pop\n" // restore assembler option
);
dst8 = (u8*)((u32)udst8 & ~0x40000000);
break;
// src is only qword unaligned but word aligned? We can at least use ulv.q
case 4:
case 8:
case 12:
while (size>=64)
{
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"cache 0x1B, 0(%2)\n" // Dcache writeback invalidate
"ulv.q c000, 0(%1)\n"
"ulv.q c010, 16(%1)\n"
"ulv.q c020, 32(%1)\n"
"ulv.q c030, 48(%1)\n"
"sync\n" // Wait for allegrex writeback
"sv.q c000, 0(%0), wb\n"
"sv.q c010, 16(%0), wb\n"
"sv.q c020, 32(%0), wb\n"
"sv.q c030, 48(%0), wb\n"
// Lots of variable updates... but get hidden in sv.q latency anyway
"addiu %3, %3, -64\n"
"addiu %2, %2, 64\n"
"addiu %1, %1, 64\n"
"addiu %0, %0, 64\n"
".set pop\n" // restore assembler option
:"+r"(udst8),"+r"(src8),"+r"(dst64a),"+r"(size)
:
:"memory"
);
}
if (size>16)
// Invalidate the last cache line where the max remaining 63 bytes are
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"cache 0x1B, 0(%0)\n"
"sync\n"
".set pop\n" // restore assembler option
::"r"(dst64a));
while (size>=16)
{
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"ulv.q c000, 0(%1)\n"
"sv.q c000, 0(%0), wb\n"
// Lots of variable updates... but get hidden in sv.q latency anyway
"addiu %2, %2, -16\n"
"addiu %1, %1, 16\n"
"addiu %0, %0, 16\n"
".set pop\n" // restore assembler option
:"+r"(udst8),"+r"(src8),"+r"(size)
:
:"memory"
);
}
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"vflush\n" // Flush VFPU writeback cache
".set pop\n" // restore assembler option
);
dst8 = (u8*)((u32)udst8 & ~0x40000000);
break;
// src not aligned? too bad... have to use unaligned reads
default:
while (size>=64)
{
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"cache 0x1B, 0(%2)\n"
"lwr $8, 0(%1)\n" //
"lwl $8, 3(%1)\n" // $8 = *(s + 0)
"lwr $9, 4(%1)\n" //
"lwl $9, 7(%1)\n" // $9 = *(s + 4)
"lwr $10, 8(%1)\n" //
"lwl $10, 11(%1)\n" // $10 = *(s + 8)
"lwr $11, 12(%1)\n" //
"lwl $11, 15(%1)\n" // $11 = *(s + 12)
"mtv $8, s000\n"
"mtv $9, s001\n"
"mtv $10, s002\n"
"mtv $11, s003\n"
"lwr $8, 16(%1)\n"
"lwl $8, 19(%1)\n"
"lwr $9, 20(%1)\n"
"lwl $9, 23(%1)\n"
"lwr $10, 24(%1)\n"
"lwl $10, 27(%1)\n"
"lwr $11, 28(%1)\n"
"lwl $11, 31(%1)\n"
"mtv $8, s010\n"
"mtv $9, s011\n"
"mtv $10, s012\n"
"mtv $11, s013\n"
"lwr $8, 32(%1)\n"
"lwl $8, 35(%1)\n"
"lwr $9, 36(%1)\n"
"lwl $9, 39(%1)\n"
"lwr $10, 40(%1)\n"
"lwl $10, 43(%1)\n"
"lwr $11, 44(%1)\n"
"lwl $11, 47(%1)\n"
"mtv $8, s020\n"
"mtv $9, s021\n"
"mtv $10, s022\n"
"mtv $11, s023\n"
"lwr $8, 48(%1)\n"
"lwl $8, 51(%1)\n"
"lwr $9, 52(%1)\n"
"lwl $9, 55(%1)\n"
"lwr $10, 56(%1)\n"
"lwl $10, 59(%1)\n"
"lwr $11, 60(%1)\n"
"lwl $11, 63(%1)\n"
"mtv $8, s030\n"
"mtv $9, s031\n"
"mtv $10, s032\n"
"mtv $11, s033\n"
"sync\n"
"sv.q c000, 0(%0), wb\n"
"sv.q c010, 16(%0), wb\n"
"sv.q c020, 32(%0), wb\n"
"sv.q c030, 48(%0), wb\n"
// Lots of variable updates... but get hidden in sv.q latency anyway
"addiu %3, %3, -64\n"
"addiu %2, %2, 64\n"
"addiu %1, %1, 64\n"
"addiu %0, %0, 64\n"
".set pop\n" // restore assembler option
:"+r"(udst8),"+r"(src8),"+r"(dst64a),"+r"(size)
:
:"$8","$9","$10","$11","memory"
);
}
if (size>16)
// Invalidate the last cache line where the max remaining 63 bytes are
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"cache 0x1B, 0(%0)\n"
"sync\n"
".set pop\n" // restore assembler option
::"r"(dst64a));
while (size>=16)
{
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"lwr $8, 0(%1)\n" //
"lwl $8, 3(%1)\n" // $8 = *(s + 0)
"lwr $9, 4(%1)\n" //
"lwl $9, 7(%1)\n" // $9 = *(s + 4)
"lwr $10, 8(%1)\n" //
"lwl $10, 11(%1)\n" // $10 = *(s + 8)
"lwr $11, 12(%1)\n" //
"lwl $11, 15(%1)\n" // $11 = *(s + 12)
"mtv $8, s000\n"
"mtv $9, s001\n"
"mtv $10, s002\n"
"mtv $11, s003\n"
"sv.q c000, 0(%0), wb\n"
// Lots of variable updates... but get hidden in sv.q latency anyway
"addiu %2, %2, -16\n"
"addiu %1, %1, 16\n"
"addiu %0, %0, 16\n"
".set pop\n" // restore assembler option
:"+r"(udst8),"+r"(src8),"+r"(size)
:
:"$8","$9","$10","$11","memory"
);
}
asm(".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"vflush\n" // Flush VFPU writeback cache
".set pop\n" // restore assembler option
);
dst8 = (u8*)((u32)udst8 & ~0x40000000);
break;
}
bytecopy:
// Copy the remains byte per byte...
while (size--)
{
*dst8++ = *src8++;
}
return (dst);
}
/*
===================
Q_malloc
Use it instead of malloc so that if memory allocation fails,
the program exits with a message saying there's not enough memory
instead of crashing after trying to use a NULL pointer
===================
*/
void *Q_malloc (size_t size)
{
void *p;
if (!(p = malloc(size)))
Sys_Error ("Not enough memory free; check disk space");
return p;
}
/*
===================
Q_calloc
===================
*/
void *Q_calloc (size_t n, size_t size)
{
void *p;
if (!(p = calloc(n, size)))
Sys_Error ("Not enough memory free; check disk space");
return p;
}
/*
===================
Q_realloc
===================
*/
void *Q_realloc (void *ptr, size_t size)
{
void *p;
if (!(p = realloc(ptr, size)))
Sys_Error ("Not enough memory free; check disk space");
return p;
}
/*
===================
Q_strdup
===================
*/
void *Q_strdup (const char *str)
{
char *p;
if (!(p = strdup(str)))
Sys_Error ("Not enough memory free; check disk space");
return p;
}
/*
==============================================================================
ZONE MEMORY ALLOCATION
There is never any space between memblocks, and there will never be two
contiguous free memblocks.
The rover can be left pointing at a non-empty block
The zone calls are pretty much only used for small strings and structures,
all big things are allocated on the hunk.
==============================================================================
*/
static memzone_t *mainzone;
/*
========================
Z_Free
========================
*/
void Z_Free (void *ptr)
{
memblock_t *block, *other;
if (!ptr)
Sys_Error ("Z_Free: NULL pointer");
block = (memblock_t *) ( (byte *)ptr - sizeof(memblock_t));
if (block->id != ZONEID)
Sys_Error ("Z_Free: freed a pointer without ZONEID");
if (block->tag == 0)
Sys_Error ("Z_Free: freed a freed pointer");
block->tag = 0; // mark as free
other = block->prev;
if (!other->tag)
{ // merge with previous free block
other->size += block->size;
other->next = block->next;
other->next->prev = other;
if (block == mainzone->rover)
mainzone->rover = other;
block = other;
}
other = block->next;
if (!other->tag)
{ // merge the next free block onto the end
block->size += other->size;
block->next = other->next;
block->next->prev = block;
if (other == mainzone->rover)
mainzone->rover = block;
}
}
void *Z_TagMalloc (int size, int tag)
{
int extra;
memblock_t *start, *rover, *newblock, *base;
if (!tag)
Sys_Error ("Z_TagMalloc: tried to use a 0 tag");
//
// scan through the block list looking for the first free block
// of sufficient size
//
size += sizeof(memblock_t); // account for size of block header
size += 4; // space for memory trash tester
size = (size + 7) & ~7; // align to 8-byte boundary
base = rover = mainzone->rover;
start = base->prev;
do
{
if (rover == start) // scaned all the way around the list
return NULL;
if (rover->tag)
base = rover = rover->next;
else
rover = rover->next;
} while (base->tag || base->size < size);
//
// found a block big enough
//
extra = base->size - size;
if (extra > MINFRAGMENT)
{ // there will be a free fragment after the allocated block
newblock = (memblock_t *) ((byte *)base + size );
newblock->size = extra;
newblock->tag = 0; // free block
newblock->prev = base;
newblock->id = ZONEID;
newblock->next = base->next;
newblock->next->prev = newblock;
base->next = newblock;
base->size = size;
}
base->tag = tag; // no longer a free block
mainzone->rover = base->next; // next allocation will start looking here
base->id = ZONEID;
// marker for memory trash testing
*(int *)((byte *)base + base->size - 4) = ZONEID;
return (void *) ((byte *)base + sizeof(memblock_t));
}
/*
========================
Z_CheckHeap
========================
*/
void Z_CheckHeap (void)
{
memblock_t *block;
for (block = mainzone->blocklist.next ; ; block = block->next)
{
if (block->next == &mainzone->blocklist)
break; // all blocks have been hit
if ( (byte *)block + block->size != (byte *)block->next)
Sys_Error ("Z_CheckHeap: block size does not touch the next block");
if ( block->next->prev != block)
Sys_Error ("Z_CheckHeap: next block doesn't have proper back link");
if (!block->tag && !block->next->tag)
Sys_Error ("Z_CheckHeap: two consecutive free blocks");
}
}
/*
========================
Z_Malloc
========================
*/
void *Z_Malloc (int size)
{
void *buf;
Z_CheckHeap (); // DEBUG
buf = Z_TagMalloc (size, 1);
if (!buf)
Sys_Error ("Z_Malloc: failed on allocation of %i bytes",size);
Q_memset (buf, 0, size);
return buf;
}
/*
========================
Z_Realloc
========================
*/
void *Z_Realloc(void *ptr, int size)
{
int old_size;
void *old_ptr;
memblock_t *block;
if (!ptr)
return Z_Malloc (size);
block = (memblock_t *) ((byte *) ptr - sizeof (memblock_t));
if (block->id != ZONEID)
Sys_Error ("Z_Realloc: realloced a pointer without ZONEID");
if (block->tag == 0)
Sys_Error ("Z_Realloc: realloced a freed pointer");
old_size = block->size;
old_size -= (4 + (int)sizeof(memblock_t)); /* see Z_TagMalloc() */
old_ptr = ptr;
Z_Free (ptr);
ptr = Z_TagMalloc (size, 1);
if (!ptr)
Sys_Error ("Z_Realloc: failed on allocation of %i bytes", size);
if (ptr != old_ptr)
memmove (ptr, old_ptr, MIN(old_size, size));
if (old_size < size)
memset ((byte *)ptr + old_size, 0, size - old_size);
return ptr;
}
char *Z_Strdup (char *s)
{
size_t sz = strlen(s) + 1;
char *ptr = (char *) Z_Malloc (sz);
memcpy (ptr, s, sz);
return ptr;
}
/*
========================
Z_Print
========================
*/
void Z_Print (memzone_t *zone)
{
memblock_t *block;
Con_Printf ("zone size: %i location: %p\n",mainzone->size,mainzone);
for (block = zone->blocklist.next ; ; block = block->next)
{
Con_Printf ("block:%p size:%7i tag:%3i\n",
block, block->size, block->tag);
if (block->next == &zone->blocklist)
break; // all blocks have been hit
if ( (byte *)block + block->size != (byte *)block->next)
Con_Printf ("ERROR: block size does not touch the next block\n");
if ( block->next->prev != block)
Con_Printf ("ERROR: next block doesn't have proper back link\n");
if (!block->tag && !block->next->tag)
Con_Printf ("ERROR: two consecutive free blocks\n");
}
}
//============================================================================
#define HUNK_SENTINEL 0x1df001ed
#define HUNKNAME_LEN 24
typedef struct
{
int sentinel;
int size; // including sizeof(hunk_t), -1 = not allocated
char name[HUNKNAME_LEN];
} hunk_t;
byte *hunk_base;
int hunk_size;
int hunk_low_used;
int hunk_high_used;
qboolean hunk_tempactive;
int hunk_tempmark;
/*
==============
Hunk_Check
Run consistancy and sentinel trahing checks
==============
*/
void Hunk_Check (void)
{
hunk_t *h;
for (h = (hunk_t *)hunk_base ; (byte *)h != hunk_base + hunk_low_used ; )
{
if (h->sentinel != HUNK_SENTINEL)
Sys_Error ("Hunk_Check: trashed sentinel");
if (h->size < (int) sizeof(hunk_t) || h->size + (byte *)h - hunk_base > hunk_size)
Sys_Error ("Hunk_Check: bad size");
h = (hunk_t *)((byte *)h+h->size);
}
}
/*
==============
Hunk_Print
If "all" is specified, every single allocation is printed.
Otherwise, allocations with the same name will be totaled up before printing.
==============
*/
void Hunk_Print (qboolean all)
{
hunk_t *h, *next, *endlow, *starthigh, *endhigh;
int count, sum;
int totalblocks;
char name[HUNKNAME_LEN];
count = 0;
sum = 0;
totalblocks = 0;
h = (hunk_t *)hunk_base;
endlow = (hunk_t *)(hunk_base + hunk_low_used);
starthigh = (hunk_t *)(hunk_base + hunk_size - hunk_high_used);
endhigh = (hunk_t *)(hunk_base + hunk_size);
Con_Printf (" :%8i total hunk size\n", hunk_size);
Con_Printf ("-------------------------\n");
while (1)
{
//
// skip to the high hunk if done with low hunk
//
if ( h == endlow )
{
Con_Printf ("-------------------------\n");
Con_Printf (" :%8i REMAINING\n", hunk_size - hunk_low_used - hunk_high_used);
Con_Printf ("-------------------------\n");
h = starthigh;
}
//
// if totally done, break
//
if ( h == endhigh )
break;
//
// run consistancy checks
//
if (h->sentinel != HUNK_SENTINEL)
Sys_Error ("Hunk_Check: trashed sentinel");
if (h->size < (int) sizeof(hunk_t) || h->size + (byte *)h - hunk_base > hunk_size)
Sys_Error ("Hunk_Check: bad size");
next = (hunk_t *)((byte *)h+h->size);
count++;
totalblocks++;
sum += h->size;
//
// print the single block
//
memcpy (name, h->name, HUNKNAME_LEN);
if (all)
Con_Printf ("%8p :%8i %8s\n",h, h->size, name);
//
// print the total
//
if (next == endlow || next == endhigh ||
strncmp (h->name, next->name, HUNKNAME_LEN - 1))
{
if (!all)
Con_Printf (" :%8i %8s (TOTAL)\n",sum, name);
count = 0;
sum = 0;
}
h = next;
}
Con_Printf ("-------------------------\n");
Con_Printf ("%8i total blocks\n", totalblocks);
}
/*
===================
Hunk_Print_f -- johnfitz -- console command to call hunk_print
===================
*/
void Hunk_Print_f (void)
{
Hunk_Print (false);
}
/*
===================
Hunk_AllocName
===================
*/
void *Hunk_AllocName (int size, char *name)
{
hunk_t *h;
#ifdef PARANOID
Hunk_Check ();
#endif
if (size < 0)
Sys_Error ("Hunk_Alloc: bad size: %i", size);
size = sizeof(hunk_t) + ((size+15)&~15);
if (hunk_size - hunk_low_used - hunk_high_used < size)
Sys_Error ("Hunk_Alloc: failed on %i bytes",size);
h = (hunk_t *)(hunk_base + hunk_low_used);
hunk_low_used += size;
Cache_FreeLow (hunk_low_used);
memset (h, 0, size);
h->size = size;
h->sentinel = HUNK_SENTINEL;
strlcpy(h->name, name, HUNKNAME_LEN);
return (void *)(h+1);
}
/*
===================
Hunk_Alloc
===================
*/
void *Hunk_Alloc (int size)
{
return Hunk_AllocName (size, "unknown");
}
int Hunk_LowMark (void)
{
return hunk_low_used;
}
void Hunk_FreeToLowMark (int mark)
{
if (mark < 0 || mark > hunk_low_used)
Sys_Error ("Hunk_FreeToLowMark: bad mark %i", mark);
memset (hunk_base + mark, 0, hunk_low_used - mark);
hunk_low_used = mark;
}
int Hunk_HighMark (void)
{
if (hunk_tempactive)
{
hunk_tempactive = false;
Hunk_FreeToHighMark (hunk_tempmark);
}
return hunk_high_used;
}
void Hunk_FreeToHighMark (int mark)
{
if (hunk_tempactive)
{
hunk_tempactive = false;
Hunk_FreeToHighMark (hunk_tempmark);
}
if (mark < 0 || mark > hunk_high_used)
Sys_Error ("Hunk_FreeToHighMark: bad mark %i", mark);
memset (hunk_base + hunk_size - hunk_high_used, 0, hunk_high_used - mark);
hunk_high_used = mark;
}
/*
===================
Hunk_HighAllocName
===================
*/
void *Hunk_HighAllocName (int size, char *name)
{
hunk_t *h;
if (size < 0)
Sys_Error ("Hunk_HighAllocName: bad size: %i", size);
if (hunk_tempactive)
{
Hunk_FreeToHighMark (hunk_tempmark);
hunk_tempactive = false;
}
#ifdef PARANOID
Hunk_Check ();
#endif
size = sizeof(hunk_t) + ((size+15)&~15);
if (hunk_size - hunk_low_used - hunk_high_used < size)
{
Con_Printf ("Hunk_HighAlloc: failed on %i bytes\n",size);
return NULL;
}
hunk_high_used += size;
Cache_FreeHigh (hunk_high_used);
h = (hunk_t *)(hunk_base + hunk_size - hunk_high_used);
memset (h, 0, size);
h->size = size;
h->sentinel = HUNK_SENTINEL;
strlcpy (h->name, name, HUNKNAME_LEN);
return (void *)(h+1);
}
/*
=================
Hunk_TempAlloc
Return space from the top of the hunk
=================
*/
void *Hunk_TempAlloc (int size)
{
void *buf;
size = (size+15)&~15;
if (hunk_tempactive)
{
Hunk_FreeToHighMark (hunk_tempmark);
hunk_tempactive = false;
}
hunk_tempmark = Hunk_HighMark ();
buf = Hunk_HighAllocName (size, "temp");
hunk_tempactive = true;
return buf;
}
char *Hunk_Strdup (char *s, char *name)
{
size_t sz = strlen(s) + 1;
char *ptr = (char *) Hunk_AllocName (sz, name);
memcpy (ptr, s, sz);
return ptr;
}
/*
===============================================================================
CACHE MEMORY
===============================================================================
*/
#define CACHENAME_LEN 32
typedef struct cache_system_s
{
int size; // including this header
cache_user_t *user;
char name[CACHENAME_LEN];
struct cache_system_s *prev, *next;
struct cache_system_s *lru_prev, *lru_next; // for LRU flushing
} cache_system_t;
cache_system_t *Cache_TryAlloc (int size, qboolean nobottom);
cache_system_t cache_head;
/*
===========
Cache_Move
===========
*/
void Cache_Move ( cache_system_t *c)
{
cache_system_t *new_cs;
// we are clearing up space at the bottom, so only allocate it late
new_cs = Cache_TryAlloc (c->size, true);
if (new_cs)
{
// Con_Printf ("cache_move ok\n");
Q_memcpy ( new_cs+1, c+1, c->size - sizeof(cache_system_t) );
new_cs->user = c->user;
Q_memcpy (new_cs->name, c->name, sizeof(new_cs->name));
Cache_Free (c->user);
new_cs->user->data = (void *)(new_cs+1);
}
else
{
// Con_Printf ("cache_move failed\n");
Cache_Free (c->user); // tough luck...
}
}
/*
============
Cache_FreeLow
Throw things out until the hunk can be expanded to the given point
============
*/
void Cache_FreeLow (int new_low_hunk)
{
cache_system_t *c;
while (1)
{
c = cache_head.next;
if (c == &cache_head)
return; // nothing in cache at all
if ((byte *)c >= hunk_base + new_low_hunk)
return; // there is space to grow the hunk
Cache_Move ( c ); // reclaim the space
}
}
/*
============
Cache_FreeHigh
Throw things out until the hunk can be expanded to the given point
============
*/
void Cache_FreeHigh (int new_high_hunk)
{
cache_system_t *c, *prev;
prev = NULL;
while (1)
{
c = cache_head.prev;
if (c == &cache_head)
return; // nothing in cache at all
if ( (byte *)c + c->size <= hunk_base + hunk_size - new_high_hunk)
return; // there is space to grow the hunk
if (c == prev)
Cache_Free (c->user); // didn't move out of the way
else
{
Cache_Move (c); // try to move it
prev = c;
}
}
}
void Cache_UnlinkLRU (cache_system_t *cs)
{
if (!cs->lru_next || !cs->lru_prev)
Sys_Error ("Cache_UnlinkLRU: NULL link");
cs->lru_next->lru_prev = cs->lru_prev;
cs->lru_prev->lru_next = cs->lru_next;
cs->lru_prev = cs->lru_next = NULL;
}
void Cache_MakeLRU (cache_system_t *cs)
{
if (cs->lru_next || cs->lru_prev)
Sys_Error ("Cache_MakeLRU: active link");
cache_head.lru_next->lru_prev = cs;
cs->lru_next = cache_head.lru_next;
cs->lru_prev = &cache_head;
cache_head.lru_next = cs;
}
/*
============
Cache_TryAlloc
Looks for a free block of memory between the high and low hunk marks
Size should already include the header and padding
============
*/
cache_system_t *Cache_TryAlloc (int size, qboolean nobottom)
{
cache_system_t *cs, *new_cs;
// is the cache completely empty?
if (!nobottom && cache_head.prev == &cache_head)
{
if (hunk_size - hunk_high_used - hunk_low_used < size)
Sys_Error ("Cache_TryAlloc: %i is greater then free hunk", size);
new_cs = (cache_system_t *) (hunk_base + hunk_low_used);
memset (new_cs, 0, sizeof(*new_cs));
new_cs->size = size;
cache_head.prev = cache_head.next = new_cs;
new_cs->prev = new_cs->next = &cache_head;
Cache_MakeLRU (new_cs);
return new_cs;
}
// search from the bottom up for space
new_cs = (cache_system_t *) (hunk_base + hunk_low_used);
cs = cache_head.next;
do
{
if (!nobottom || cs != cache_head.next)
{
if ( (byte *)cs - (byte *)new_cs >= size)
{ // found space
memset (new_cs, 0, sizeof(*new_cs));
new_cs->size = size;
new_cs->next = cs;
new_cs->prev = cs->prev;
cs->prev->next = new_cs;
cs->prev = new_cs;
Cache_MakeLRU (new_cs);
return new_cs;
}
}
// continue looking
new_cs = (cache_system_t *)((byte *)cs + cs->size);
cs = cs->next;
} while (cs != &cache_head);
// try to allocate one at the very end
if ( hunk_base + hunk_size - hunk_high_used - (byte *)new_cs >= size)
{
memset (new_cs, 0, sizeof(*new_cs));
new_cs->size = size;
new_cs->next = &cache_head;
new_cs->prev = cache_head.prev;
cache_head.prev->next = new_cs;
cache_head.prev = new_cs;
Cache_MakeLRU (new_cs);
return new_cs;
}
return NULL; // couldn't allocate
}
/*
============
Cache_Flush
Throw everything out, so new data will be demand cached
============
*/
void Cache_Flush (void)
{
while (cache_head.next != &cache_head)
Cache_Free ( cache_head.next->user); // reclaim the space
}
/*
============
Cache_Print
============
*/
void Cache_Print (void)
{
cache_system_t *cd;
for (cd = cache_head.next ; cd != &cache_head ; cd = cd->next)
{
Con_Printf ("%8i : %s\n", cd->size, cd->name);
}
}
/*
============
Cache_Report
============
*/
void Cache_Report (void)
{
Con_DPrintf ("%4.1f megabyte data cache\n", (hunk_size - hunk_high_used - hunk_low_used) / (float)(1024*1024) );
}
/*
============
Cache_Init
============
*/
void Cache_Init (void)
{
cache_head.next = cache_head.prev = &cache_head;
cache_head.lru_next = cache_head.lru_prev = &cache_head;
Cmd_AddCommand ("flush", Cache_Flush);
}
/*
==============
Cache_Free
Frees the memory and removes it from the LRU list
==============
*/
void Cache_Free (cache_user_t *c)
{
cache_system_t *cs;
if (!c->data)
Sys_Error ("Cache_Free: not allocated");
cs = ((cache_system_t *)c->data) - 1;
cs->prev->next = cs->next;
cs->next->prev = cs->prev;
cs->next = cs->prev = NULL;
c->data = NULL;
Cache_UnlinkLRU (cs);
}
/*
==============
Cache_Check
==============
*/
void *Cache_Check (cache_user_t *c)
{
cache_system_t *cs;
if (!c->data)
return NULL;
cs = ((cache_system_t *)c->data) - 1;
// move to head of LRU
Cache_UnlinkLRU (cs);
Cache_MakeLRU (cs);
return c->data;
}
/*
==============
Cache_Alloc
==============
*/
void *Cache_Alloc (cache_user_t *c, int size, char *name)
{
cache_system_t *cs;
if (c->data)
Sys_Error ("Cache_Alloc: already allocated");
if (size <= 0)
Sys_Error ("Cache_Alloc: size %i", size);
size = (size + sizeof(cache_system_t) + 15) & ~15;
// find memory for it
while (1)
{
cs = Cache_TryAlloc (size, false);
if (cs)
{
strlcpy (cs->name, name, CACHENAME_LEN);
c->data = (void *)(cs+1);
cs->user = c;
break;
}
// free the least recently used cahedat
if (cache_head.lru_prev == &cache_head)
Sys_Error ("Cache_Alloc: out of memory"); // not enough memory at all
Cache_Free (cache_head.lru_prev->user);
}
return Cache_Check (c);
}
//============================================================================
void Memory_InitZone (memzone_t *zone, int size)
{
memblock_t *block;
// set the entire zone to one free block
zone->blocklist.next = zone->blocklist.prev = block =
(memblock_t *)( (byte *)zone + sizeof(memzone_t) );
zone->blocklist.tag = 1; // in use block
zone->blocklist.id = 0;
zone->blocklist.size = 0;
zone->rover = block;
block->prev = block->next = &zone->blocklist;
block->tag = 0; // free block
block->id = ZONEID;
block->size = size - sizeof(memzone_t);
}
/*
========================
Memory_Init
========================
*/
void Memory_Init (void *buf, int size)
{
int p;
int zonesize = DYNAMIC_SIZE;
hunk_base = (byte *) buf;
hunk_size = size;
hunk_low_used = 0;
hunk_high_used = 0;
Cache_Init ();
p = COM_CheckParm ("-zone");
if (p)
{
if (p < com_argc-1)
zonesize = Q_atoi (com_argv[p+1]) * 1024;
else
Sys_Error ("Memory_Init: you must specify a size in KB after -zone");
}
mainzone = (memzone_t *) Hunk_AllocName (zonesize, "zone" );
Memory_InitZone (mainzone, zonesize);
Cmd_AddCommand ("hunk_print", Hunk_Print_f); //johnfitz
}