mirror of
https://github.com/nzp-team/dquakeplus.git
synced 2024-11-29 23:22:29 +00:00
629 lines
22 KiB
C
629 lines
22 KiB
C
/*
|
|
matrixlib.c - internal matrixlib
|
|
Copyright (C) 2010 Uncle Mike
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
*/
|
|
|
|
#include "quakedef.h"
|
|
|
|
|
|
const matrix3x4 matrix3x4_identity =
|
|
{
|
|
{ 1, 0, 0, 0 }, // PITCH [forward], org[0]
|
|
{ 0, 1, 0, 0 }, // YAW [right] , org[1]
|
|
{ 0, 0, 1, 0 }, // ROLL [up] , org[2]
|
|
};
|
|
|
|
/*
|
|
========================================================================
|
|
|
|
Matrix3x4 operations
|
|
|
|
========================================================================
|
|
*/
|
|
void Matrix3x4_VectorTransform( const matrix3x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[0][1] + v[2] * in[0][2] + in[0][3];
|
|
out[1] = v[0] * in[1][0] + v[1] * in[1][1] + v[2] * in[1][2] + in[1][3];
|
|
out[2] = v[0] * in[2][0] + v[1] * in[2][1] + v[2] * in[2][2] + in[2][3];
|
|
}
|
|
|
|
void Matrix3x4_VectorITransform( const matrix3x4 in, const float v[3], float out[3] )
|
|
{
|
|
vec3_t dir;
|
|
|
|
dir[0] = v[0] - in[0][3];
|
|
dir[1] = v[1] - in[1][3];
|
|
dir[2] = v[2] - in[2][3];
|
|
|
|
out[0] = dir[0] * in[0][0] + dir[1] * in[1][0] + dir[2] * in[2][0];
|
|
out[1] = dir[0] * in[0][1] + dir[1] * in[1][1] + dir[2] * in[2][1];
|
|
out[2] = dir[0] * in[0][2] + dir[1] * in[1][2] + dir[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix3x4_VectorRotate( const matrix3x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[0][1] + v[2] * in[0][2];
|
|
out[1] = v[0] * in[1][0] + v[1] * in[1][1] + v[2] * in[1][2];
|
|
out[2] = v[0] * in[2][0] + v[1] * in[2][1] + v[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix3x4_VectorIRotate( const matrix3x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[1][0] + v[2] * in[2][0];
|
|
out[1] = v[0] * in[0][1] + v[1] * in[1][1] + v[2] * in[2][1];
|
|
out[2] = v[0] * in[0][2] + v[1] * in[1][2] + v[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix3x4_ConcatTransforms( matrix3x4 out, const matrix3x4 in1, const matrix3x4 in2 )
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2];
|
|
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2];
|
|
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
|
|
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3];
|
|
}
|
|
|
|
void Matrix3x4_SetOrigin( matrix3x4 out, float x, float y, float z )
|
|
{
|
|
out[0][3] = x;
|
|
out[1][3] = y;
|
|
out[2][3] = z;
|
|
}
|
|
|
|
void Matrix3x4_OriginFromMatrix( const matrix3x4 in, float *out )
|
|
{
|
|
out[0] = in[0][3];
|
|
out[1] = in[1][3];
|
|
out[2] = in[2][3];
|
|
}
|
|
|
|
void Matrix3x4_FromOriginQuat( matrix3x4 out, const vec4_t quaternion, const vec3_t origin )
|
|
{
|
|
out[0][0] = 1.0f - 2.0f * quaternion[1] * quaternion[1] - 2.0f * quaternion[2] * quaternion[2];
|
|
out[1][0] = 2.0f * quaternion[0] * quaternion[1] + 2.0f * quaternion[3] * quaternion[2];
|
|
out[2][0] = 2.0f * quaternion[0] * quaternion[2] - 2.0f * quaternion[3] * quaternion[1];
|
|
|
|
out[0][1] = 2.0f * quaternion[0] * quaternion[1] - 2.0f * quaternion[3] * quaternion[2];
|
|
out[1][1] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[2] * quaternion[2];
|
|
out[2][1] = 2.0f * quaternion[1] * quaternion[2] + 2.0f * quaternion[3] * quaternion[0];
|
|
|
|
out[0][2] = 2.0f * quaternion[0] * quaternion[2] + 2.0f * quaternion[3] * quaternion[1];
|
|
out[1][2] = 2.0f * quaternion[1] * quaternion[2] - 2.0f * quaternion[3] * quaternion[0];
|
|
out[2][2] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[1] * quaternion[1];
|
|
|
|
out[0][3] = origin[0];
|
|
out[1][3] = origin[1];
|
|
out[2][3] = origin[2];
|
|
}
|
|
|
|
void Matrix3x4_CreateFromEntity( matrix3x4 out, const vec3_t angles, const vec3_t origin, float scale )
|
|
{
|
|
float angle, sr, sp, sy, cr, cp, cy;
|
|
|
|
if( angles[ROLL] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
SinCos( angle, &sy, &cy );
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
SinCos( angle, &sp, &cp );
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
SinCos( angle, &sr, &cr );
|
|
|
|
out[0][0] = (cp*cy) * scale;
|
|
out[0][1] = (sr*sp*cy+cr*-sy) * scale;
|
|
out[0][2] = (cr*sp*cy+-sr*-sy) * scale;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (cp*sy) * scale;
|
|
out[1][1] = (sr*sp*sy+cr*cy) * scale;
|
|
out[1][2] = (cr*sp*sy+-sr*cy) * scale;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = (-sp) * scale;
|
|
out[2][1] = (sr*cp) * scale;
|
|
out[2][2] = (cr*cp) * scale;
|
|
out[2][3] = origin[2];
|
|
}
|
|
else if( angles[PITCH] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
SinCos( angle, &sy, &cy );
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
SinCos( angle, &sp, &cp );
|
|
|
|
out[0][0] = (cp*cy) * scale;
|
|
out[0][1] = (-sy) * scale;
|
|
out[0][2] = (sp*cy) * scale;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (cp*sy) * scale;
|
|
out[1][1] = (cy) * scale;
|
|
out[1][2] = (sp*sy) * scale;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = (-sp) * scale;
|
|
out[2][1] = 0;
|
|
out[2][2] = (cp) * scale;
|
|
out[2][3] = origin[2];
|
|
}
|
|
else if( angles[YAW] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
SinCos( angle, &sy, &cy );
|
|
|
|
out[0][0] = (cy) * scale;
|
|
out[0][1] = (-sy) * scale;
|
|
out[0][2] = 0;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (sy) * scale;
|
|
out[1][1] = (cy) * scale;
|
|
out[1][2] = 0;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = 0;
|
|
out[2][1] = 0;
|
|
out[2][2] = scale;
|
|
out[2][3] = origin[2];
|
|
}
|
|
else
|
|
{
|
|
out[0][0] = scale;
|
|
out[0][1] = 0;
|
|
out[0][2] = 0;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = 0;
|
|
out[1][1] = scale;
|
|
out[1][2] = 0;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = 0;
|
|
out[2][1] = 0;
|
|
out[2][2] = scale;
|
|
out[2][3] = origin[2];
|
|
}
|
|
}
|
|
|
|
void Matrix3x4_TransformPositivePlane( const matrix3x4 in, const vec3_t normal, float d, vec3_t out, float *dist )
|
|
{
|
|
float scale = sqrt( in[0][0] * in[0][0] + in[0][1] * in[0][1] + in[0][2] * in[0][2] );
|
|
float iscale = 1.0f / scale;
|
|
|
|
out[0] = (normal[0] * in[0][0] + normal[1] * in[0][1] + normal[2] * in[0][2]) * iscale;
|
|
out[1] = (normal[0] * in[1][0] + normal[1] * in[1][1] + normal[2] * in[1][2]) * iscale;
|
|
out[2] = (normal[0] * in[2][0] + normal[1] * in[2][1] + normal[2] * in[2][2]) * iscale;
|
|
*dist = d * scale + ( out[0] * in[0][3] + out[1] * in[1][3] + out[2] * in[2][3] );
|
|
}
|
|
|
|
void Matrix3x4_Invert_Simple( matrix3x4 out, const matrix3x4 in1 )
|
|
{
|
|
// we only support uniform scaling, so assume the first row is enough
|
|
// (note the lack of sqrt here, because we're trying to undo the scaling,
|
|
// this means multiplying by the inverse scale twice - squaring it, which
|
|
// makes the sqrt a waste of time)
|
|
float scale = 1.0 / (in1[0][0] * in1[0][0] + in1[0][1] * in1[0][1] + in1[0][2] * in1[0][2]);
|
|
|
|
// invert the rotation by transposing and multiplying by the squared
|
|
// recipricol of the input matrix scale as described above
|
|
out[0][0] = in1[0][0] * scale;
|
|
out[0][1] = in1[1][0] * scale;
|
|
out[0][2] = in1[2][0] * scale;
|
|
out[1][0] = in1[0][1] * scale;
|
|
out[1][1] = in1[1][1] * scale;
|
|
out[1][2] = in1[2][1] * scale;
|
|
out[2][0] = in1[0][2] * scale;
|
|
out[2][1] = in1[1][2] * scale;
|
|
out[2][2] = in1[2][2] * scale;
|
|
|
|
// invert the translate
|
|
out[0][3] = -(in1[0][3] * out[0][0] + in1[1][3] * out[0][1] + in1[2][3] * out[0][2]);
|
|
out[1][3] = -(in1[0][3] * out[1][0] + in1[1][3] * out[1][1] + in1[2][3] * out[1][2]);
|
|
out[2][3] = -(in1[0][3] * out[2][0] + in1[1][3] * out[2][1] + in1[2][3] * out[2][2]);
|
|
}
|
|
|
|
const matrix4x4 matrix4x4_identity =
|
|
{
|
|
{ 1, 0, 0, 0 }, // PITCH
|
|
{ 0, 1, 0, 0 }, // YAW
|
|
{ 0, 0, 1, 0 }, // ROLL
|
|
{ 0, 0, 0, 1 }, // ORIGIN
|
|
};
|
|
|
|
/*
|
|
========================================================================
|
|
|
|
Matrix4x4 operations
|
|
|
|
========================================================================
|
|
*/
|
|
void Matrix4x4_VectorTransform( const matrix4x4 in, const float v[3], float out[3] )
|
|
{
|
|
__asm__ (
|
|
".set push\n" // save assembler option
|
|
".set noreorder\n" // suppress reordering
|
|
"lv.q C100, 0 + %1\n" // C100 = in[0]
|
|
"lv.q C110, 16 + %1\n" // C110 = in[1]
|
|
"lv.q C120, 32 + %1\n" // C120 = in[2]
|
|
"lv.s S130, 0 + %2\n" // S130 = v[0]
|
|
"lv.s S131, 4 + %2\n" // S131 = v[1]
|
|
"lv.s S132, 8 + %2\n" // S132 = v[2]
|
|
"vhdp.q S000, C130, C100\n" // S000 = v[0] * in[0][0] + v[1] * in[0][1] + v[2] * in[0][2] + in[0][3]
|
|
"vhdp.q S001, C130, C110\n" // S001 = v[0] * in[1][0] + v[1] * in[1][1] + v[2] * in[1][2] + in[1][3]
|
|
"vhdp.q S002, C130, C120\n" // S002 = v[0] * in[2][0] + v[1] * in[2][1] + v[2] * in[2][2] + in[2][3]
|
|
"sv.s S000, 0 + %0\n" // out[0] = S000
|
|
"sv.s S001, 4 + %0\n" // out[1] = S001
|
|
"sv.s S002, 8 + %0\n" // out[2] = S002
|
|
".set pop\n" // restore assembler option
|
|
: "=m"( *out )
|
|
: "m"( *in ), "m"( *v )
|
|
);
|
|
/*
|
|
out[0] = v[0] * in[0][0] + v[1] * in[0][1] + v[2] * in[0][2] + in[0][3];
|
|
out[1] = v[0] * in[1][0] + v[1] * in[1][1] + v[2] * in[1][2] + in[1][3];
|
|
out[2] = v[0] * in[2][0] + v[1] * in[2][1] + v[2] * in[2][2] + in[2][3];
|
|
*/
|
|
}
|
|
|
|
void Matrix4x4_VectorITransform( const matrix4x4 in, const float v[3], float out[3] )
|
|
{
|
|
__asm__ (
|
|
".set push\n" // save assembler option
|
|
".set noreorder\n" // suppress reordering
|
|
"lv.q C100, 0 + %1\n" // C100 = in[0]
|
|
"lv.q C110, 16 + %1\n" // C110 = in[1]
|
|
"lv.q C120, 32 + %1\n" // C120 = in[2]
|
|
"lv.s S130, 0 + %2\n" // S130 = v[0]
|
|
"lv.s S131, 4 + %2\n" // S131 = v[1]
|
|
"lv.s S132, 8 + %2\n" // S132 = v[2]
|
|
"vsub.t C130, C130, R103\n" // C130 = v - in[][3]
|
|
#if 1
|
|
"vtfm3.t C000, E100, C130\n" // C000 = E100 * C130
|
|
#else
|
|
"vdot.t S000, C130, R100\n" // S000 = dir[0] * in[0][0] + dir[1] * in[1][0] + dir[2] * in[2][0]
|
|
"vdot.t S001, C130, R101\n" // S001 = dir[0] * in[0][1] + dir[1] * in[1][1] + dir[2] * in[2][1]
|
|
"vdot.t S002, C130, R102\n" // S002 = dir[0] * in[0][2] + dir[1] * in[1][2] + dir[2] * in[2][2]
|
|
#endif
|
|
"sv.s S000, 0 + %0\n" // out[0] = S000
|
|
"sv.s S001, 4 + %0\n" // out[1] = S001
|
|
"sv.s S002, 8 + %0\n" // out[2] = S002
|
|
".set pop\n" // restore assembler option
|
|
: "=m"( *out )
|
|
: "m"( *in ), "m"( *v )
|
|
);
|
|
/*
|
|
vec3_t dir;
|
|
|
|
dir[0] = v[0] - in[0][3];
|
|
dir[1] = v[1] - in[1][3];
|
|
dir[2] = v[2] - in[2][3];
|
|
|
|
out[0] = dir[0] * in[0][0] + dir[1] * in[1][0] + dir[2] * in[2][0];
|
|
out[1] = dir[0] * in[0][1] + dir[1] * in[1][1] + dir[2] * in[2][1];
|
|
out[2] = dir[0] * in[0][2] + dir[1] * in[1][2] + dir[2] * in[2][2];
|
|
*/
|
|
}
|
|
|
|
void Matrix4x4_VectorRotate( const matrix4x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[0][1] + v[2] * in[0][2];
|
|
out[1] = v[0] * in[1][0] + v[1] * in[1][1] + v[2] * in[1][2];
|
|
out[2] = v[0] * in[2][0] + v[1] * in[2][1] + v[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix4x4_VectorIRotate( const matrix4x4 in, const float v[3], float out[3] )
|
|
{
|
|
out[0] = v[0] * in[0][0] + v[1] * in[1][0] + v[2] * in[2][0];
|
|
out[1] = v[0] * in[0][1] + v[1] * in[1][1] + v[2] * in[2][1];
|
|
out[2] = v[0] * in[0][2] + v[1] * in[1][2] + v[2] * in[2][2];
|
|
}
|
|
|
|
void Matrix4x4_ConcatTransforms( matrix4x4 out, const matrix4x4 in1, const matrix4x4 in2 )
|
|
{
|
|
__asm__ (
|
|
".set push\n" // save assembler option
|
|
".set noreorder\n" // suppress reordering
|
|
"lv.q C100, 0 + %1\n" // C100 = in1[0]
|
|
"lv.q C110, 16 + %1\n" // C110 = in1[1]
|
|
"lv.q C120, 32 + %1\n" // C120 = in1[2]
|
|
"vzero.q C130\n" // C130 = [0, 0, 0, 0]
|
|
"lv.q C200, 0 + %2\n" // C100 = in2[0]
|
|
"lv.q C210, 16 + %2\n" // C110 = in2[1]
|
|
"lv.q C220, 32 + %2\n" // C120 = in2[2]
|
|
"vidt.q C230\n" // C230 = [0, 0, 0, 1]
|
|
"vmmul.q E000, E100, E200\n" // E000 = E100 * E200
|
|
"sv.q C000, 0 + %0\n" // out[0] = C000
|
|
"sv.q C010, 16 + %0\n" // out[1] = C010
|
|
"sv.q C020, 32 + %0\n" // out[2] = C020
|
|
".set pop\n" // restore assembler option
|
|
: "=m"( *out )
|
|
: "m"( *in1 ), "m"( *in2 )
|
|
);
|
|
/*
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2];
|
|
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2];
|
|
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
|
|
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3];
|
|
*/
|
|
}
|
|
|
|
void Matrix4x4_SetOrigin( matrix4x4 out, float x, float y, float z )
|
|
{
|
|
out[0][3] = x;
|
|
out[1][3] = y;
|
|
out[2][3] = z;
|
|
}
|
|
|
|
void Matrix4x4_OriginFromMatrix( const matrix4x4 in, float *out )
|
|
{
|
|
out[0] = in[0][3];
|
|
out[1] = in[1][3];
|
|
out[2] = in[2][3];
|
|
}
|
|
|
|
void Matrix4x4_FromOriginQuat( matrix4x4 out, const vec4_t quaternion, const vec3_t origin )
|
|
{
|
|
out[0][0] = 1.0f - 2.0f * quaternion[1] * quaternion[1] - 2.0f * quaternion[2] * quaternion[2];
|
|
out[1][0] = 2.0f * quaternion[0] * quaternion[1] + 2.0f * quaternion[3] * quaternion[2];
|
|
out[2][0] = 2.0f * quaternion[0] * quaternion[2] - 2.0f * quaternion[3] * quaternion[1];
|
|
out[0][3] = origin[0];
|
|
out[0][1] = 2.0f * quaternion[0] * quaternion[1] - 2.0f * quaternion[3] * quaternion[2];
|
|
out[1][1] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[2] * quaternion[2];
|
|
out[2][1] = 2.0f * quaternion[1] * quaternion[2] + 2.0f * quaternion[3] * quaternion[0];
|
|
out[1][3] = origin[1];
|
|
out[0][2] = 2.0f * quaternion[0] * quaternion[2] + 2.0f * quaternion[3] * quaternion[1];
|
|
out[1][2] = 2.0f * quaternion[1] * quaternion[2] - 2.0f * quaternion[3] * quaternion[0];
|
|
out[2][2] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[1] * quaternion[1];
|
|
out[2][3] = origin[2];
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|
|
|
|
void Matrix4x4_CreateFromEntity( matrix4x4 out, const vec3_t angles, const vec3_t origin, float scale )
|
|
{
|
|
float angle, sr, sp, sy, cr, cp, cy;
|
|
|
|
if( angles[ROLL] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
SinCos( angle, &sy, &cy );
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
SinCos( angle, &sp, &cp );
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
SinCos( angle, &sr, &cr );
|
|
|
|
out[0][0] = (cp*cy) * scale;
|
|
out[0][1] = (sr*sp*cy+cr*-sy) * scale;
|
|
out[0][2] = (cr*sp*cy+-sr*-sy) * scale;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (cp*sy) * scale;
|
|
out[1][1] = (sr*sp*sy+cr*cy) * scale;
|
|
out[1][2] = (cr*sp*sy+-sr*cy) * scale;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = (-sp) * scale;
|
|
out[2][1] = (sr*cp) * scale;
|
|
out[2][2] = (cr*cp) * scale;
|
|
out[2][3] = origin[2];
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|
|
else if( angles[PITCH] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
SinCos( angle, &sy, &cy );
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
SinCos( angle, &sp, &cp );
|
|
|
|
out[0][0] = (cp*cy) * scale;
|
|
out[0][1] = (-sy) * scale;
|
|
out[0][2] = (sp*cy) * scale;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (cp*sy) * scale;
|
|
out[1][1] = (cy) * scale;
|
|
out[1][2] = (sp*sy) * scale;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = (-sp) * scale;
|
|
out[2][1] = 0;
|
|
out[2][2] = (cp) * scale;
|
|
out[2][3] = origin[2];
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|
|
else if( angles[YAW] )
|
|
{
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
SinCos( angle, &sy, &cy );
|
|
|
|
out[0][0] = (cy) * scale;
|
|
out[0][1] = (-sy) * scale;
|
|
out[0][2] = 0;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = (sy) * scale;
|
|
out[1][1] = (cy) * scale;
|
|
out[1][2] = 0;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = 0;
|
|
out[2][1] = 0;
|
|
out[2][2] = scale;
|
|
out[2][3] = origin[2];
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|
|
else
|
|
{
|
|
out[0][0] = scale;
|
|
out[0][1] = 0;
|
|
out[0][2] = 0;
|
|
out[0][3] = origin[0];
|
|
out[1][0] = 0;
|
|
out[1][1] = scale;
|
|
out[1][2] = 0;
|
|
out[1][3] = origin[1];
|
|
out[2][0] = 0;
|
|
out[2][1] = 0;
|
|
out[2][2] = scale;
|
|
out[2][3] = origin[2];
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|
|
}
|
|
|
|
void Matrix4x4_ConvertToEntity( const matrix4x4 in, vec3_t angles, vec3_t origin )
|
|
{
|
|
float xyDist = sqrt( in[0][0] * in[0][0] + in[1][0] * in[1][0] );
|
|
|
|
// enough here to get angles?
|
|
if( xyDist > 0.001f )
|
|
{
|
|
angles[0] = RAD2DEG( atan2( -in[2][0], xyDist ) );
|
|
angles[1] = RAD2DEG( atan2( in[1][0], in[0][0] ) );
|
|
angles[2] = RAD2DEG( atan2( in[2][1], in[2][2] ) );
|
|
}
|
|
else // forward is mostly Z, gimbal lock
|
|
{
|
|
angles[0] = RAD2DEG( atan2( -in[2][0], xyDist ) );
|
|
angles[1] = RAD2DEG( atan2( -in[0][1], in[1][1] ) );
|
|
angles[2] = 0;
|
|
}
|
|
|
|
origin[0] = in[0][3];
|
|
origin[1] = in[1][3];
|
|
origin[2] = in[2][3];
|
|
}
|
|
|
|
void Matrix4x4_TransformPositivePlane( const matrix4x4 in, const vec3_t normal, float d, vec3_t out, float *dist )
|
|
{
|
|
__asm__ (
|
|
".set push\n" // save assembler option
|
|
".set noreorder\n" // suppress reordering
|
|
"lv.q C100, 0 + %2\n" // C100 = in[0]
|
|
"lv.q C110, 16 + %2\n" // C110 = in[1]
|
|
"lv.q C120, 32 + %2\n" // C120 = in[2]
|
|
"lv.s S200, 0 + %3\n" // S200 = normal[0]
|
|
"lv.s S201, 4 + %3\n" // S201 = normal[1]
|
|
"lv.s S202, 8 + %3\n" // S202 = normal[2]
|
|
"lv.s S210, %4\n" // S210 = d
|
|
"vdot.t S211, C100, C100\n" // S211 = C100 * C100
|
|
"vsqrt.s S211, S211\n" // S211 = sqrt( S211 )
|
|
"vrcp.s S212, S211\n" // S212 = 1 / S211
|
|
"vtfm3.t C000, M100, C200\n" // C000 = M100 * C200
|
|
"vscl.t C000, C000, S212\n" // C000 = C000 * S211
|
|
"vmul.s S003, S210, S211\n" // S003 = S210 * S211
|
|
"vdot.t S010, R103, C000\n" // S010 = R103 * C000
|
|
"vadd.s S003, S003, S010\n" // S003 = S003 + S010
|
|
"sv.s S000, 0 + %0\n" // out[0] = S000
|
|
"sv.s S001, 4 + %0\n" // out[1] = S001
|
|
"sv.s S002, 8 + %0\n" // out[2] = S002
|
|
"sv.s S003, %1\n" // dist = S003
|
|
".set pop\n" // restore assembler option
|
|
: "=m"( *out ), "=m"( *dist )
|
|
: "m"( *in ), "m"( *normal ), "m"( d )
|
|
);
|
|
/*
|
|
float scale = sqrt( in[0][0] * in[0][0] + in[0][1] * in[0][1] + in[0][2] * in[0][2] );
|
|
float iscale = 1.0f / scale;
|
|
|
|
out[0] = (normal[0] * in[0][0] + normal[1] * in[0][1] + normal[2] * in[0][2]) * iscale;
|
|
out[1] = (normal[0] * in[1][0] + normal[1] * in[1][1] + normal[2] * in[1][2]) * iscale;
|
|
out[2] = (normal[0] * in[2][0] + normal[1] * in[2][1] + normal[2] * in[2][2]) * iscale;
|
|
*dist = d * scale + ( out[0] * in[0][3] + out[1] * in[1][3] + out[2] * in[2][3] );
|
|
*/
|
|
}
|
|
|
|
void Matrix4x4_TransformStandardPlane( const matrix4x4 in, const vec3_t normal, float d, vec3_t out, float *dist )
|
|
{
|
|
__asm__ (
|
|
".set push\n" // save assembler option
|
|
".set noreorder\n" // suppress reordering
|
|
"lv.q C100, 0 + %2\n" // C100 = in[0]
|
|
"lv.q C110, 16 + %2\n" // C110 = in[1]
|
|
"lv.q C120, 32 + %2\n" // C120 = in[2]
|
|
"lv.s S200, 0 + %3\n" // S200 = normal[0]
|
|
"lv.s S201, 4 + %3\n" // S201 = normal[1]
|
|
"lv.s S202, 8 + %3\n" // S202 = normal[2]
|
|
"lv.s S210, %4\n" // S210 = d
|
|
"vdot.t S211, C100, C100\n" // S211 = C100 * C100
|
|
"vsqrt.s S211, S211\n" // S211 = sqrt( S211 )
|
|
"vrcp.s S212, S211\n" // S212 = 1 / S211
|
|
"vtfm3.t C000, M100, C200\n" // C000 = M100 * C200
|
|
"vscl.t C000, C000, S212\n" // C000 = C000 * S211
|
|
"vmul.s S003, S210, S211\n" // S003 = S210 * S211
|
|
"vdot.t S010, R103, C000\n" // S010 = R103 * C000
|
|
"vsub.s S003, S003, S010\n" // S003 = S003 - S010
|
|
"sv.s S000, 0 + %0\n" // out[0] = S000
|
|
"sv.s S001, 4 + %0\n" // out[1] = S001
|
|
"sv.s S002, 8 + %0\n" // out[2] = S002
|
|
"sv.s S003, %1\n" // dist = S003
|
|
".set pop\n" // restore assembler option
|
|
: "=m"( *out ), "=m"( *dist )
|
|
: "m"( *in ), "m"( *normal ), "m"( d )
|
|
);
|
|
/*
|
|
float scale = sqrt( in[0][0] * in[0][0] + in[0][1] * in[0][1] + in[0][2] * in[0][2] );
|
|
float iscale = 1.0f / scale;
|
|
|
|
out[0] = (normal[0] * in[0][0] + normal[1] * in[0][1] + normal[2] * in[0][2]) * iscale;
|
|
out[1] = (normal[0] * in[1][0] + normal[1] * in[1][1] + normal[2] * in[1][2]) * iscale;
|
|
out[2] = (normal[0] * in[2][0] + normal[1] * in[2][1] + normal[2] * in[2][2]) * iscale;
|
|
*dist = d * scale - ( out[0] * in[0][3] + out[1] * in[1][3] + out[2] * in[2][3] );
|
|
*/
|
|
}
|
|
|
|
void Matrix4x4_Invert_Simple( matrix4x4 out, const matrix4x4 in1 )
|
|
{
|
|
// we only support uniform scaling, so assume the first row is enough
|
|
// (note the lack of sqrt here, because we're trying to undo the scaling,
|
|
// this means multiplying by the inverse scale twice - squaring it, which
|
|
// makes the sqrt a waste of time)
|
|
float scale = 1.0f / (in1[0][0] * in1[0][0] + in1[0][1] * in1[0][1] + in1[0][2] * in1[0][2]);
|
|
|
|
// invert the rotation by transposing and multiplying by the squared
|
|
// recipricol of the input matrix scale as described above
|
|
out[0][0] = in1[0][0] * scale;
|
|
out[0][1] = in1[1][0] * scale;
|
|
out[0][2] = in1[2][0] * scale;
|
|
out[1][0] = in1[0][1] * scale;
|
|
out[1][1] = in1[1][1] * scale;
|
|
out[1][2] = in1[2][1] * scale;
|
|
out[2][0] = in1[0][2] * scale;
|
|
out[2][1] = in1[1][2] * scale;
|
|
out[2][2] = in1[2][2] * scale;
|
|
|
|
// invert the translate
|
|
out[0][3] = -(in1[0][3] * out[0][0] + in1[1][3] * out[0][1] + in1[2][3] * out[0][2]);
|
|
out[1][3] = -(in1[0][3] * out[1][0] + in1[1][3] * out[1][1] + in1[2][3] * out[1][2]);
|
|
out[2][3] = -(in1[0][3] * out[2][0] + in1[1][3] * out[2][1] + in1[2][3] * out[2][2]);
|
|
|
|
// don't know if there's anything worth doing here
|
|
out[3][0] = 0;
|
|
out[3][1] = 0;
|
|
out[3][2] = 0;
|
|
out[3][3] = 1;
|
|
}
|