dquakeplus/source/psp/gu/gu_warp.cpp

1608 lines
39 KiB
C++

/*
Copyright (C) 1996-1997 Id Software, Inc.
Copyright (C) 2007 Peter Mackay and Chris Swindle.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// gl_warp.c -- sky and water polygons
#include <pspgu.h>
extern "C"
{
#include "../../quakedef.h"
}
#include "../clipping.hpp"
using namespace quake;
extern model_t *loadmodel;
/*int skytexturenum;*/
int solidskytexture = -1;
int alphaskytexture = -1;
float speedscale; // for top sky and bottom sky
int skytexorder[5] = {0,2,1,3,4};
int skyimage[5]; // Where sky images are stored
char skybox_name[32] = ""; //name of current skybox, or "" if no skybox
// cut off down for half skybox
char *suf[5] = {"rt", "bk", "lf", "ft", "up" };
msurface_t *warpface;
extern cvar_t gl_subdivide_size;
static void BoundPoly (int numverts, float *verts, vec3_t mins, vec3_t maxs)
{
int i, j;
float *v;
mins[0] = mins[1] = mins[2] = 9999;
maxs[0] = maxs[1] = maxs[2] = -9999;
v = verts;
for (i=0 ; i<numverts ; i++)
{
for (j=0 ; j<3 ; j++, v++)
{
if (*v < mins[j])
mins[j] = *v;
if (*v > maxs[j])
maxs[j] = *v;
}
}
}
static void SubdividePolygon (int numverts, float *verts)
{
int i, j, k;
vec3_t mins, maxs;
float m;
float *v;
vec3_t front[64], back[64];
int f, b;
float dist[64];
float frac;
glpoly_t *poly;
float s, t, subdivide_size;;
if (numverts > 60)
Sys_Error ("numverts = %i", numverts);
subdivide_size = fmax(1, gl_subdivide_size.value);
BoundPoly (numverts, verts, mins, maxs);
for (i=0 ; i<3 ; i++)
{
m = (mins[i] + maxs[i]) * 0.5;
m = subdivide_size * floorf (m / subdivide_size + 0.5);
if (maxs[i] - m < 8)
continue;
if (m - mins[i] < 8)
continue;
// cut it
v = verts + i;
for (j=0 ; j<numverts ; j++, v+= 3)
dist[j] = *v - m;
// wrap cases
dist[j] = dist[0];
v-=i;
VectorCopy (verts, v);
f = b = 0;
v = verts;
for (j=0 ; j<numverts ; j++, v+= 3)
{
if (dist[j] >= 0)
{
VectorCopy (v, front[f]);
f++;
}
if (dist[j] <= 0)
{
VectorCopy (v, back[b]);
b++;
}
if (dist[j] == 0 || dist[j+1] == 0)
continue;
if ( (dist[j] > 0) != (dist[j+1] > 0) )
{
// clip point
frac = dist[j] / (dist[j] - dist[j+1]);
for (k=0 ; k<3 ; k++)
front[f][k] = back[b][k] = v[k] + frac*(v[3+k] - v[k]);
f++;
b++;
}
}
SubdividePolygon (f, front[0]);
SubdividePolygon (b, back[0]);
return;
}
poly = static_cast<glpoly_t*>(Hunk_Alloc (sizeof(glpoly_t) + (numverts - 1) * sizeof(glvert_t)));
poly->next = warpface->polys;
warpface->polys = poly;
poly->numverts = numverts;
for (i=0 ; i<numverts ; i++, verts+= 3)
{
VectorCopy (verts, poly->verts[i].xyz);
s = DotProduct (verts, warpface->texinfo->vecs[0]);
t = DotProduct (verts, warpface->texinfo->vecs[1]);
poly->verts[i].st[0] = s;
poly->verts[i].st[1] = t;
}
}
/*
================
GL_SubdivideSurface
Breaks a polygon up along axial 64 unit
boundaries so that turbulent and sky warps
can be done reasonably.
================
*/
void GL_SubdivideSurface (msurface_t *fa)
{
vec3_t verts[64];
int numverts;
int i;
int lindex;
float *vec;
warpface = fa;
//
// convert edges back to a normal polygon
//
numverts = 0;
for (i=0 ; i<fa->numedges ; i++)
{
lindex = loadmodel->surfedges[fa->firstedge + i];
if (lindex > 0)
vec = loadmodel->vertexes[loadmodel->edges[lindex].v[0]].position;
else
vec = loadmodel->vertexes[loadmodel->edges[-lindex].v[1]].position;
VectorCopy (vec, verts[numverts]);
numverts++;
}
SubdividePolygon (numverts, verts[0]);
}
//=========================================================
#define TURBSINSIZE 128
#define TURBSCALE ((float)TURBSINSIZE / (2 * M_PI))
byte turbsin[TURBSINSIZE] =
{
127, 133, 139, 146, 152, 158, 164, 170, 176, 182, 187, 193, 198, 203, 208, 213,
217, 221, 226, 229, 233, 236, 239, 242, 245, 247, 249, 251, 252, 253, 254, 254,
255, 254, 254, 253, 252, 251, 249, 247, 245, 242, 239, 236, 233, 229, 226, 221,
217, 213, 208, 203, 198, 193, 187, 182, 176, 170, 164, 158, 152, 146, 139, 133,
127, 121, 115, 108, 102, 96, 90, 84, 78, 72, 67, 61, 56, 51, 46, 41,
37, 33, 28, 25, 21, 18, 15, 12, 9, 7, 5, 3, 2, 1, 0, 0,
0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 25, 28, 33,
37, 41, 46, 51, 56, 61, 67, 72, 78, 84, 90, 96, 102, 108, 115, 121,
};
__inline static float SINTABLE_APPROX (float time)
{
float sinlerpf, lerptime, lerp;
int sinlerp1, sinlerp2;
sinlerpf = time * TURBSCALE;
sinlerp1 = floor(sinlerpf);
sinlerp2 = sinlerp1 + 1;
lerptime = sinlerpf - sinlerp1;
lerp = turbsin[sinlerp1 & (TURBSINSIZE - 1)] * (1 - lerptime) + turbsin[sinlerp2 & (TURBSINSIZE - 1)] * lerptime;
return -8 + 16 * lerp / 255.0;
}
/*
================
GL_Surface
================
*/
void GL_Surface (msurface_t *fa)
{
vec3_t verts[64];
int numverts;
int i;
int lindex;
float *vec;
glpoly_t *poly;
//float texscale;
float s, t;
//texscale = (1.0/32.0);
//
// convert edges back to a normal polygon
//
numverts = 0;
for (i=0 ; i<fa->numedges ; i++)
{
lindex = loadmodel->surfedges[fa->firstedge + i];
if (lindex > 0)
vec = loadmodel->vertexes[loadmodel->edges[lindex].v[0]].position;
else
vec = loadmodel->vertexes[loadmodel->edges[-lindex].v[1]].position;
VectorCopy (vec, verts[numverts]);
numverts++;
}
//create the poly
poly = static_cast<glpoly_t*>(Hunk_Alloc (sizeof(glpoly_t) + (numverts - 1) * sizeof(glvert_t)));
poly->next = NULL;
fa->polys = poly;
poly->numverts = numverts;
for (i=0, vec=(float *)verts; i<numverts; i++, vec+= 3)
{
VectorCopy (vec, poly->verts[i].xyz);
s = DotProduct(vec, fa->texinfo->vecs[0]);// * texscale;
t = DotProduct(vec, fa->texinfo->vecs[1]);// * texscale;
poly->verts[i].st[0] = s;
poly->verts[i].st[1] = t;
}
}
/*
=============
EmitFlatPoly
=============
*/
void EmitFlatPoly (msurface_t *fa)
{
// For each polygon...
for (const glpoly_t* p = fa->polys; p; p = p->next)
{
// Allocate memory for this polygon.
const int unclipped_vertex_count = p->numverts;
glvert_t* const unclipped_vertices =
static_cast<glvert_t*>(sceGuGetMemory(sizeof(glvert_t) * unclipped_vertex_count));
// Generate each vertex.
const glvert_t* src = p->verts;
const glvert_t* last_vertex = src + unclipped_vertex_count;
glvert_t* dst = unclipped_vertices;
while (src != last_vertex)
{
// Fill in the vertex data.
dst->st[0] = src->st[0]; //Tex
dst->st[1] = src->st[1];
dst->xyz[0] = src->xyz[0]; //Verts
dst->xyz[1] = src->xyz[1];
dst->xyz[2] = src->xyz[2];
// Next vertex.
++src;
++dst;
}
// Do these vertices need clipped?
if (clipping::is_clipping_required(unclipped_vertices, unclipped_vertex_count))
{
// Clip the polygon.
const glvert_t* clipped_vertices;
std::size_t clipped_vertex_count;
clipping::clip(
unclipped_vertices,
unclipped_vertex_count,
&clipped_vertices,
&clipped_vertex_count);
// Any vertices left?
if (clipped_vertex_count)
{
// Copy the vertices to the display list.
const std::size_t buffer_size = clipped_vertex_count * sizeof(glvert_t);
glvert_t* const display_list_vertices = static_cast<glvert_t*>(sceGuGetMemory(buffer_size));
memcpy(display_list_vertices, clipped_vertices, buffer_size);
// Draw the clipped vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
clipped_vertex_count, 0, display_list_vertices);
}
}
else
{
// Draw the vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
unclipped_vertex_count, 0, unclipped_vertices);
}
}
}
/*
=============
EmitWaterPolys
Does a water warp on the pre-fragmented glpoly_t chain
=============
*/
void EmitWaterPolys (msurface_t *fa)
{
//const float real_time = static_cast<float>(realtime);
const float scale = (1.0f / 64);
/*
//jkrige - clamp waterripple values
if(r_waterripple.value>10)
r_waterripple.value=10;
if(r_waterripple.value<0)
r_waterripple.value=0;
//jkrige - clamp waterripple values
*/
// For each polygon...
for (const glpoly_t* p = fa->polys; p; p = p->next)
{
// Allocate memory for this polygon.
const int unclipped_vertex_count = p->numverts;
glvert_t* const unclipped_vertices =
static_cast<glvert_t*>(sceGuGetMemory(sizeof(glvert_t) * unclipped_vertex_count));
// Generate each vertex.
const glvert_t* src = p->verts;
const glvert_t* last_vertex = src + unclipped_vertex_count;
glvert_t* dst = unclipped_vertices;
while (src != last_vertex)
{
// Get the input UVs.
const float os = src->st[0];
const float ot = src->st[1];
// Fill in the vertex data.
dst->st[0] = (os + SINTABLE_APPROX(ot * 0.125 + cl.time)) * scale;
dst->st[1] = (ot + SINTABLE_APPROX(os * 0.125 + cl.time)) * scale;
dst->xyz[0] = src->xyz[0];
dst->xyz[1] = src->xyz[1];
dst->xyz[2] = src->xyz[2];
//dst->xyz[2] = src->xyz[2] + r_waterripple.value * sin(src->xyz[0]*0.05+realtime)*sin(src->xyz[2]*0.05+realtime);
// Next vertex.
++src;
++dst;
}
if (!(fa->flags & SURF_NEEDSCLIPPING))
{
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
unclipped_vertex_count, 0, unclipped_vertices);
return;
}
// Do these vertices need clipped?
if (clipping::is_clipping_required(unclipped_vertices, unclipped_vertex_count))
{
// Clip the polygon.
const glvert_t* clipped_vertices;
std::size_t clipped_vertex_count;
clipping::clip(
unclipped_vertices,
unclipped_vertex_count,
&clipped_vertices,
&clipped_vertex_count);
// Any vertices left?
if (clipped_vertex_count)
{
// Copy the vertices to the display list.
const std::size_t buffer_size = clipped_vertex_count * sizeof(glvert_t);
glvert_t* const display_list_vertices = static_cast<glvert_t*>(sceGuGetMemory(buffer_size));
memcpy(display_list_vertices, clipped_vertices, buffer_size);
// Draw the clipped vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
clipped_vertex_count, 0, display_list_vertices);
}
}
else
{
// Draw the vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
unclipped_vertex_count, 0, unclipped_vertices);
}
}
}
/*
=============
EmitUnderWaterPolys
based on water polys!
By Crow_bar.
=============
*/
/*
void EmitUnderWaterPolys (void)
{
const float scale = (-3 * (0.5 / 64));
extern glpoly_t *caustics_polys;
sceGuEnable(GU_BLEND);
sceGuBlendFunc (GU_ADD, GU_DST_COLOR, GU_SRC_COLOR, 0, 0);
sceGuTexFunc(GU_TFX_DECAL, GU_TCC_RGBA);
// For each polygon...
for (const glpoly_t* p = caustics_polys ; p ; p = p->caustics_chain)
{
// Allocate memory for this polygon.
const int unclipped_vertex_count = p->numverts;
glvert_t* const unclipped_vertices =
static_cast<glvert_t*>(sceGuGetMemory(sizeof(glvert_t) * unclipped_vertex_count));
// Generate each vertex.
const glvert_t* src = p->verts;
const glvert_t* last_vertex = src + unclipped_vertex_count;
glvert_t* dst = unclipped_vertices;
while (src != last_vertex)
{
// Get the input UVs.
const float os = src->st[0];
const float ot = src->st[1];
// Fill in the vertex data.
dst->st[0] = (os + SINTABLE_APPROX(0.465 * (cl.time + ot))) * scale;
dst->st[1] = (ot + SINTABLE_APPROX(0.465 * (cl.time + os))) * scale;
dst->xyz[0] = src->xyz[0];
dst->xyz[1] = src->xyz[1];
dst->xyz[2] = src->xyz[2];
// Next vertex.
++src;
++dst;
}
// Do these vertices need clipped?
if (clipping::is_clipping_required(unclipped_vertices, unclipped_vertex_count))
{
// Clip the polygon.
const glvert_t* clipped_vertices;
std::size_t clipped_vertex_count;
clipping::clip(
unclipped_vertices,
unclipped_vertex_count,
&clipped_vertices,
&clipped_vertex_count);
// Any vertices left?
if (clipped_vertex_count)
{
// Copy the vertices to the display list.
const std::size_t buffer_size = clipped_vertex_count * sizeof(glvert_t);
glvert_t* const display_list_vertices = static_cast<glvert_t*>(sceGuGetMemory(buffer_size));
memcpy(display_list_vertices, clipped_vertices, buffer_size);
// Draw the clipped vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
clipped_vertex_count, 0, display_list_vertices);
}
}
else
{
// Draw the vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
unclipped_vertex_count, 0, unclipped_vertices);
}
}
sceGuTexFunc(GU_TFX_REPLACE, GU_TCC_RGBA);
sceGuBlendFunc(GU_ADD, GU_SRC_ALPHA, GU_ONE_MINUS_SRC_ALPHA, 0, 0);
sceGuDisable (GU_BLEND);
caustics_polys = NULL;
}
*/
/*
=============
EmitSkyPolys
=============
*/
void EmitSkyPolys (msurface_t *fa)
{
for (const glpoly_t* p = fa->polys; p; p = p->next)
{
// Allocate memory for this polygon.
const int unclipped_vertex_count = p->numverts;
glvert_t* const unclipped_vertices = static_cast<glvert_t*>(sceGuGetMemory(sizeof(glvert_t) * unclipped_vertex_count));
vec3_t dir;
// Generate each vertex.
const glvert_t* src = p->verts;
const glvert_t* last_vertex = src + unclipped_vertex_count;
glvert_t* dst = unclipped_vertices;
while (src != last_vertex)
{
VectorSubtract(src->xyz, r_origin, dir);
dir[2] *= 3; // flatten the sphere
const float length = 6 * 63 / sqrtf(DotProduct(dir, dir));
dir[0] *= length;
dir[1] *= length;
dst->st[0] = (speedscale + dir[0]) * (1.0f / 128.0f);
dst->st[1] = (speedscale + dir[1]) * (1.0f / 128.0f);
dst->xyz[0] = src->xyz[0];
dst->xyz[1] = src->xyz[1];
dst->xyz[2] = src->xyz[2];
// Next vertex.
++src;
++dst;
}
// Do these vertices need clipped?
if (clipping::is_clipping_required(unclipped_vertices, unclipped_vertex_count))
{
// Clip the polygon.
const glvert_t* clipped_vertices;
std::size_t clipped_vertex_count;
clipping::clip(
unclipped_vertices,
unclipped_vertex_count,
&clipped_vertices,
&clipped_vertex_count);
// Any vertices left?
if (clipped_vertex_count)
{
// Copy the vertices to the display list.
const std::size_t buffer_size = clipped_vertex_count * sizeof(glvert_t);
glvert_t* const display_list_vertices = static_cast<glvert_t*>(sceGuGetMemory(buffer_size));
memcpy(display_list_vertices, clipped_vertices, buffer_size);
// Draw the clipped vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
clipped_vertex_count, 0, display_list_vertices);
}
}
else
{
// Draw the vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
unclipped_vertex_count, 0, unclipped_vertices);
}
}
}
/*
=============
EmitScrollPolys
Does a scroll on the pre-fragmented glpoly_t chain
=============
*/
void EmitScrollPolys (msurface_t *fa)
{
const float real_time = static_cast<float>(realtime);
const float scroll = (-64 * ((real_time*0.5) - (int)(real_time*0.5)));
// For each polygon...
for (const glpoly_t* p = fa->polys; p; p = p->next)
{
// Allocate memory for this polygon.
const int unclipped_vertex_count = p->numverts;
glvert_t* const unclipped_vertices =
static_cast<glvert_t*>(sceGuGetMemory(sizeof(glvert_t) * unclipped_vertex_count));
// Generate each vertex.
const glvert_t* src = p->verts;
const glvert_t* last_vertex = src + unclipped_vertex_count;
glvert_t* dst = unclipped_vertices;
while (src != last_vertex)
{
// Fill in the vertex data.
dst->st[0] = src->st[0] + scroll;
dst->st[1] = src->st[1];
dst->xyz[0] = src->xyz[0];
dst->xyz[1] = src->xyz[1];
dst->xyz[2] = src->xyz[2];
// Next vertex.
++src;
++dst;
}
// Do these vertices need clipped?
if (clipping::is_clipping_required(unclipped_vertices, unclipped_vertex_count))
{
// Clip the polygon.
const glvert_t* clipped_vertices;
std::size_t clipped_vertex_count;
clipping::clip(
unclipped_vertices,
unclipped_vertex_count,
&clipped_vertices,
&clipped_vertex_count);
// Any vertices left?
if (clipped_vertex_count)
{
// Copy the vertices to the display list.
const std::size_t buffer_size = clipped_vertex_count * sizeof(glvert_t);
glvert_t* const display_list_vertices = static_cast<glvert_t*>(sceGuGetMemory(buffer_size));
memcpy(display_list_vertices, clipped_vertices, buffer_size);
// Draw the clipped vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
clipped_vertex_count, 0, display_list_vertices);
}
}
else
{
// Draw the vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
unclipped_vertex_count, 0, unclipped_vertices);
}
}
}
extern int ref_texture;
/*
=============
EmitReflectivePolys
Does a reflective warp on the pre-fragmented glpoly_t chain
=============
*/
void EmitReflectivePolys (msurface_t *fa)
{
// For each polygon...
for (const glpoly_t* p = fa->polys; p; p = p->next)
{
// Allocate memory for this polygon.
const int unclipped_vertex_count = p->numverts;
glvert_t* const unclipped_vertices =
static_cast<glvert_t*>(sceGuGetMemory(sizeof(glvert_t) * unclipped_vertex_count));
// Generate each vertex.
const glvert_t* src = p->verts;
const glvert_t* last_vertex = src + unclipped_vertex_count;
glvert_t* dst = unclipped_vertices;
while (src != last_vertex)
{
vec3_t dir;
VectorSubtract(src->xyz, r_origin, dir);
dir[2] *= 3; // flatten the sphere
const float length = 6 * 63 / sqrtf(DotProduct(dir, dir));
dir[0] *= length;
dir[1] *= length;
dst->st[0] = (dir[0]) * (1.0f / 256.0f);
dst->st[1] = (dir[1]) * (1.0f / 256.0f);
dst->xyz[0] = src->xyz[0];
dst->xyz[1] = src->xyz[1];
dst->xyz[2] = src->xyz[2];
// Next vertex.
++src;
++dst;
}
// Do these vertices need clipped?
if (clipping::is_clipping_required(unclipped_vertices, unclipped_vertex_count))
{
// Clip the polygon.
const glvert_t* clipped_vertices;
std::size_t clipped_vertex_count;
clipping::clip(
unclipped_vertices,
unclipped_vertex_count,
&clipped_vertices,
&clipped_vertex_count);
// Any vertices left?
if (clipped_vertex_count)
{
// Copy the vertices to the display list.
const std::size_t buffer_size = clipped_vertex_count * sizeof(glvert_t);
glvert_t* const display_list_vertices = static_cast<glvert_t*>(sceGuGetMemory(buffer_size));
memcpy(display_list_vertices, clipped_vertices, buffer_size);
// Draw the clipped vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
clipped_vertex_count, 0, display_list_vertices);
}
}
else
{
// Draw the vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
unclipped_vertex_count, 0, unclipped_vertices);
}
}
}
/*
===============
EmitBothSkyLayers
Does a sky warp on the pre-fragmented glpoly_t chain
This will be called for brushmodels, the world
will have them chained together.
===============
*/
void EmitBothSkyLayers (msurface_t *fa)
{
GL_Bind (solidskytexture);
speedscale = realtime*8;
speedscale -= (int)speedscale & ~127 ;
EmitSkyPolys (fa);
sceGuEnable(GU_BLEND);
GL_Bind (alphaskytexture);
speedscale = realtime*16;
speedscale -= (int)speedscale & ~127 ;
EmitSkyPolys (fa);
sceGuDisable(GU_BLEND);
}
/*
===============
R_DrawScroll_SkyChain
===============
*/
void R_DrawScroll_SkyChain (msurface_t *s)
{
msurface_t *fa;
GL_Bind(solidskytexture);
speedscale = realtime*8;
speedscale -= (int)speedscale & ~127 ;
for (fa=s ; fa ; fa=fa->texturechain)
EmitSkyPolys (fa);
sceGuEnable(GU_BLEND);
GL_Bind (alphaskytexture);
speedscale = realtime*16;
speedscale -= (int)speedscale & ~127 ;
for (fa=s ; fa ; fa=fa->texturechain)
EmitSkyPolys (fa);
sceGuDisable(GU_BLEND);
}
/*
===============
R_DrawFlat_SkyChain
===============
*/
void R_DrawFlat_SkyChain (msurface_t *s)
{
msurface_t *fa;
sceGuDisable (GU_TEXTURE_2D);
byte *sky_color = StringToRGB (r_skycolor.string); //Get color
sceGuColor(GU_RGBA(sky_color[0], sky_color[1], sky_color[2], 255));
for (fa = s ; fa ; fa = fa->texturechain)
EmitFlatPoly (fa);
sceGuColor(0xffffffff);
sceGuEnable (GU_TEXTURE_2D);
}
/*
=================================================================
Quake 2 environment sky
=================================================================
*/
void UnloadSkyTexture (void)
{
for (int i = 0; i < 5; i++)
{
if (skyimage[i])
GL_UnloadTexture(skyimage[i]);
skyimage[i] = 0;
}
}
/*
==================
R_LoadSkys
==================
*/
extern int nonetexture;
void Sky_LoadSkyBox (char *name)
{
// shpuld: is this still actually needed?
// vram use has been reduced a lot, all textures including skybox already fit vram
// on ndu for example. ram difference shouldn't then make a difference
if (psp_system_model == PSP_MODEL_PHAT)
return;
if (strcmp(skybox_name, name) == 0)
return; //no change
//purge old sky textures
UnloadSkyTexture ();
//turn off skybox if sky is set to ""
if (name[0] == '0')
{
skybox_name[0] = 0;
//if map don't have sky
if (solidskytexture == -1)
solidskytexture = nonetexture;
if (alphaskytexture == -1)
alphaskytexture = nonetexture;
return;
}
// Do sides one way and top another, bottom is not done
for (int i = 0; i < 4; i++)
{
int mark = Hunk_LowMark ();
if(!(skyimage[i] = loadskyboxsideimage (va("gfx/env/%s%s", name, suf[i]), 0, 0, qfalse, GU_LINEAR)) &&
!(skyimage[i] = loadskyboxsideimage (va("gfx/env/%s_%s", name, suf[i]), 0, 0, qfalse, GU_LINEAR)))
{
Con_Printf("Sky: %s[%s] not found, used std\n", name, suf[i]);
if(!(skyimage[i] = loadskyboxsideimage (va("gfx/env/skybox%s", suf[i]), 0, 0, qfalse, GU_LINEAR)))
{
Sys_Error("STD SKY NOT FOUND!");
}
}
Hunk_FreeToLowMark (mark);
}
int mark = Hunk_LowMark ();
if(!(skyimage[4] = loadtextureimage (va("gfx/env/%sup", name), 0, 0, qfalse, GU_LINEAR)) &&
!(skyimage[4] = loadtextureimage (va("gfx/env/%s_up", name), 0, 0, qfalse, GU_LINEAR)))
{
Con_Printf("Sky: %s[%s] not found, used std\n", name, suf[4]);
if(!(skyimage[4] = loadtextureimage (va("gfx/env/skybox%s", suf[4]), 0, 0, qfalse, GU_LINEAR)))
{
Sys_Error("STD SKY NOT FOUND!");
}
}
Hunk_FreeToLowMark (mark);
strcpy(skybox_name, name);
}
/*
=================
Sky_NewMap
=================
*/
void Sky_NewMap (void)
{
char key[128], value[4096];
char *data;
//purge old sky textures
UnloadSkyTexture ();
//
// initially no sky
//
Sky_LoadSkyBox (""); //not used
//
// read worldspawn (this is so ugly, and shouldn't it be done on the server?)
//
data = cl.worldmodel->entities;
if (!data)
return; //FIXME: how could this possibly ever happen? -- if there's no
// worldspawn then the sever wouldn't send the loadmap message to the client
data = COM_Parse(data);
if (!data) //should never happen
return; // error
if (com_token[0] != '{') //should never happen
return; // error
while (1)
{
data = COM_Parse(data);
if (!data)
return; // error
if (com_token[0] == '}')
break; // end of worldspawn
if (com_token[0] == '_')
strcpy(key, com_token + 1);
else
strcpy(key, com_token);
while (key[strlen(key)-1] == ' ') // remove trailing spaces
key[strlen(key)-1] = 0;
data = COM_Parse(data);
if (!data)
return; // error
strcpy(value, com_token);
if (!strcmp("sky", key))
Sky_LoadSkyBox(value);
else if (!strcmp("skyname", key)) //half-life
Sky_LoadSkyBox(value);
else if (!strcmp("qlsky", key)) //quake lives
Sky_LoadSkyBox(value);
}
}
/*
=================
Sky_SkyCommand_f
=================
*/
void Sky_SkyCommand_f (void)
{
switch (Cmd_Argc())
{
case 1:
Con_Printf("\"sky\" is \"%s\"\n", skybox_name);
break;
case 2:
Sky_LoadSkyBox(Cmd_Argv(1));
break;
default:
Con_Printf("usage: sky <skyname>\n");
}
}
/*
=============
Sky_Init
=============
*/
void Sky_Init (void)
{
int i;
Cmd_AddCommand ("sky",Sky_SkyCommand_f);
for (i=0; i<5; i++)
skyimage[i] = 0;
}
static vec3_t skyclip[6] = {
{1,1,0},
{1,-1,0},
{0,-1,1},
{0,1,1},
{1,0,1},
{-1,0,1}
};
int c_sky;
// 1 = s, 2 = t, 3 = 2048
static int st_to_vec[6][3] =
{
{3,-1,2},
{-3,1,2},
{1,3,2},
{-1,-3,2},
{-2,-1,3}, // 0 degrees yaw, look straight up
{2,-1,-3} // look straight down
// {-1,2,3},
// {1,2,-3}
};
// s = [0]/[2], t = [1]/[2]
static int vec_to_st[6][3] =
{
{-2,3,1},
{2,3,-1},
{1,3,2},
{-1,3,-2},
{-2,-1,3},
{-2,1,-3}
// {-1,2,3},
// {1,2,-3}
};
static float skymins[2][6], skymaxs[2][6];
static void DrawSkyPolygon (int nump, vec3_t vecs)
{
int i,j,axis;
float s,t,dv,*vp;
vec3_t v, av;
c_sky++;
// decide which face it maps to
VectorCopy (vec3_origin, v);
for (i=0, vp=vecs ; i<nump ; i++, vp+=3)
VectorAdd (vp, v, v);
av[0] = fabs(v[0]);
av[1] = fabs(v[1]);
av[2] = fabs(v[2]);
if (av[0] > av[1] && av[0] > av[2])
axis = (v[0] < 0) ? 1 : 0;
else if (av[1] > av[2] && av[1] > av[0])
axis = (v[1] < 0) ? 3 : 2;
else
axis = (v[2] < 0) ? 5 : 4;
// project new texture coords
for (i=0 ; i<nump ; i++, vecs+=3)
{
j = vec_to_st[axis][2];
dv = (j > 0) ? vecs[j - 1] : -vecs[-j - 1];
j = vec_to_st[axis][0];
s = (j < 0) ? -vecs[-j -1] / dv : vecs[j-1] / dv;
j = vec_to_st[axis][1];
t = (j < 0) ? -vecs[-j -1] / dv : vecs[j-1] / dv;
if (s < skymins[0][axis])
skymins[0][axis] = s;
if (t < skymins[1][axis])
skymins[1][axis] = t;
if (s > skymaxs[0][axis])
skymaxs[0][axis] = s;
if (t > skymaxs[1][axis])
skymaxs[1][axis] = t;
}
}
#define MAX_CLIP_VERTS 64
void ClipSkyPolygon (int nump, vec3_t vecs, int stage)
{
float *norm;
float *v;
qboolean front, back;
float d, e;
float dists[MAX_CLIP_VERTS];
int sides[MAX_CLIP_VERTS];
vec3_t newv[2][MAX_CLIP_VERTS];
int newc[2];
int i, j;
if (nump > MAX_CLIP_VERTS-2)
Sys_Error ("ClipSkyPolygon: MAX_CLIP_VERTS");
if (stage == 6)
{ // fully clipped, so draw it
DrawSkyPolygon (nump, vecs);
return;
}
front = back = qfalse;
norm = skyclip[stage];
for (i=0, v = vecs ; i<nump ; i++, v+=3)
{
d = DotProduct (v, norm);
if (d > ON_EPSILON)
{
front = qtrue;
sides[i] = SIDE_FRONT;
}
else if (d < ON_EPSILON)
{
back = qtrue;
sides[i] = SIDE_BACK;
}
else
sides[i] = SIDE_ON;
dists[i] = d;
}
if (!front || !back)
{ // not clipped
ClipSkyPolygon (nump, vecs, stage+1);
return;
}
// clip it
sides[i] = sides[0];
dists[i] = dists[0];
VectorCopy (vecs, (vecs+(i*3)) );
newc[0] = newc[1] = 0;
for (i=0, v = vecs ; i<nump ; i++, v+=3)
{
switch (sides[i])
{
case SIDE_FRONT:
VectorCopy (v, newv[0][newc[0]]);
newc[0]++;
break;
case SIDE_BACK:
VectorCopy (v, newv[1][newc[1]]);
newc[1]++;
break;
case SIDE_ON:
VectorCopy (v, newv[0][newc[0]]);
newc[0]++;
VectorCopy (v, newv[1][newc[1]]);
newc[1]++;
break;
}
if (sides[i] == SIDE_ON || sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
continue;
d = dists[i] / (dists[i] - dists[i+1]);
for (j=0 ; j<3 ; j++)
{
e = v[j] + d*(v[j+3] - v[j]);
newv[0][newc[0]][j] = e;
newv[1][newc[1]][j] = e;
}
newc[0]++;
newc[1]++;
}
// continue
ClipSkyPolygon (newc[0], newv[0][0], stage+1);
ClipSkyPolygon (newc[1], newv[1][0], stage+1);
}
/*
==============
R_ClearSkyBox
==============
*/
void R_ClearSkyBox (void)
{
int i;
for (i=0 ; i<6 ; i++)
{
skymins[0][i] = skymins[1][i] = 9999;
skymaxs[0][i] = skymaxs[1][i] = -9999;
}
}
static float s_axis;
static float t_axis;
static vec3_t v_axis;
void MakeSkyVec (float s, float t, int axis)
{
vec3_t b;
int j, k;
b[0] = s*r_skydis.value;
b[1] = t*r_skydis.value;
b[2] = r_skydis.value;
for (j=0 ; j<3 ; j++)
{
k = st_to_vec[axis][j];
if (k < 0)
v_axis[j] = -b[-k - 1];
else
v_axis[j] = b[k - 1];
v_axis[j] += r_origin[j];
}
// avoid bilerp seam
s = (s+1.0f)*0.5f;
t = (t+1.0f)*0.5f;
if (s < 1.0f/512.0f)
s = 1.0f/512.0f;
else if (s > 511.0f/512.0f)
s = 511.0f/512.0f;
if (t < 1.0f/512.0f)
t = 1.0f/512.0f;
else if (t > 511.0f/512.0f)
t = 511.0f/512.0f;
t = 1.0f - t;
s_axis = s;
t_axis = t;
}
void Fog_EnableGFog (void);
void Fog_DisableGFog (void);
void Fog_SetColorForSkyS (void);
void Fog_SetColorForSkyE (void);
void DrawSkyFogBlend (float skydepth) {
float skyfogblend = r_skyfogblend.value;
// Don't do anything if the map doesnt have fog
if ((skyfogblend <= 0) || (r_refdef.fog_start <= 0 && r_refdef.fog_end <= 0)) {
sceGuEnable(GU_TEXTURE_2D);
sceGuDisable(GU_BLEND);
//sceGuDepthRange(0, 65535);
Fog_SetColorForSkyE(); //setup for Sky
Fog_EnableGFog(); //setup for Sky
sceGuDepthMask(false);
sceGuEnable(GU_DEPTH_TEST);
return;
}
float endheight = skydepth * skyfogblend;
float startheight = MIN(skydepth * 0.075f, endheight * 0.3f);
sceGuDisable(GU_TEXTURE_2D);
sceGuTexFunc(GU_TFX_REPLACE, GU_TCC_RGBA);
sceGuShadeModel(GU_SMOOTH);
sceGuEnable(GU_BLEND);
float r = MIN(1.0f, r_refdef.fog_red * 0.01f);
float g = MIN(1.0f, r_refdef.fog_green * 0.01f);
float b = MIN(1.0f, r_refdef.fog_blue * 0.01f);
unsigned int fogcol1 = GU_COLOR(r, g, b, 1.0f);
unsigned int fogcol2 = GU_COLOR(r, g, b, 0.0f);
for (int i = -2; i < 2; i++) {
for (int j = 0; j < 2; j++) {
// Allocate memory for fake fog polys.
struct fogvert {
unsigned int color;
vec3_t xyz;
};
const int unclipped_vertex_count = 4;
fogvert* const verts = static_cast<fogvert*>(sceGuGetMemory(sizeof(fogvert) * unclipped_vertex_count));
vec3_t angles, forward, right;
angles[PITCH] = 0.f;
angles[YAW] = r_refdef.viewangles[YAW];
angles[ROLL] = 0.f;
AngleVectors(angles, forward, right, NULLVEC);
float forwardamount = skydepth * (0.7f - abs(i*i) * 0.15f);
float forwardamount2 = skydepth * (0.7f - abs((i + 1)*(i + 1)) * 0.15f);
unsigned int uppercolor = j > 0 ? fogcol2 : fogcol1;
float bottomheight = j > 0 ? startheight : -1.0f;
float topheight = j > 0 ? endheight : startheight;
verts[0].xyz[0] = r_origin[0] + forward[0] * forwardamount + i * right[0] * skydepth;
verts[0].xyz[1] = r_origin[1] + forward[1] * forwardamount + i * right[1] * skydepth;
verts[0].xyz[2] = r_origin[2] + forward[2] * forwardamount + i * right[2] * skydepth + bottomheight;
verts[0].color = fogcol1;
verts[1].xyz[0] = r_origin[0] + forward[0] * forwardamount + i * right[0] * skydepth;
verts[1].xyz[1] = r_origin[1] + forward[1] * forwardamount + i * right[1] * skydepth;
verts[1].xyz[2] = r_origin[2] + forward[2] * forwardamount + i * right[2] * skydepth + topheight;
verts[1].color = uppercolor;
verts[2].xyz[0] = r_origin[0] + forward[0] * forwardamount2 + (i + 1) * right[0] * skydepth;
verts[2].xyz[1] = r_origin[1] + forward[1] * forwardamount2 + (i + 1) * right[1] * skydepth;
verts[2].xyz[2] = r_origin[2] + forward[2] * forwardamount2 + (i + 1) * right[2] * skydepth + topheight;
verts[2].color = uppercolor;
verts[3].xyz[0] = r_origin[0] + forward[0] * forwardamount2 + (i + 1) * right[0] * skydepth;
verts[3].xyz[1] = r_origin[1] + forward[1] * forwardamount2 + (i + 1) * right[1] * skydepth;
verts[3].xyz[2] = r_origin[2] + forward[2] * forwardamount2 + (i + 1) * right[2] * skydepth + bottomheight;
verts[3].color = fogcol1;
// Draw the poly directly.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_COLOR_8888 | GU_VERTEX_32BITF,
unclipped_vertex_count, 0, verts);
}
}
sceGuEnable(GU_TEXTURE_2D);
sceGuDisable(GU_BLEND);
//sceGuDepthRange(0, 65535);
Fog_SetColorForSkyE(); //setup for Sky
Fog_EnableGFog(); //setup for Sky
sceGuDepthMask(false);
sceGuEnable(GU_DEPTH_TEST);
}
/*
==============
R_DrawSkyBox
==============
*/
float skynormals[5][3] = {
{ 1.f, 0.f, 0.f },
{ -1.f, 0.f, 0.f },
{ 0.f, 1.f, 0.f },
{ 0.f, -1.f, 0.f },
{ 0.f, 0.f, 1.f }
};
float skyrt[5][3] = {
{ 0.f, -1.f, 0.f },
{ 0.f, 1.f, 0.f },
{ 1.f, 0.f, 0.f },
{ -1.f, 0.f, 0.f },
{ 0.f, -1.f, 0.f }
};
float skyup[5][3] = {
{ 0.f, 0.f, 1.f },
{ 0.f, 0.f, 1.f },
{ 0.f, 0.f, 1.f },
{ 0.f, 0.f, 1.f },
{ -1.f, 0.f, 0.f }
};
void R_DrawSkyBox (void)
{
int i;
Fog_DisableGFog(); //setup for Sky
Fog_SetColorForSkyS(); //setup for Sky
//sceGuDepthRange(32767, 65535); //not used
sceGuDepthMask(true);
sceGuDisable(GU_DEPTH_TEST);
float skydepth = 256.f;
for (i=0 ; i<5 ; i++)
{
// Allocate memory for this polygon.
const int unclipped_vertex_count = 4;
glvert_t* const unclipped_vertices =
static_cast<glvert_t*>(sceGuGetMemory(sizeof(glvert_t) * unclipped_vertex_count));
// check if poly needs to be drawn at all
float dot = DotProduct(skynormals[i], vpn);
// < 0 check would work at fov 90 or less, just guess a value that's high enough?
if (dot < -0.25f) continue;
GL_Bind (skyimage[skytexorder[i]]);
// if direction is not up, cut "down" vector to zero to only render half cube
float upnegfact = i == 4 ? 1.0f : 0.0f;
float skyboxtexsize = 256.f;
// move ever so slightly less towards forward to make edges overlap a bit, just to not have shimmering pixels between sky edges
float forwardfact = 0.99f;
unclipped_vertices[0].st[0] = 0.5f / skyboxtexsize;
unclipped_vertices[0].st[1] = (skyboxtexsize - .5f) / skyboxtexsize;
unclipped_vertices[0].xyz[0] = r_origin[0] + (forwardfact * skynormals[i][0] - skyrt[i][0] - skyup[i][0] * upnegfact) * skydepth;
unclipped_vertices[0].xyz[1] = r_origin[1] + (forwardfact * skynormals[i][1] - skyrt[i][1] - skyup[i][1] * upnegfact) * skydepth;
unclipped_vertices[0].xyz[2] = r_origin[2] + (forwardfact * skynormals[i][2] - skyrt[i][2] - skyup[i][2] * upnegfact) * skydepth;
unclipped_vertices[1].st[0] = 0.5f / skyboxtexsize;
unclipped_vertices[1].st[1] = 0.5f / skyboxtexsize;
unclipped_vertices[1].xyz[0] = r_origin[0] + (forwardfact * skynormals[i][0] - skyrt[i][0] + skyup[i][0]) * skydepth;
unclipped_vertices[1].xyz[1] = r_origin[1] + (forwardfact * skynormals[i][1] - skyrt[i][1] + skyup[i][1]) * skydepth;
unclipped_vertices[1].xyz[2] = r_origin[2] + (forwardfact * skynormals[i][2] - skyrt[i][2] + skyup[i][2]) * skydepth;
unclipped_vertices[2].st[0] = (skyboxtexsize - .5f) / skyboxtexsize;
unclipped_vertices[2].st[1] = 0.5f / skyboxtexsize;
unclipped_vertices[2].xyz[0] = r_origin[0] + (forwardfact * skynormals[i][0] + skyrt[i][0] + skyup[i][0]) * skydepth;
unclipped_vertices[2].xyz[1] = r_origin[1] + (forwardfact * skynormals[i][1] + skyrt[i][1] + skyup[i][1]) * skydepth;
unclipped_vertices[2].xyz[2] = r_origin[2] + (forwardfact * skynormals[i][2] + skyrt[i][2] + skyup[i][2]) * skydepth;
unclipped_vertices[3].st[0] = (skyboxtexsize - .5f) / skyboxtexsize;
unclipped_vertices[3].st[1] = (skyboxtexsize - .5f) / skyboxtexsize;
unclipped_vertices[3].xyz[0] = r_origin[0] + (forwardfact * skynormals[i][0] + skyrt[i][0] - skyup[i][0] * upnegfact) * skydepth;
unclipped_vertices[3].xyz[1] = r_origin[1] + (forwardfact * skynormals[i][1] + skyrt[i][1] - skyup[i][1] * upnegfact) * skydepth;
unclipped_vertices[3].xyz[2] = r_origin[2] + (forwardfact * skynormals[i][2] + skyrt[i][2] - skyup[i][2] * upnegfact) * skydepth;
if (clipping::is_clipping_required(
unclipped_vertices,
unclipped_vertex_count))
{
// Clip the polygon.
const glvert_t* clipped_vertices;
std::size_t clipped_vertex_count;
clipping::clip(
unclipped_vertices,
unclipped_vertex_count,
&clipped_vertices,
&clipped_vertex_count);
// Did we have any vertices left?
if (clipped_vertex_count)
{
// Copy the vertices to the display list.
const std::size_t buffer_size = clipped_vertex_count * sizeof(glvert_t);
glvert_t* const display_list_vertices = static_cast<glvert_t*>(sceGuGetMemory(buffer_size));
memcpy(display_list_vertices, clipped_vertices, buffer_size);
// Draw the clipped vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
clipped_vertex_count, 0, display_list_vertices);
}
}
else
{
// Draw the poly directly.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
unclipped_vertex_count, 0, unclipped_vertices);
}
}
DrawSkyFogBlend(skydepth);
//sceGuDepthRange(0, 65535);
Fog_SetColorForSkyE(); //setup for Sky
Fog_EnableGFog(); //setup for Sky
}
//===============================================================
/*
=================
R_DrawSkyChain
=================
*/
void R_DrawSkyChain (msurface_t *s)
{
msurface_t *fa;
int i;
vec3_t verts[MAX_CLIP_VERTS];
glpoly_t *p;
if (r_fastsky.value || !skybox_name[0])
{
R_DrawFlat_SkyChain (s);
}
else
{
if (skybox_name[0]) // if the skybox has a name, draw the skybox
{
c_sky = 0;
// calculate vertex values for sky box
for (fa=s ; fa ; fa=fa->texturechain)
{
for (p=fa->polys ; p ; p=p->next)
{
for (i=0 ; i<p->numverts ; i++)
{
VectorSubtract (p->verts[i].xyz, r_origin, verts[i]);
}
ClipSkyPolygon (p->numverts, verts[0], 0);
}
}
}
else // otherwise, draw the normal quake sky
{
R_DrawScroll_SkyChain (s);
}
}
}
//===============================================================
/*
=============
R_InitSky
A sky texture is 256*128, with the right side being a masked overlay
==============
*/
void R_InitSky (byte *mt)
{
byte trans[128*128];
const byte* const src = (byte *)mt;
for (int i=0 ; i<128 ; i++)
{
for (int j=0 ; j<128 ; j++)
{
const byte p = src[i*256 + j + 128];
trans[(i*128) + j] = p;
}
}
if (solidskytexture == -1)
solidskytexture = GL_LoadTexture("solidskytexture", 128, 128, trans, qfalse, GU_LINEAR, 0);
for (int i=0 ; i<128 ; i++)
{
for (int j=0 ; j<128 ; j++)
{
const byte p = src[i*256 + j];
if (p == 0)
trans[(i*128) + j] = 255;
else
trans[(i*128) + j] = p;
}
}
if (alphaskytexture == -1)
alphaskytexture = GL_LoadTexture("alphaskytexture", 128, 128, trans, qfalse, GU_LINEAR, 0);
}