dquakeplus/source/mathlib.c

953 lines
24 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// mathlib.c -- math primitives
#include <math.h>
#include "quakedef.h"
#ifdef PSP_VFPU
#include <pspmath.h>
#endif
void Sys_Error (char *error, ...);
vec3_t vec3_origin = {0,0,0};
int nanmask = 255<<23;
int _mathlib_temp_int1, _mathlib_temp_int2, _mathlib_temp_int3;
float _mathlib_temp_float1, _mathlib_temp_float2, _mathlib_temp_float3;
vec3_t _mathlib_temp_vec1, _mathlib_temp_vec2, _mathlib_temp_vec3;
/*-----------------------------------------------------------------*/
float rsqrt( float number )
{
#ifdef PSP_VFPU
float d;
__asm__ ( //from official pspsdk by sony
".set push\n" // save assember option
".set noreorder\n" // suppress reordering
"lv.s s000, %1\n" // s000 = s
"vrsq.s s000, s000\n" // s000 = 1 / sqrt(s000)
"sv.s s000, %0\n" // d = s000
".set pop\n" // restore assember option
: "=m"(d)
: "m"(number)
);
return d;
#else
int i;
float x, y;
if( number == 0.0f )
return 0.0f;
x = number * 0.5f;
i = *(int *)&number; // evil floating point bit level hacking
i = 0x5f3759df - (i >> 1); // what the fuck?
y = *(float *)&i;
y = y * (1.5f - (x * y * y)); // first iteration
return y;
#endif
}
/*
=================
SinCos
=================
*/
void SinCos( float radians, float *sine, float *cosine )
{
#ifdef PSP_VFPU
vfpu_sincos(radians,sine,cosine);
#else
__asm__ volatile (
"mtv %2, S002\n"
"vcst.s S003, VFPU_2_PI\n"
"vmul.s S002, S002, S003\n"
"vrot.p C000, S002, [s, c]\n"
"mfv %0, S000\n"
"mfv %1, S001\n"
: "=r"(*sine), "=r"(*cosine): "r"(radians));
#endif
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct( normal, normal );
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
int pos;
int i;
float minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
*/
for ( pos = 0, i = 0; i < 3; i++ )
{
#ifdef PSP_VFPU
if ( vfpu_fabsf( src[i] ) < minelem )
#else
if ( fabsf( src[i] ) < minelem )
#endif
{
pos = i;
#ifdef PSP_VFPU
minelem = vfpu_fabsf( src[i] );
#else
minelem = fabsf( src[i] );
#endif
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane( dst, tempvec, src );
/*
** normalize the result
*/
VectorNormalize( dst );
}
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
{
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int i;
vec3_t vr, vup, vf;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector( vr, dir );
CrossProduct( vr, vf, vup );
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy_vfpu( im, m, sizeof( im ) );
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset( zrot, 0, sizeof( zrot ) );
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
#ifdef PSP_VFPU
zrot[0][0] = vfpu_cosf( DEG2RAD( degrees ) );
zrot[0][1] = vfpu_sinf( DEG2RAD( degrees ) );
zrot[1][0] = -vfpu_sinf( DEG2RAD( degrees ) );
zrot[1][1] = vfpu_cosf( DEG2RAD( degrees ) );
#else
zrot[0][0] = cosf( DEG2RAD( degrees ) );
zrot[0][1] = sinf( DEG2RAD( degrees ) );
zrot[1][0] = -sinf( DEG2RAD( degrees ) );
zrot[1][1] = cosf( DEG2RAD( degrees ) );
#endif
R_ConcatRotations( m, zrot, tmpmat );
R_ConcatRotations( tmpmat, im, rot );
for ( i = 0; i < 3; i++ )
{
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}
/*-----------------------------------------------------------------*/
float anglemod(float a)
{
#if 0
if (a >= 0)
a -= 360*(int)(a/360);
else
a += 360*( 1 + (int)(-a/360) );
#endif
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
return a;
}
/*
==================
BOPS_Error
Split out like this for ASM to call.
==================
*/
void BOPS_Error (void)
{
Sys_Error ("BoxOnPlaneSide: Bad signbits");
}
/*
==================
BoxOnPlaneSide
Returns 1, 2, or 1 + 2
==================
*/
// crow_bar's enhanced boxonplaneside
int BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, mplane_t *p)
{
#ifdef PSP_VFPU
int sides;
__asm__ (
".set push\n" // save assembler option
".set noreorder\n" // suppress reordering
"lv.s S000, 0 + %[normal]\n" // S000 = p->normal[0]
"lv.s S001, 4 + %[normal]\n" // S001 = p->normal[1]
"lv.s S002, 8 + %[normal]\n" // S002 = p->normal[2]
"vzero.p C030\n" // C030 = [0.0f, 0.0f]
"lv.s S032, %[dist]\n" // S032 = p->dist
"move $8, $0\n" // $8 = 0
"beq %[signbits], $8, 0f\n" // jump to 0
"addiu $8, $8, 1\n" // $8 = $8 + 1 ( delay slot )
"beq %[signbits], $8, 1f\n" // jump to 1
"addiu $8, $8, 1\n" // $8 = $8 + 1 ( delay slot )
"beq %[signbits], $8, 2f\n" // jump to 2
"addiu $8, $8, 1\n" // $8 = $8 + 1 ( delay slot )
"beq %[signbits], $8, 3f\n" // jump to 3
"addiu $8, $8, 1\n" // $8 = $8 + 1 ( delay slot )
"beq %[signbits], $8, 4f\n" // jump to 4
"addiu $8, $8, 1\n" // $8 = $8 + 1 ( delay slot )
"beq %[signbits], $8, 5f\n" // jump to 5
"addiu $8, $8, 1\n" // $8 = $8 + 1 ( delay slot )
"beq %[signbits], $8, 6f\n" // jump to 6
"addiu $8, $8, 1\n" // $8 = $8 + 1 ( delay slot )
"beq %[signbits], $8, 7f\n" // jump to 7
"nop\n" // ( delay slot )
"j 8f\n" // jump to SetSides
"nop\n" // ( delay slot )
"0:\n"
/*
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
*/
"lv.s S010, 0 + %[emaxs]\n" // S010 = emaxs[0]
"lv.s S011, 4 + %[emaxs]\n" // S011 = emaxs[1]
"lv.s S012, 8 + %[emaxs]\n" // S012 = emaxs[2]
"lv.s S020, 0 + %[emins]\n" // S020 = emins[0]
"lv.s S021, 4 + %[emins]\n" // S021 = emins[1]
"lv.s S022, 8 + %[emins]\n" // S022 = emins[2]
"vdot.t S030, C000, C010\n" // S030 = C000 * C010
"vdot.t S031, C000, C020\n" // S030 = C000 * C020
"j 8f\n" // jump to SetSides
"nop\n" // ( delay slot )
"1:\n"
/*
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
*/
"lv.s S010, 0 + %[emins]\n" // S010 = emins[0]
"lv.s S011, 4 + %[emaxs]\n" // S011 = emaxs[1]
"lv.s S012, 8 + %[emaxs]\n" // S012 = emaxs[2]
"lv.s S020, 0 + %[emaxs]\n" // S020 = emaxs[0]
"lv.s S021, 4 + %[emins]\n" // S021 = emins[1]
"lv.s S022, 8 + %[emins]\n" // S022 = emins[2]
"vdot.t S030, C000, C010\n" // S030 = C000 * C010
"vdot.t S031, C000, C020\n" // S030 = C000 * C020
"j 8f\n" // jump to SetSides
"nop\n" // ( delay slot )
"2:\n"
/*
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
*/
"lv.s S010, 0 + %[emaxs]\n" // S010 = emaxs[0]
"lv.s S011, 4 + %[emins]\n" // S011 = emins[1]
"lv.s S012, 8 + %[emaxs]\n" // S012 = emaxs[2]
"lv.s S020, 0 + %[emins]\n" // S020 = emins[0]
"lv.s S021, 4 + %[emaxs]\n" // S021 = emaxs[1]
"lv.s S022, 8 + %[emins]\n" // S022 = emins[2]
"vdot.t S030, C000, C010\n" // S030 = C000 * C010
"vdot.t S031, C000, C020\n" // S030 = C000 * C020
"j 8f\n" // jump to SetSides
"nop\n" // ( delay slot )
"3:\n"
/*
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
*/
"lv.s S010, 0 + %[emins]\n" // S010 = emins[0]
"lv.s S011, 4 + %[emins]\n" // S011 = emins[1]
"lv.s S012, 8 + %[emaxs]\n" // S012 = emaxs[2]
"lv.s S020, 0 + %[emaxs]\n" // S020 = emaxs[0]
"lv.s S021, 4 + %[emaxs]\n" // S021 = emaxs[1]
"lv.s S022, 8 + %[emins]\n" // S022 = emins[2]
"vdot.t S030, C000, C010\n" // S030 = C000 * C010
"vdot.t S031, C000, C020\n" // S030 = C000 * C020
"j 8f\n" // jump to SetSides
"nop\n" // ( delay slot )
"4:\n"
/*
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
*/
"lv.s S010, 0 + %[emaxs]\n" // S010 = emaxs[0]
"lv.s S011, 4 + %[emaxs]\n" // S011 = emaxs[1]
"lv.s S012, 8 + %[emins]\n" // S012 = emins[2]
"lv.s S020, 0 + %[emins]\n" // S020 = emins[0]
"lv.s S021, 4 + %[emins]\n" // S021 = emins[1]
"lv.s S022, 8 + %[emaxs]\n" // S022 = emaxs[2]
"vdot.t S030, C000, C010\n" // S030 = C000 * C010
"vdot.t S031, C000, C020\n" // S030 = C000 * C020
"j 8f\n" // jump to SetSides
"nop\n" // ( delay slot )
"5:\n"
/*
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
*/
"lv.s S010, 0 + %[emins]\n" // S010 = emins[0]
"lv.s S011, 4 + %[emaxs]\n" // S011 = emaxs[1]
"lv.s S012, 8 + %[emins]\n" // S012 = emins[2]
"lv.s S020, 0 + %[emaxs]\n" // S020 = emaxs[0]
"lv.s S021, 4 + %[emins]\n" // S021 = emins[1]
"lv.s S022, 8 + %[emaxs]\n" // S022 = emaxs[2]
"vdot.t S030, C000, C010\n" // S030 = C000 * C010
"vdot.t S031, C000, C020\n" // S030 = C000 * C020
"j 8f\n" // jump to SetSides
"nop\n" // ( delay slot )
"6:\n"
/*
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
*/
"lv.s S010, 0 + %[emaxs]\n" // S010 = emaxs[0]
"lv.s S011, 4 + %[emins]\n" // S011 = emins[1]
"lv.s S012, 8 + %[emins]\n" // S012 = emins[2]
"lv.s S020, 0 + %[emins]\n" // S020 = emins[0]
"lv.s S021, 4 + %[emaxs]\n" // S021 = emaxs[1]
"lv.s S022, 8 + %[emaxs]\n" // S022 = emaxs[2]
"vdot.t S030, C000, C010\n" // S030 = C000 * C010
"vdot.t S031, C000, C020\n" // S030 = C000 * C020
"j 8f\n" // jump to SetSides
"nop\n" // ( delay slot )
"7:\n"
/*
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
*/
"lv.s S010, 0 + %[emins]\n" // S010 = emins[0]
"lv.s S011, 4 + %[emins]\n" // S011 = emins[1]
"lv.s S012, 8 + %[emins]\n" // S012 = emins[2]
"lv.s S020, 0 + %[emaxs]\n" // S020 = emaxs[0]
"lv.s S021, 4 + %[emaxs]\n" // S021 = emaxs[1]
"lv.s S022, 8 + %[emaxs]\n" // S022 = emaxs[2]
"vdot.t S030, C000, C010\n" // S030 = C000 * C010
"vdot.t S031, C000, C020\n" // S030 = C000 * C020
"8:\n" // SetSides
/*
if( dist1 >= p->dist )
sides = 1;
if( dist2 < p->dist )
sides |= 2;
*/
"addiu %[sides], $0, 0\n" // sides = 0
"vcmp.s LT, S030, S032\n" // S030 < S032
"bvt 0, 9f\n" // if ( CC[0] == 1 ) jump to 9
"nop\n" // ( delay slot )
"addiu %[sides], %[sides], 1\n"// sides = 1
"9:\n"
"vcmp.s GE, S031, S032\n" // S031 >= S032
"bvt 0, 10f\n" // if ( CC[0] == 1 ) jump to 10
"nop\n" // ( delay slot )
"addiu %[sides], %[sides], 2\n"// sides = sides + 2
"10:\n"
".set pop\n" // restore assembler option
: [sides] "=r" ( sides )
: [normal] "m" (*(p->normal)),
[emaxs] "m" ( *emaxs ),
[emins] "m" ( *emins ),
[signbits] "r" ( p->signbits ),
[dist] "m" ( p->dist )
: "$8"
);
return sides;
#else
int sides = 0;
float dist1, dist2;
// general case
switch( p->signbits )
{
case 0:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 1:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 2:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 3:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 4:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 5:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 6:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
case 7:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
default:
// shut up compiler
dist1 = dist2 = 0;
break;
}
if( dist1 >= p->dist )
sides = 1;
if( dist2 < p->dist )
sides |= 2;
return sides;
#endif
}
void vectoangles (vec3_t vec, vec3_t ang)
{
float forward, yaw, pitch;
if (!vec[1] && !vec[0])
{
yaw = 0;
pitch = (vec[2] > 0) ? 90 : 270;
}
else
{
#ifdef PSP_VFPU
yaw = vec[0] ? (vfpu_atan2f(vec[1], vec[0]) * 180 / M_PI) : (vec[1] > 0) ? 90 : 270;
#else
yaw = vec[0] ? (atan2(vec[1], vec[0]) * 180 / M_PI) : (vec[1] > 0) ? 90 : 270;
#endif
if (yaw < 0)
yaw += 360;
#ifdef PSP_VFPU
forward = vfpu_sqrtf (vec[0] * vec[0] + vec[1] * vec[1]);
pitch = vfpu_atan2f (vec[2], forward) * 180 / M_PI;
#else
forward = sqrt (vec[0] * vec[0] + vec[1] * vec[1]);
pitch = atan2 (vec[2], forward) * 180 / M_PI;
#endif
if (pitch < 0)
pitch += 360;
}
ang[0] = pitch;
ang[1] = yaw;
ang[2] = 0;
}
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle;
float sr, sp, sy, cr, cp, cy;
angle = angles[YAW] * (M_PI*2 / 360);
#ifdef PSP_VFPU
sy = vfpu_sinf(angle);
cy = vfpu_cosf(angle);
#else
sy = sinf(angle);
cy = cosf(angle);
#endif
angle = angles[PITCH] * (M_PI*2 / 360);
#ifdef PSP_VFPU
sp = vfpu_sinf(angle);
cp = vfpu_cosf(angle);
#else
sp = sinf(angle);
cp = cosf(angle);
#endif
angle = angles[ROLL] * (M_PI*2 / 360);
#ifdef PSP_VFPU
sr = vfpu_sinf(angle);
cr = vfpu_cosf(angle);
#else
sr = sinf(angle);
cr = cosf(angle);
#endif
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
right[1] = (-1*sr*sp*sy+-1*cr*cy);
right[2] = -1*sr*cp;
up[0] = (cr*sp*cy+-sr*-sy);
up[1] = (cr*sp*sy+-sr*cy);
up[2] = cr*cp;
}
float VectorLength (vec3_t v)
{
#ifdef PSP_VFPU
return vfpu_sqrtf(DotProduct(v, v));
#else
return sqrtf(DotProduct(v, v));
#endif
}
int VectorCompare (vec3_t v1, vec3_t v2)
{
int i;
for (i=0 ; i<3 ; i++)
if (v1[i] != v2[i])
return 0;
return 1;
}
void VectorMA (vec3_t veca, float scale, vec3_t vecb, vec3_t vecc)
{
vecc[0] = veca[0] + scale*vecb[0];
vecc[1] = veca[1] + scale*vecb[1];
vecc[2] = veca[2] + scale*vecb[2];
}
vec_t _DotProduct (vec3_t v1, vec3_t v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out)
{
out[0] = veca[0]-vecb[0];
out[1] = veca[1]-vecb[1];
out[2] = veca[2]-vecb[2];
}
void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out)
{
out[0] = veca[0]+vecb[0];
out[1] = veca[1]+vecb[1];
out[2] = veca[2]+vecb[2];
}
void _VectorCopy (vec3_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
{
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
vec_t Length(vec3_t v)
{
#ifdef PSP_VFPU
return vfpu_sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
#else
return sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
#endif
}
float VecLength2(vec3_t v1, vec3_t v2)
{
vec3_t k;
VectorSubtract(v1, v2, k);
return sqrt(k[0]*k[0] + k[1]*k[1] + k[2]*k[2]);
}
float VectorNormalize (vec3_t v)
{
#ifdef PSP_VFPU
float length = vfpu_sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
#else
float length = sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
#endif
if (length)
{
const float ilength = 1.0f / length;
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
return length;
}
void VectorInverse (vec3_t v)
{
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void VectorScale (vec3_t in, vec_t scale, vec3_t out)
{
out[0] = in[0]*scale;
out[1] = in[1]*scale;
out[2] = in[2]*scale;
}
int Q_log2(int val)
{
int answer=0;
while (val>>=1)
answer++;
return answer;
}
/*
================
R_ConcatRotations
================
*/
void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3])
{
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}
/*
================
R_ConcatTransforms
================
*/
void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4])
{
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] +
in1[0][2] * in2[2][3] + in1[0][3];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] +
in1[1][2] * in2[2][3] + in1[1][3];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] +
in1[2][2] * in2[2][3] + in1[2][3];
}
/*
===================
FloorDivMod
Returns mathematically correct (floor-based) quotient and remainder for
numer and denom, both of which should contain no fractional part. The
quotient must fit in 32 bits.
====================
*/
void FloorDivMod (float numer, float denom, int *quotient,
int *rem)
{
int q, r;
float x;
if (denom <= 0.0)
Sys_Error ("FloorDivMod: bad denominator %d\n", denom);
if (numer >= 0.0)
{
x = floorf(numer / denom);
q = (int)x;
r = (int)floorf(numer - (x * denom));
}
else
{
//
// perform operations with positive values, and fix mod to make floor-based
//
x = floorf(-numer / denom);
q = -(int)x;
r = (int)floorf(-numer - (x * denom));
if (r != 0)
{
q--;
r = (int)denom - r;
}
}
*quotient = q;
*rem = r;
}
/*
===================
GreatestCommonDivisor
====================
*/
int GreatestCommonDivisor (int i1, int i2)
{
if (i1 > i2)
{
if (i2 == 0)
return (i1);
return GreatestCommonDivisor (i2, i1 % i2);
}
else
{
if (i1 == 0)
return (i2);
return GreatestCommonDivisor (i1, i2 % i1);
}
}
#if !id386
// TODO: move to nonintel.c
/*
===================
Invert24To16
Inverts an 8.24 value to a 16.16 value
====================
*/
fixed16_t Invert24To16(fixed16_t val)
{
if (val < 256)
return (0xFFFFFFFF);
return (fixed16_t)
(((float)0x10000 * (float)0x1000000 / (float)val) + 0.5);
}
#endif
void VectorTransform (const vec3_t in1, matrix3x4 in2, vec3_t out)
{
out[0] = DotProduct(in1, in2[0]) + in2[0][3];
out[1] = DotProduct(in1, in2[1]) + in2[1][3];
out[2] = DotProduct(in1, in2[2]) + in2[2][3];
}
void AngleQuaternion( const vec3_t angles, vec4_t quaternion )
{
float angle;
float sr, sp, sy, cr, cp, cy;
// FIXME: rescale the inputs to 1/2 angle
angle = angles[2] * 0.5;
#ifdef PSP_VFPU
sy = vfpu_sinf(angle);
cy = vfpu_cosf(angle);
#else
sy = sin(angle);
cy = cos(angle);
#endif
angle = angles[1] * 0.5;
#ifdef PSP_VFPU
sp = vfpu_sinf(angle);
cp = vfpu_cosf(angle);
#else
sp = sin(angle);
cp = cos(angle);
#endif
angle = angles[0] * 0.5;
#ifdef PSP_VFPU
sr = vfpu_sinf(angle);
cr = vfpu_cosf(angle);
#else
sr = sin(angle);
cr = cos(angle);
#endif
quaternion[0] = sr*cp*cy-cr*sp*sy; // X
quaternion[1] = cr*sp*cy+sr*cp*sy; // Y
quaternion[2] = cr*cp*sy-sr*sp*cy; // Z
quaternion[3] = cr*cp*cy+sr*sp*sy; // W
}
void QuaternionMatrix( const vec4_t quaternion, float (*matrix)[4] )
{
matrix[0][0] = 1.0 - 2.0 * quaternion[1] * quaternion[1] - 2.0 * quaternion[2] * quaternion[2];
matrix[1][0] = 2.0 * quaternion[0] * quaternion[1] + 2.0 * quaternion[3] * quaternion[2];
matrix[2][0] = 2.0 * quaternion[0] * quaternion[2] - 2.0 * quaternion[3] * quaternion[1];
matrix[0][1] = 2.0 * quaternion[0] * quaternion[1] - 2.0 * quaternion[3] * quaternion[2];
matrix[1][1] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[2] * quaternion[2];
matrix[2][1] = 2.0 * quaternion[1] * quaternion[2] + 2.0 * quaternion[3] * quaternion[0];
matrix[0][2] = 2.0 * quaternion[0] * quaternion[2] + 2.0 * quaternion[3] * quaternion[1];
matrix[1][2] = 2.0 * quaternion[1] * quaternion[2] - 2.0 * quaternion[3] * quaternion[0];
matrix[2][2] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[1] * quaternion[1];
}
void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt )
{
int i;
float omega, cosom, sinom, sclp, sclq;
// decide if one of the quaternions is backwards
float a = 0;
float b = 0;
for (i = 0; i < 4; i++) {
a += (p[i]-q[i])*(p[i]-q[i]);
b += (p[i]+q[i])*(p[i]+q[i]);
}
if (a > b) {
for (i = 0; i < 4; i++) {
q[i] = -q[i];
}
}
cosom = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3];
if ((1.0 + cosom) > 0.00000001) {
if ((1.0 - cosom) > 0.00000001) {
omega = acos( cosom );
#ifdef PSP_VFPU
sinom = vfpu_sinf( omega );
sclp = vfpu_sinf( (1.0 - t)*omega) / sinom;
sclq = vfpu_sinf( t*omega ) / sinom;
#else
sinom = sin( omega );
sclp = sin( (1.0 - t)*omega) / sinom;
sclq = sin( t*omega ) / sinom;
#endif
}
else {
sclp = 1.0 - t;
sclq = t;
}
for (i = 0; i < 4; i++) {
qt[i] = sclp * p[i] + sclq * q[i];
}
}
else {
qt[0] = -p[1];
qt[1] = p[0];
qt[2] = -p[3];
qt[3] = p[2];
#ifdef PSP_VFPU
sclp = vfpu_sinf( (1.0 - t) * 0.5 * M_PI);
sclq = vfpu_sinf( t * 0.5 * M_PI);
#else
sclp = sin( (1.0 - t) * 0.5 * M_PI);
sclq = sin( t * 0.5 * M_PI);
#endif
for (i = 0; i < 3; i++) {
qt[i] = sclp * p[i] + sclq * qt[i];
}
}
}