dquakeplus/source/psp/gu/gu_decals_QMB.cpp

770 lines
19 KiB
C++
Raw Normal View History

2022-02-08 21:49:56 +00:00
/*
Copyright (C) 2006, Charles Hollemeersch, Sputnikutah
Copyright (C) 2007-2008 Crow_bar.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// gl_decals.c
extern "C"
{
#include "../../quakedef.h"
2022-02-08 21:49:56 +00:00
}
#include <pspgu.h>
#include "../clipping.hpp"
2022-02-08 21:49:56 +00:00
using namespace std;
using namespace quake;
#define DEFAULT_NUM_DECALS 256 //*4
2022-02-08 21:49:56 +00:00
#define ABSOLUTE_MIN_DECALS 256
#define ABSOLUTE_MAX_DECALS 32768
#define MAX_DECAL_VERTICES 128
#define MAX_DECAL_TRIANGLES 64
typedef struct decal_s
{
vec3_t origin;
vec3_t normal;
vec3_t tangent;
float radius;
int bspdecal;
struct decal_s *next;
float die;
float starttime;
int srcblend;
int dstblend;
int texture;
// geometry of decal
int vertexCount, triangleCount;
vec3_t vertexArray[MAX_DECAL_VERTICES];
float texcoordArray[MAX_DECAL_VERTICES][2];
int triangleArray[MAX_DECAL_TRIANGLES][3];
} decal_t;
extern int decal_blood1, decal_blood2, decal_blood3, decal_q3blood, decal_burn, decal_mark, decal_glow;
static decal_t *decals, *active_decals, *free_decals;
static int r_numdecals;
static plane_t leftPlane, rightPlane, bottomPlane, topPlane, backPlane, frontPlane;
cvar_t r_decaltime = {"r_decaltime", "12"};
cvar_t r_decal_viewdistance = {"r_decal_viewdistance", "1024"};
void DecalClipLeaf (decal_t *dec, mleaf_t *leaf);
void DecalWalkBsp_R (decal_t *dec, mnode_t *node);
int DecalClipPolygonAgainstPlane (plane_t *plane, int vertexCount, vec3_t *vertex, vec3_t *newVertex);
int DecalClipPolygon (int vertexCount, vec3_t *vertices, vec3_t *newVertex);
/*
#define lhrandom(MIN, MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
#define VectorRandom(v) \
{ \
do { \
(v)[0] = lhrandom(-1, 1); \
(v)[1] = lhrandom(-1, 1); \
(v)[2] = lhrandom(-1, 1); \
} while (DotProduct(v, v) > 1); \
}
*/
float RandomMinMax (float min, float max)
{
return min + ((rand() % 10000) / 10000.0) * (max - min);
}
/*
===============
R_InitDecals
===============
*/
void R_InitDecals (void)
{
int i;
Cvar_RegisterVariable (&r_decaltime);
Cvar_RegisterVariable (&r_decal_viewdistance);
if (!qmb_initialized)
return;
2022-02-08 21:49:56 +00:00
if ((i = COM_CheckParm("-decals")) && i + 1 < com_argc)
{
r_numdecals = Q_atoi(com_argv[i+1]);
r_numdecals = bound(ABSOLUTE_MIN_DECALS, r_numdecals, ABSOLUTE_MAX_DECALS);
}
else
{
r_numdecals = DEFAULT_NUM_DECALS;
}
decals = (decal_t*)Hunk_AllocName (r_numdecals * sizeof(decal_t), "decals");
}
/*
===============
R_ClearDecals
===============
*/
static int wadreload = 1;
void R_ClearDecals (void)
{
int i;
if (!qmb_initialized)
return;
memset (decals, 0, r_numdecals * sizeof(decal_t));
free_decals = &decals[0];
active_decals = NULL;
for (i = 0 ; i < r_numdecals ; i++)
decals[i].next = &decals[i+1];
decals[r_numdecals-1].next = NULL;
wadreload = 1;
}
void R_SpawnDecal (vec3_t center, vec3_t normal, vec3_t tangent, int tex, int size, int isbsp)
{
int a;
float width, height, depth, d, one_over_w, one_over_h;
vec3_t binormal, test = {0.5, 0.5, 0.5};
decal_t *dec;
if (!qmb_initialized)
return;
// allocate decal
if (!free_decals)
return;
dec = free_decals;
free_decals = dec->next;
dec->next = active_decals;
active_decals = dec;
VectorNormalize (test);
CrossProduct (normal, test, tangent);
VectorCopy (center, dec->origin);
VectorCopy (tangent, dec->tangent);
VectorCopy (normal, dec->normal);
VectorNormalize (tangent);
VectorNormalize (normal);
CrossProduct (normal, tangent, binormal);
VectorNormalize (binormal);
width = RandomMinMax (size * 0.5, size);
height = width;
depth = width * 0.5;
dec->radius = fmax(fmax(width, height), depth);
dec->starttime = cl.time;
dec->bspdecal = isbsp;
dec->die = (isbsp ? 0 : cl.time + r_decaltime.value);
dec->texture = tex;
// Calculate boundary planes
d = DotProduct (center, tangent);
VectorCopy (tangent, leftPlane.normal);
leftPlane.dist = -(width * 0.5 - d);
VectorNegate (tangent, tangent);
VectorCopy (tangent, rightPlane.normal);
VectorNegate (tangent, tangent);
rightPlane.dist = -(width * 0.5 + d);
d = DotProduct (center, binormal);
VectorCopy (binormal, bottomPlane.normal);
bottomPlane.dist = -(height * 0.5 - d);
VectorNegate (binormal, binormal);
VectorCopy (binormal, topPlane.normal);
VectorNegate (binormal, binormal);
topPlane.dist = -(height * 0.5 + d);
d = DotProduct (center, normal);
VectorCopy (normal, backPlane.normal);
backPlane.dist = -(depth - d);
VectorNegate (normal, normal);
VectorCopy (normal, frontPlane.normal);
VectorNegate (normal, normal);
frontPlane.dist = -(depth + d);
// Begin with empty mesh
dec->vertexCount = 0;
dec->triangleCount = 0;
// Clip decal to bsp
DecalWalkBsp_R (dec, cl.worldmodel->nodes);
// This happens when a decal is to far from any surface or the surface is to steeply sloped
if (dec->triangleCount == 0)
{ // deallocate decal
active_decals = dec->next;
dec->next = free_decals;
free_decals = dec;
return;
}
// Assign texture mapping coordinates
one_over_w = 1.0F / width;
one_over_h = 1.0F / height;
for (a = 0 ; a < dec->vertexCount ; a++)
{
float s, t;
vec3_t v;
VectorSubtract (dec->vertexArray[a], center, v);
s = DotProduct (v, tangent) * one_over_w + 0.5F;
t = DotProduct (v, binormal) * one_over_h + 0.5F;
dec->texcoordArray[a][0] = s;
dec->texcoordArray[a][1] = t;
}
}
/*
//back up, pre-blubs
void _R_SpawnDecalStatic (vec3_t org, int tex, int size)
{
int i;
float frac, bestfrac;
vec3_t tangent, v, bestorg, normal, bestnormal, org2;
if (!qmb_initialized)
return;
VectorClear (bestorg);
VectorClear (bestnormal);
bestfrac = 10;
for (i = 0 ; i < 14 ; i++)
{
VectorRandom (org2);
VectorMA (org, 20, org2, org2);
TraceLineN (org, org2, v, normal);
frac = 0.5;
if (bestfrac > frac)
{
bestfrac = frac;
VectorCopy (v, bestorg);
VectorCopy (normal, bestnormal);
CrossProduct (normal, bestnormal, tangent);
}
if (bestnormal && bestorg)
{
continue;
}
else
{
VectorNegate (org2, org2);
VectorMA (org, 20, org2, org2);
TraceLineN (org, org2, v, normal);
VectorCopy (v, bestorg);
VectorCopy (normal, bestnormal);
CrossProduct (normal, bestnormal, tangent);
}
if (bestnormal && bestorg)
continue;
}
if (bestfrac < 1)
R_SpawnDecal (bestorg, bestnormal, tangent, tex, size, 0);
}*/
//Revamped by blubs
void R_SpawnDecalStatic (vec3_t org, int tex, int size)
{
int i;
float frac, bestfrac;
vec3_t tangent, v, bestorg, normal, bestnormal, org2;
vec3_t tempVec;
if (!qmb_initialized)
return;
VectorClear (bestorg);
VectorClear (bestnormal);
VectorClear(tempVec);
bestfrac = 10;
for (i = 0 ; i < 26 ; i++)
{
//Reference: i = 0: check straight up, i = 1: check straight down
//1 < i < 10: Check sideways in increments of 45 degrees
//9 < i < 18: Check angled 45 degrees down in increments of 45 degrees
//17 < i : Check angled 45 degrees up in increments of 45 degrees
org2[0] = (((((i - 2) % 8) < 2) || (((i - 2) % 8) == 7)) ? 1 : 0 ) + ((((i - 2) % 8) > 2 && ((i - 2) % 8) < 6) ? -1 : 0 );
org2[1] = ((((i - 2) % 8) > 0 && ((i - 2) % 8) < 4) ? 1 : 0 ) + ((((i - 2) % 8) > 4 && ((i - 2) % 8) < 7) ? -1 : 0 );
org2[2] = ((i == 0) ? 1 : 0) + ((i == 1) ? -1 : 0) + (((i > 9) && (i < 18)) ? 1 : 0) + ((i > 17) ? -1 : 0);
VectorCopy(org,tempVec);
VectorMA(tempVec, -0.1,org2,tempVec);
VectorMA (org, 20, org2, org2);
TraceLineN (tempVec, org2, v, normal);
VectorSubtract(org2,tempVec,org2);//goal
VectorSubtract(v,tempVec,tempVec);//collision
if(VectorLength(org2) == 0)
return;
frac = VectorLength(tempVec) / VectorLength(org2);
if(frac < 1 && frac < bestfrac)
{
bestfrac = frac;
VectorCopy(v,bestorg);
VectorCopy(normal, bestnormal);
CrossProduct(normal,bestnormal,tangent);
}
}
if (bestfrac < 1)
R_SpawnDecal (bestorg, bestnormal, tangent, tex, size, 0);
}
//Crow_bar.
void R_SpawnDecalBSP (vec3_t org, char *texname, int size)
{
int i;
float frac, bestfrac;
vec3_t tangent, v, bestorg, normal, bestnormal, org2;
vec3_t tempVec;
if (!qmb_initialized)
return;
int tex = loadtextureimage(va("decals/%s",texname), 0, 0, qfalse, GU_LINEAR);
if(!tex) //find in decals.wad
{
if(wadreload)
{
WAD3_LoadTextureWadFile ("decals.wad");
wadreload = 0;
}
tex = WAD3_LoadTextureName(texname);
if(!tex)
{
return;
}
}
VectorClear (bestorg);
VectorClear (bestnormal);
VectorClear(tempVec);
bestfrac = 10;
for (i = 0 ; i < 26 ; i++)
{
//Reference: i = 0: check straight up, i = 1: check straight down
//1 < i < 10: Check sideways in increments of 45 degrees
//9 < i < 18: Check angled 45 degrees down in increments of 45 degrees
//17 < i : Check angled 45 degrees up in increments of 45 degrees
org2[0] = (((((i - 2) % 8) < 2) || (((i - 2) % 8) == 7)) ? 1 : 0 ) + ((((i - 2) % 8) > 2 && ((i - 2) % 8) < 6) ? -1 : 0 );
org2[1] = ((((i - 2) % 8) > 0 && ((i - 2) % 8) < 4) ? 1 : 0 ) + ((((i - 2) % 8) > 4 && ((i - 2) % 8) < 7) ? -1 : 0 );
org2[2] = ((i == 0) ? 1 : 0) + ((i == 1) ? -1 : 0) + (((i > 9) && (i < 18)) ? 1 : 0) + ((i > 17) ? -1 : 0);
VectorCopy(org,tempVec);
VectorMA(tempVec, -0.1,org2,tempVec);
VectorMA (org, 20, org2, org2);
TraceLineN (tempVec, org2, v, normal);
VectorSubtract(org2,tempVec,org2);//goal
VectorSubtract(v,tempVec,tempVec);//collision
if(VectorLength(org2) == 0)
return;
frac = VectorLength(tempVec) / VectorLength(org2);
if(frac < 1 && frac < bestfrac)
{
bestfrac = frac;
VectorCopy(v,bestorg);
VectorCopy(normal, bestnormal);
CrossProduct(normal,bestnormal,tangent);
}
}
if (bestfrac < 1)
R_SpawnDecal (bestorg, bestnormal, tangent, tex, size, 1);
}
void DecalWalkBsp_R (decal_t *dec, mnode_t *node)
{
float dist;
mplane_t *plane;
mleaf_t *leaf;
if (node->contents < 0)
{ //we are in a leaf
leaf = (mleaf_t *)node;
DecalClipLeaf (dec, leaf);
return;
}
plane = node->plane;
dist = DotProduct (dec->origin, plane->normal) - plane->dist;
if (dist > dec->radius)
{
DecalWalkBsp_R (dec, node->children[0]);
return;
}
if (dist < -dec->radius)
{
DecalWalkBsp_R (dec, node->children[1]);
return;
}
DecalWalkBsp_R (dec, node->children[0]);
DecalWalkBsp_R (dec, node->children[1]);
}
qboolean DecalAddPolygon (decal_t *dec, int vertcount, vec3_t *vertices)
{
int a, b, count, *triangle;
count = dec->vertexCount;
if (count + vertcount >= MAX_DECAL_VERTICES)
return qfalse;
if (dec->triangleCount + vertcount - 2 >= MAX_DECAL_TRIANGLES)
return qfalse;
// Add polygon as a triangle fan
triangle = &dec->triangleArray[dec->triangleCount][0];
for (a = 2 ; a < vertcount ; a++)
{
dec->triangleArray[dec->triangleCount][0] = count;
dec->triangleArray[dec->triangleCount][1] = (count + a - 1);
dec->triangleArray[dec->triangleCount][2] = (count + a );
dec->triangleCount++;
}
// Assign vertex colors
for (b = 0 ; b < vertcount ; b++)
{
VectorCopy(vertices[b], dec->vertexArray[count]);
count++;
}
dec->vertexCount = count;
return qtrue;
}
const double decalEpsilon = 0.001;
void DecalClipLeaf (decal_t *dec, mleaf_t *leaf)
{
int c;
vec3_t newVertex[64], t3;
msurface_t **surf;
c = leaf->nummarksurfaces;
surf = leaf->firstmarksurface;
// for all surfaces in the leaf
for (c = 0 ; c < leaf->nummarksurfaces ; c++, surf++)
{
int i, count;
glpoly_t *poly;
poly = (*surf)->polys;
for (i = 0 ; i < poly->numverts ; i++)
{
newVertex[i][0] = poly->verts[i].xyz[0];
newVertex[i][1] = poly->verts[i].xyz[1];
newVertex[i][2] = poly->verts[i].xyz[2];
}
VectorCopy ((*surf)->plane->normal, t3);
if ((*surf)->flags & SURF_PLANEBACK)
VectorNegate (t3, t3);
// avoid backfacing and ortogonal facing faces to recieve decal parts
if (DotProduct(dec->normal, t3) > decalEpsilon)
{
count = DecalClipPolygon (poly->numverts, newVertex, newVertex);
if (count != 0 && !DecalAddPolygon(dec, count, newVertex))
break;
}
}
}
int DecalClipPolygon (int vertexCount, vec3_t *vertices, vec3_t *newVertex)
{
vec3_t tempVertex[64];
// Clip against all six planes
int count = DecalClipPolygonAgainstPlane (&leftPlane, vertexCount, vertices, tempVertex);
if (count != 0)
{
count = DecalClipPolygonAgainstPlane (&rightPlane, count, tempVertex, newVertex);
if (count != 0)
{
count = DecalClipPolygonAgainstPlane (&bottomPlane, count, newVertex, tempVertex);
if (count != 0)
{
count = DecalClipPolygonAgainstPlane (&topPlane, count, tempVertex, newVertex);
if (count != 0)
{
count = DecalClipPolygonAgainstPlane (&backPlane, count, newVertex, tempVertex);
if (count != 0)
{
count = DecalClipPolygonAgainstPlane (&frontPlane, count, tempVertex, newVertex);
}
}
}
}
}
return count;
}
int DecalClipPolygonAgainstPlane (plane_t *plane, int vertexCount, vec3_t *vertex, vec3_t *newVertex)
{
int a, b, c, count, negativeCount = 0;
float t;
bool negative[65];
vec3_t v1, v2;
// Classify vertices
for (a = 0 ; a < vertexCount ; a++)
{
bool neg = ((DotProduct(plane->normal, vertex[a]) - plane->dist) < 0.0);
negative[a] = neg;
negativeCount += neg;
}
// Discard this polygon if it's completely culled
if (negativeCount == vertexCount)
return 0;
count = 0;
for (b = 0 ; b < vertexCount ; b++)
{
// c is the index of the previous vertex
c = (b != 0) ? b - 1 : vertexCount - 1;
if (negative[b])
{
if (!negative[c])
{
// Current vertex is on negative side of plane, but previous vertex is on positive side.
VectorCopy (vertex[c], v1);
VectorCopy (vertex[b], v2);
t = (DotProduct(plane->normal, v1) - plane->dist) /
(plane->normal[0] * (v1[0] - v2[0])
+ plane->normal[1] * (v1[1] - v2[1])
+ plane->normal[2] * (v1[2] - v2[2]));
VectorScale (v1, (1.0 - t), newVertex[count]);
VectorMA (newVertex[count], t, v2, newVertex[count]);
count++;
}
}
else
{
if (negative[c])
{
// Current vertex is on positive side of plane, but previous vertex is on negative side.
VectorCopy (vertex[b], v1);
VectorCopy (vertex[c], v2);
t = (DotProduct(plane->normal, v1) - plane->dist) /
(plane->normal[0] * (v1[0] - v2[0])
+ plane->normal[1] * (v1[1] - v2[1])
+ plane->normal[2] * (v1[2] - v2[2]));
VectorScale (v1, (1.0 - t), newVertex[count]);
VectorMA (newVertex[count], t, v2, newVertex[count]);
count++;
}
// Include current vertex
VectorCopy (vertex[b], newVertex[count]);
count++;
}
}
// Return number of vertices in clipped polygon
return count;
}
/*
===============
R_DrawDecals
===============
*/
void R_DrawDecals (void)
{
int i;
float dcolor;
vec3_t decaldist;
decal_t *p, *kill;
float *point_tex, *point_xyz;
if (!qmb_initialized)
return;
sceGuEnable (GU_BLEND);
sceGuTexFunc(GU_TFX_MODULATE, GU_TCC_RGBA);
sceGuDepthMask (GU_TRUE);
sceGuShadeModel (GU_SMOOTH);
sceGuDepthOffset(-256);
for ( ; ; )
{
kill = active_decals;
if (kill && (kill->die < cl.time) && (!kill->bspdecal))
{
active_decals = kill->next;
kill->next = free_decals;
free_decals = kill;
continue;
}
break;
}
for (p = active_decals ; p ; p = p->next)
{
for ( ; ; )
{
kill = p->next;
if (kill && (kill->die < cl.time) && (!kill->bspdecal))
{
p->next = kill->next;
kill->next = free_decals;
free_decals = kill;
continue;
}
break;
}
VectorSubtract (r_refdef.vieworg, p->origin, decaldist);
if (VectorLength(decaldist) > r_decal_viewdistance.value)
continue;
if (p->texture == decal_q3blood)
sceGuBlendFunc (GU_ADD, GU_SRC_ALPHA, GU_ONE_MINUS_SRC_ALPHA, 0, 0);
else
sceGuBlendFunc(GU_ADD, GU_SRC_ALPHA, GU_ONE_MINUS_SRC_ALPHA, 0, 0);
GL_Bind (p->texture);
dcolor = 1;
if (((p->die - cl.time) < 0.5) && (!p->bspdecal))
{
float scale = 2 * (p->die - cl.time);
sceGuColor(GU_COLOR(dcolor * scale, dcolor * scale, dcolor * scale, scale));
}
else
{
dcolor = (1 - (VectorLength(decaldist) / r_decal_viewdistance.value));
sceGuColor(GU_COLOR(dcolor, dcolor, dcolor, dcolor));
}
for (i = 0 ; i < p->triangleCount ; i++)
{
// Allocate memory for this polygon.
const int unclipped_vertex_count = 3;
glvert_t* const unclipped_vertices = static_cast<glvert_t*>(sceGuGetMemory(sizeof(glvert_t) * unclipped_vertex_count));
for(int v = 0; v < unclipped_vertex_count ; v++)
{
point_tex = &p->texcoordArray[p->triangleArray[i][v]][0];
point_xyz = &p->vertexArray [p->triangleArray[i][v]][0];
unclipped_vertices[v].st[0] = point_tex[0];
unclipped_vertices[v].st[1] = point_tex[1];
unclipped_vertices[v].xyz[0] = point_xyz[0];
unclipped_vertices[v].xyz[1] = point_xyz[1];
unclipped_vertices[v].xyz[2] = point_xyz[2];
}
if (clipping::is_clipping_required(
unclipped_vertices,
unclipped_vertex_count))
{
// Clip the polygon.
const glvert_t* clipped_vertices;
std::size_t clipped_vertex_count;
clipping::clip(
unclipped_vertices,
unclipped_vertex_count,
&clipped_vertices,
&clipped_vertex_count);
// Did we have any vertices left?
if (clipped_vertex_count)
{
// Copy the vertices to the display list.
const std::size_t buffer_size = clipped_vertex_count * sizeof(glvert_t);
glvert_t* const display_list_vertices = static_cast<glvert_t*>(sceGuGetMemory(buffer_size));
memcpy(display_list_vertices, clipped_vertices, buffer_size);
// Draw the clipped vertices.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
clipped_vertex_count, 0, display_list_vertices);
}
}
else
{
// Draw the poly directly.
sceGuDrawArray(
GU_TRIANGLE_FAN,
GU_TEXTURE_32BITF | GU_VERTEX_32BITF,
unclipped_vertex_count, 0, unclipped_vertices);
}
}
}
sceGuDepthOffset(0);
sceGuDisable (GU_BLEND);
sceGuBlendFunc(GU_ADD, GU_SRC_ALPHA, GU_ONE_MINUS_SRC_ALPHA, 0, 0);
sceGuDepthMask (GU_FALSE);
sceGuColor(GU_COLOR(1,1,1,1));
sceGuTexFunc(GU_TFX_REPLACE, GU_TCC_RGBA);
sceGuShadeModel (GU_FLAT);
}