ioq3/code/renderer/tr_image.c
Tim Angus 1144f567e8 * PNG support from Joerg Dietrich <dietrich_joerg@t-online.de>
* Cleanup of tabulation in R_LoadImage
2007-08-23 17:23:15 +00:00

5107 lines
117 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_image.c
#include "tr_local.h"
/*
* Include file for users of JPEG library.
* You will need to have included system headers that define at least
* the typedefs FILE and size_t before you can include jpeglib.h.
* (stdio.h is sufficient on ANSI-conforming systems.)
* You may also wish to include "jerror.h".
*/
#define JPEG_INTERNALS
#include "../jpeg-6/jpeglib.h"
#include "../qcommon/puff.h"
static void LoadBMP( const char *name, byte **pic, int *width, int *height );
static void LoadTGA( const char *name, byte **pic, int *width, int *height );
static void LoadJPG( const char *name, byte **pic, int *width, int *height );
static void LoadPNG( const char *name, byte **pic, int *width, int *height );
static byte s_intensitytable[256];
static unsigned char s_gammatable[256];
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
int gl_filter_max = GL_LINEAR;
#define FILE_HASH_SIZE 1024
static image_t* hashTable[FILE_HASH_SIZE];
/*
** R_GammaCorrect
*/
void R_GammaCorrect( byte *buffer, int bufSize ) {
int i;
for ( i = 0; i < bufSize; i++ ) {
buffer[i] = s_gammatable[buffer[i]];
}
}
typedef struct {
char *name;
int minimize, maximize;
} textureMode_t;
textureMode_t modes[] = {
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
};
/*
================
return a hash value for the filename
================
*/
static long generateHashValue( const char *fname ) {
int i;
long hash;
char letter;
hash = 0;
i = 0;
while (fname[i] != '\0') {
letter = tolower(fname[i]);
if (letter =='.') break; // don't include extension
if (letter =='\\') letter = '/'; // damn path names
hash+=(long)(letter)*(i+119);
i++;
}
hash &= (FILE_HASH_SIZE-1);
return hash;
}
/*
===============
GL_TextureMode
===============
*/
void GL_TextureMode( const char *string ) {
int i;
image_t *glt;
for ( i=0 ; i< 6 ; i++ ) {
if ( !Q_stricmp( modes[i].name, string ) ) {
break;
}
}
// hack to prevent trilinear from being set on voodoo,
// because their driver freaks...
if ( i == 5 && glConfig.hardwareType == GLHW_3DFX_2D3D ) {
ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" );
i = 3;
}
if ( i == 6 ) {
ri.Printf (PRINT_ALL, "bad filter name\n");
return;
}
gl_filter_min = modes[i].minimize;
gl_filter_max = modes[i].maximize;
// change all the existing mipmap texture objects
for ( i = 0 ; i < tr.numImages ; i++ ) {
glt = tr.images[ i ];
if ( glt->mipmap ) {
GL_Bind (glt);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
}
}
}
/*
===============
R_SumOfUsedImages
===============
*/
int R_SumOfUsedImages( void ) {
int total;
int i;
total = 0;
for ( i = 0; i < tr.numImages; i++ ) {
if ( tr.images[i]->frameUsed == tr.frameCount ) {
total += tr.images[i]->uploadWidth * tr.images[i]->uploadHeight;
}
}
return total;
}
/*
===============
R_ImageList_f
===============
*/
void R_ImageList_f( void ) {
int i;
image_t *image;
int texels;
const char *yesno[] = {
"no ", "yes"
};
ri.Printf (PRINT_ALL, "\n -w-- -h-- -mm- -TMU- -if-- wrap --name-------\n");
texels = 0;
for ( i = 0 ; i < tr.numImages ; i++ ) {
image = tr.images[ i ];
texels += image->uploadWidth*image->uploadHeight;
ri.Printf (PRINT_ALL, "%4i: %4i %4i %s %d ",
i, image->uploadWidth, image->uploadHeight, yesno[image->mipmap], image->TMU );
switch ( image->internalFormat ) {
case 1:
ri.Printf( PRINT_ALL, "I " );
break;
case 2:
ri.Printf( PRINT_ALL, "IA " );
break;
case 3:
ri.Printf( PRINT_ALL, "RGB " );
break;
case 4:
ri.Printf( PRINT_ALL, "RGBA " );
break;
case GL_RGBA8:
ri.Printf( PRINT_ALL, "RGBA8" );
break;
case GL_RGB8:
ri.Printf( PRINT_ALL, "RGB8" );
break;
case GL_RGB4_S3TC:
ri.Printf( PRINT_ALL, "S3TC " );
break;
case GL_RGBA4:
ri.Printf( PRINT_ALL, "RGBA4" );
break;
case GL_RGB5:
ri.Printf( PRINT_ALL, "RGB5 " );
break;
default:
ri.Printf( PRINT_ALL, "???? " );
}
switch ( image->wrapClampMode ) {
case GL_REPEAT:
ri.Printf( PRINT_ALL, "rept " );
break;
case GL_CLAMP:
ri.Printf( PRINT_ALL, "clmp " );
break;
default:
ri.Printf( PRINT_ALL, "%4i ", image->wrapClampMode );
break;
}
ri.Printf( PRINT_ALL, " %s\n", image->imgName );
}
ri.Printf (PRINT_ALL, " ---------\n");
ri.Printf (PRINT_ALL, " %i total texels (not including mipmaps)\n", texels);
ri.Printf (PRINT_ALL, " %i total images\n\n", tr.numImages );
}
//=======================================================================
/*
================
ResampleTexture
Used to resample images in a more general than quartering fashion.
This will only be filtered properly if the resampled size
is greater than half the original size.
If a larger shrinking is needed, use the mipmap function
before or after.
================
*/
static void ResampleTexture( unsigned *in, int inwidth, int inheight, unsigned *out,
int outwidth, int outheight ) {
int i, j;
unsigned *inrow, *inrow2;
unsigned frac, fracstep;
unsigned p1[2048], p2[2048];
byte *pix1, *pix2, *pix3, *pix4;
if (outwidth>2048)
ri.Error(ERR_DROP, "ResampleTexture: max width");
fracstep = inwidth*0x10000/outwidth;
frac = fracstep>>2;
for ( i=0 ; i<outwidth ; i++ ) {
p1[i] = 4*(frac>>16);
frac += fracstep;
}
frac = 3*(fracstep>>2);
for ( i=0 ; i<outwidth ; i++ ) {
p2[i] = 4*(frac>>16);
frac += fracstep;
}
for (i=0 ; i<outheight ; i++, out += outwidth) {
inrow = in + inwidth*(int)((i+0.25)*inheight/outheight);
inrow2 = in + inwidth*(int)((i+0.75)*inheight/outheight);
frac = fracstep >> 1;
for (j=0 ; j<outwidth ; j++) {
pix1 = (byte *)inrow + p1[j];
pix2 = (byte *)inrow + p2[j];
pix3 = (byte *)inrow2 + p1[j];
pix4 = (byte *)inrow2 + p2[j];
((byte *)(out+j))[0] = (pix1[0] + pix2[0] + pix3[0] + pix4[0])>>2;
((byte *)(out+j))[1] = (pix1[1] + pix2[1] + pix3[1] + pix4[1])>>2;
((byte *)(out+j))[2] = (pix1[2] + pix2[2] + pix3[2] + pix4[2])>>2;
((byte *)(out+j))[3] = (pix1[3] + pix2[3] + pix3[3] + pix4[3])>>2;
}
}
}
/*
================
R_LightScaleTexture
Scale up the pixel values in a texture to increase the
lighting range
================
*/
void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma )
{
if ( only_gamma )
{
if ( !glConfig.deviceSupportsGamma )
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[p[0]];
p[1] = s_gammatable[p[1]];
p[2] = s_gammatable[p[2]];
}
}
}
else
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
if ( glConfig.deviceSupportsGamma )
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_intensitytable[p[0]];
p[1] = s_intensitytable[p[1]];
p[2] = s_intensitytable[p[2]];
}
}
else
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[s_intensitytable[p[0]]];
p[1] = s_gammatable[s_intensitytable[p[1]]];
p[2] = s_gammatable[s_intensitytable[p[2]]];
}
}
}
}
/*
================
R_MipMap2
Operates in place, quartering the size of the texture
Proper linear filter
================
*/
static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) {
int i, j, k;
byte *outpix;
int inWidthMask, inHeightMask;
int total;
int outWidth, outHeight;
unsigned *temp;
outWidth = inWidth >> 1;
outHeight = inHeight >> 1;
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
inWidthMask = inWidth - 1;
inHeightMask = inHeight - 1;
for ( i = 0 ; i < outHeight ; i++ ) {
for ( j = 0 ; j < outWidth ; j++ ) {
outpix = (byte *) ( temp + i * outWidth + j );
for ( k = 0 ; k < 4 ; k++ ) {
total =
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k];
outpix[k] = total / 36;
}
}
}
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
ri.Hunk_FreeTempMemory( temp );
}
/*
================
R_MipMap
Operates in place, quartering the size of the texture
================
*/
static void R_MipMap (byte *in, int width, int height) {
int i, j;
byte *out;
int row;
if ( !r_simpleMipMaps->integer ) {
R_MipMap2( (unsigned *)in, width, height );
return;
}
if ( width == 1 && height == 1 ) {
return;
}
row = width * 4;
out = in;
width >>= 1;
height >>= 1;
if ( width == 0 || height == 0 ) {
width += height; // get largest
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
out[0] = ( in[0] + in[4] )>>1;
out[1] = ( in[1] + in[5] )>>1;
out[2] = ( in[2] + in[6] )>>1;
out[3] = ( in[3] + in[7] )>>1;
}
return;
}
for (i=0 ; i<height ; i++, in+=row) {
for (j=0 ; j<width ; j++, out+=4, in+=8) {
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
}
}
}
/*
==================
R_BlendOverTexture
Apply a color blend over a set of pixels
==================
*/
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
int i;
int inverseAlpha;
int premult[3];
inverseAlpha = 255 - blend[3];
premult[0] = blend[0] * blend[3];
premult[1] = blend[1] * blend[3];
premult[2] = blend[2] * blend[3];
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
}
}
byte mipBlendColors[16][4] = {
{0,0,0,0},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
};
/*
===============
Upload32
===============
*/
extern qboolean charSet;
static void Upload32( unsigned *data,
int width, int height,
qboolean mipmap,
qboolean picmip,
qboolean lightMap,
int *format,
int *pUploadWidth, int *pUploadHeight )
{
int samples;
unsigned *scaledBuffer = NULL;
unsigned *resampledBuffer = NULL;
int scaled_width, scaled_height;
int i, c;
byte *scan;
GLenum internalFormat = GL_RGB;
float rMax = 0, gMax = 0, bMax = 0;
//
// convert to exact power of 2 sizes
//
for (scaled_width = 1 ; scaled_width < width ; scaled_width<<=1)
;
for (scaled_height = 1 ; scaled_height < height ; scaled_height<<=1)
;
if ( r_roundImagesDown->integer && scaled_width > width )
scaled_width >>= 1;
if ( r_roundImagesDown->integer && scaled_height > height )
scaled_height >>= 1;
if ( scaled_width != width || scaled_height != height ) {
resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
ResampleTexture (data, width, height, resampledBuffer, scaled_width, scaled_height);
data = resampledBuffer;
width = scaled_width;
height = scaled_height;
}
//
// perform optional picmip operation
//
if ( picmip ) {
scaled_width >>= r_picmip->integer;
scaled_height >>= r_picmip->integer;
}
//
// clamp to minimum size
//
if (scaled_width < 1) {
scaled_width = 1;
}
if (scaled_height < 1) {
scaled_height = 1;
}
//
// clamp to the current upper OpenGL limit
// scale both axis down equally so we don't have to
// deal with a half mip resampling
//
while ( scaled_width > glConfig.maxTextureSize
|| scaled_height > glConfig.maxTextureSize ) {
scaled_width >>= 1;
scaled_height >>= 1;
}
scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
//
// scan the texture for each channel's max values
// and verify if the alpha channel is being used or not
//
c = width*height;
scan = ((byte *)data);
samples = 3;
if (!lightMap) {
for ( i = 0; i < c; i++ )
{
if ( scan[i*4+0] > rMax )
{
rMax = scan[i*4+0];
}
if ( scan[i*4+1] > gMax )
{
gMax = scan[i*4+1];
}
if ( scan[i*4+2] > bMax )
{
bMax = scan[i*4+2];
}
if ( scan[i*4 + 3] != 255 )
{
samples = 4;
break;
}
}
// select proper internal format
if ( samples == 3 )
{
if ( glConfig.textureCompression == TC_S3TC )
{
internalFormat = GL_RGB4_S3TC;
}
else if ( r_texturebits->integer == 16 )
{
internalFormat = GL_RGB5;
}
else if ( r_texturebits->integer == 32 )
{
internalFormat = GL_RGB8;
}
else
{
internalFormat = 3;
}
}
else if ( samples == 4 )
{
if ( r_texturebits->integer == 16 )
{
internalFormat = GL_RGBA4;
}
else if ( r_texturebits->integer == 32 )
{
internalFormat = GL_RGBA8;
}
else
{
internalFormat = 4;
}
}
} else {
internalFormat = 3;
}
// copy or resample data as appropriate for first MIP level
if ( ( scaled_width == width ) &&
( scaled_height == height ) ) {
if (!mipmap)
{
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
*pUploadWidth = scaled_width;
*pUploadHeight = scaled_height;
*format = internalFormat;
goto done;
}
Com_Memcpy (scaledBuffer, data, width*height*4);
}
else
{
// use the normal mip-mapping function to go down from here
while ( width > scaled_width || height > scaled_height ) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
if ( width < 1 ) {
width = 1;
}
if ( height < 1 ) {
height = 1;
}
}
Com_Memcpy( scaledBuffer, data, width * height * 4 );
}
R_LightScaleTexture (scaledBuffer, scaled_width, scaled_height, !mipmap );
*pUploadWidth = scaled_width;
*pUploadHeight = scaled_height;
*format = internalFormat;
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer );
if (mipmap)
{
int miplevel;
miplevel = 0;
while (scaled_width > 1 || scaled_height > 1)
{
R_MipMap( (byte *)scaledBuffer, scaled_width, scaled_height );
scaled_width >>= 1;
scaled_height >>= 1;
if (scaled_width < 1)
scaled_width = 1;
if (scaled_height < 1)
scaled_height = 1;
miplevel++;
if ( r_colorMipLevels->integer ) {
R_BlendOverTexture( (byte *)scaledBuffer, scaled_width * scaled_height, mipBlendColors[miplevel] );
}
qglTexImage2D (GL_TEXTURE_2D, miplevel, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer );
}
}
done:
if (mipmap)
{
if ( textureFilterAnisotropic )
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
(GLint)Com_Clamp( 1, maxAnisotropy, r_ext_max_anisotropy->integer ) );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
}
else
{
if ( textureFilterAnisotropic )
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
GL_CheckErrors();
if ( scaledBuffer != 0 )
ri.Hunk_FreeTempMemory( scaledBuffer );
if ( resampledBuffer != 0 )
ri.Hunk_FreeTempMemory( resampledBuffer );
}
/*
================
R_CreateImage
This is the only way any image_t are created
================
*/
image_t *R_CreateImage( const char *name, const byte *pic, int width, int height,
qboolean mipmap, qboolean allowPicmip, int glWrapClampMode ) {
image_t *image;
qboolean isLightmap = qfalse;
long hash;
if (strlen(name) >= MAX_QPATH ) {
ri.Error (ERR_DROP, "R_CreateImage: \"%s\" is too long\n", name);
}
if ( !strncmp( name, "*lightmap", 9 ) ) {
isLightmap = qtrue;
}
if ( tr.numImages == MAX_DRAWIMAGES ) {
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit\n");
}
image = tr.images[tr.numImages] = ri.Hunk_Alloc( sizeof( image_t ), h_low );
image->texnum = 1024 + tr.numImages;
tr.numImages++;
image->mipmap = mipmap;
image->allowPicmip = allowPicmip;
strcpy (image->imgName, name);
image->width = width;
image->height = height;
image->wrapClampMode = glWrapClampMode;
// lightmaps are always allocated on TMU 1
if ( qglActiveTextureARB && isLightmap ) {
image->TMU = 1;
} else {
image->TMU = 0;
}
if ( qglActiveTextureARB ) {
GL_SelectTexture( image->TMU );
}
GL_Bind(image);
Upload32( (unsigned *)pic, image->width, image->height,
image->mipmap,
allowPicmip,
isLightmap,
&image->internalFormat,
&image->uploadWidth,
&image->uploadHeight );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode );
qglBindTexture( GL_TEXTURE_2D, 0 );
if ( image->TMU == 1 ) {
GL_SelectTexture( 0 );
}
hash = generateHashValue(name);
image->next = hashTable[hash];
hashTable[hash] = image;
return image;
}
/*
=========================================================
BMP LOADING
=========================================================
*/
typedef struct
{
char id[2];
unsigned long fileSize;
unsigned long reserved0;
unsigned long bitmapDataOffset;
unsigned long bitmapHeaderSize;
unsigned long width;
unsigned long height;
unsigned short planes;
unsigned short bitsPerPixel;
unsigned long compression;
unsigned long bitmapDataSize;
unsigned long hRes;
unsigned long vRes;
unsigned long colors;
unsigned long importantColors;
unsigned char palette[256][4];
} BMPHeader_t;
static void LoadBMP( const char *name, byte **pic, int *width, int *height )
{
int columns, rows;
unsigned numPixels;
byte *pixbuf;
int row, column;
byte *buf_p;
byte *buffer;
int length;
BMPHeader_t bmpHeader;
byte *bmpRGBA;
*pic = NULL;
//
// load the file
//
length = ri.FS_ReadFile( ( char * ) name, (void **)&buffer);
if (!buffer) {
return;
}
buf_p = buffer;
bmpHeader.id[0] = *buf_p++;
bmpHeader.id[1] = *buf_p++;
bmpHeader.fileSize = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.reserved0 = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.bitmapDataOffset = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.bitmapHeaderSize = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.width = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.height = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.planes = LittleShort( * ( short * ) buf_p );
buf_p += 2;
bmpHeader.bitsPerPixel = LittleShort( * ( short * ) buf_p );
buf_p += 2;
bmpHeader.compression = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.bitmapDataSize = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.hRes = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.vRes = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.colors = LittleLong( * ( long * ) buf_p );
buf_p += 4;
bmpHeader.importantColors = LittleLong( * ( long * ) buf_p );
buf_p += 4;
Com_Memcpy( bmpHeader.palette, buf_p, sizeof( bmpHeader.palette ) );
if ( bmpHeader.bitsPerPixel == 8 )
buf_p += 1024;
if ( bmpHeader.id[0] != 'B' && bmpHeader.id[1] != 'M' )
{
ri.Error( ERR_DROP, "LoadBMP: only Windows-style BMP files supported (%s)\n", name );
}
if ( bmpHeader.fileSize != length )
{
ri.Error( ERR_DROP, "LoadBMP: header size does not match file size (%d vs. %d) (%s)\n", bmpHeader.fileSize, length, name );
}
if ( bmpHeader.compression != 0 )
{
ri.Error( ERR_DROP, "LoadBMP: only uncompressed BMP files supported (%s)\n", name );
}
if ( bmpHeader.bitsPerPixel < 8 )
{
ri.Error( ERR_DROP, "LoadBMP: monochrome and 4-bit BMP files not supported (%s)\n", name );
}
columns = bmpHeader.width;
rows = bmpHeader.height;
if ( rows < 0 )
rows = -rows;
numPixels = columns * rows;
if(columns <= 0 || !rows || numPixels > 0x1FFFFFFF // 4*1FFFFFFF == 0x7FFFFFFC < 0x7FFFFFFF
|| ((numPixels * 4) / columns) / 4 != rows)
{
ri.Error (ERR_DROP, "LoadBMP: %s has an invalid image size\n", name);
}
if ( width )
*width = columns;
if ( height )
*height = rows;
bmpRGBA = ri.Malloc( numPixels * 4 );
*pic = bmpRGBA;
for ( row = rows-1; row >= 0; row-- )
{
pixbuf = bmpRGBA + row*columns*4;
for ( column = 0; column < columns; column++ )
{
unsigned char red, green, blue, alpha;
int palIndex;
unsigned short shortPixel;
switch ( bmpHeader.bitsPerPixel )
{
case 8:
palIndex = *buf_p++;
*pixbuf++ = bmpHeader.palette[palIndex][2];
*pixbuf++ = bmpHeader.palette[palIndex][1];
*pixbuf++ = bmpHeader.palette[palIndex][0];
*pixbuf++ = 0xff;
break;
case 16:
shortPixel = * ( unsigned short * ) pixbuf;
pixbuf += 2;
*pixbuf++ = ( shortPixel & ( 31 << 10 ) ) >> 7;
*pixbuf++ = ( shortPixel & ( 31 << 5 ) ) >> 2;
*pixbuf++ = ( shortPixel & ( 31 ) ) << 3;
*pixbuf++ = 0xff;
break;
case 24:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = 255;
break;
case 32:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alpha = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alpha;
break;
default:
ri.Error( ERR_DROP, "LoadBMP: illegal pixel_size '%d' in file '%s'\n", bmpHeader.bitsPerPixel, name );
break;
}
}
}
ri.FS_FreeFile( buffer );
}
/*
=================================================================
PCX LOADING
=================================================================
*/
/*
==============
LoadPCX
==============
*/
static void LoadPCX ( const char *filename, byte **pic, byte **palette, int *width, int *height)
{
byte *raw;
pcx_t *pcx;
int x, y;
int len;
int dataByte, runLength;
byte *out, *pix;
unsigned xmax, ymax;
*pic = NULL;
*palette = NULL;
//
// load the file
//
len = ri.FS_ReadFile( ( char * ) filename, (void **)&raw);
if (!raw) {
return;
}
//
// parse the PCX file
//
pcx = (pcx_t *)raw;
raw = &pcx->data;
xmax = LittleShort(pcx->xmax);
ymax = LittleShort(pcx->ymax);
if (pcx->manufacturer != 0x0a
|| pcx->version != 5
|| pcx->encoding != 1
|| pcx->bits_per_pixel != 8
|| xmax >= 1024
|| ymax >= 1024)
{
ri.Printf (PRINT_ALL, "Bad pcx file %s (%i x %i) (%i x %i)\n", filename, xmax+1, ymax+1, pcx->xmax, pcx->ymax);
return;
}
out = ri.Malloc ( (ymax+1) * (xmax+1) );
*pic = out;
pix = out;
if (palette)
{
*palette = ri.Malloc(768);
Com_Memcpy (*palette, (byte *)pcx + len - 768, 768);
}
if (width)
*width = xmax+1;
if (height)
*height = ymax+1;
// FIXME: use bytes_per_line here?
for (y=0 ; y<=ymax ; y++, pix += xmax+1)
{
for (x=0 ; x<=xmax ; )
{
dataByte = *raw++;
if((dataByte & 0xC0) == 0xC0)
{
runLength = dataByte & 0x3F;
dataByte = *raw++;
}
else
runLength = 1;
while(runLength-- > 0)
pix[x++] = dataByte;
}
}
if ( raw - (byte *)pcx > len)
{
ri.Printf (PRINT_DEVELOPER, "PCX file %s was malformed", filename);
ri.Free (*pic);
*pic = NULL;
}
ri.FS_FreeFile (pcx);
}
/*
==============
LoadPCX32
==============
*/
static void LoadPCX32 ( const char *filename, byte **pic, int *width, int *height) {
byte *palette;
byte *pic8;
int i, c, p;
byte *pic32;
LoadPCX (filename, &pic8, &palette, width, height);
if (!pic8) {
*pic = NULL;
return;
}
// LoadPCX32 ensures width, height < 1024
c = (*width) * (*height);
pic32 = *pic = ri.Malloc(4 * c );
for (i = 0 ; i < c ; i++) {
p = pic8[i];
pic32[0] = palette[p*3];
pic32[1] = palette[p*3 + 1];
pic32[2] = palette[p*3 + 2];
pic32[3] = 255;
pic32 += 4;
}
ri.Free (pic8);
ri.Free (palette);
}
/*
=========================================================
TARGA LOADING
=========================================================
*/
/*
=============
LoadTGA
=============
*/
static void LoadTGA ( const char *name, byte **pic, int *width, int *height)
{
unsigned columns, rows, numPixels;
byte *pixbuf;
int row, column;
byte *buf_p;
byte *buffer;
TargaHeader targa_header;
byte *targa_rgba;
*pic = NULL;
//
// load the file
//
ri.FS_ReadFile ( ( char * ) name, (void **)&buffer);
if (!buffer) {
return;
}
buf_p = buffer;
targa_header.id_length = buf_p[0];
targa_header.colormap_type = buf_p[1];
targa_header.image_type = buf_p[2];
memcpy(&targa_header.colormap_index, &buf_p[3], 2);
memcpy(&targa_header.colormap_length, &buf_p[5], 2);
targa_header.colormap_size = buf_p[7];
memcpy(&targa_header.x_origin, &buf_p[8], 2);
memcpy(&targa_header.y_origin, &buf_p[10], 2);
memcpy(&targa_header.width, &buf_p[12], 2);
memcpy(&targa_header.height, &buf_p[14], 2);
targa_header.pixel_size = buf_p[16];
targa_header.attributes = buf_p[17];
targa_header.colormap_index = LittleShort(targa_header.colormap_index);
targa_header.colormap_length = LittleShort(targa_header.colormap_length);
targa_header.x_origin = LittleShort(targa_header.x_origin);
targa_header.y_origin = LittleShort(targa_header.y_origin);
targa_header.width = LittleShort(targa_header.width);
targa_header.height = LittleShort(targa_header.height);
buf_p += 18;
if (targa_header.image_type!=2
&& targa_header.image_type!=10
&& targa_header.image_type != 3 )
{
ri.Error (ERR_DROP, "LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RGB) TGA images supported\n");
}
if ( targa_header.colormap_type != 0 )
{
ri.Error( ERR_DROP, "LoadTGA: colormaps not supported\n" );
}
if ( ( targa_header.pixel_size != 32 && targa_header.pixel_size != 24 ) && targa_header.image_type != 3 )
{
ri.Error (ERR_DROP, "LoadTGA: Only 32 or 24 bit images supported (no colormaps)\n");
}
columns = targa_header.width;
rows = targa_header.height;
numPixels = columns * rows * 4;
if (width)
*width = columns;
if (height)
*height = rows;
if(!columns || !rows || numPixels > 0x7FFFFFFF || numPixels / columns / 4 != rows)
{
ri.Error (ERR_DROP, "LoadTGA: %s has an invalid image size\n", name);
}
targa_rgba = ri.Malloc (numPixels);
*pic = targa_rgba;
if (targa_header.id_length != 0)
buf_p += targa_header.id_length; // skip TARGA image comment
if ( targa_header.image_type==2 || targa_header.image_type == 3 )
{
// Uncompressed RGB or gray scale image
for(row=rows-1; row>=0; row--)
{
pixbuf = targa_rgba + row*columns*4;
for(column=0; column<columns; column++)
{
unsigned char red,green,blue,alphabyte;
switch (targa_header.pixel_size)
{
case 8:
blue = *buf_p++;
green = blue;
red = blue;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = 255;
break;
case 24:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = 255;
break;
case 32:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alphabyte = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alphabyte;
break;
default:
ri.Error( ERR_DROP, "LoadTGA: illegal pixel_size '%d' in file '%s'\n", targa_header.pixel_size, name );
break;
}
}
}
}
else if (targa_header.image_type==10) { // Runlength encoded RGB images
unsigned char red,green,blue,alphabyte,packetHeader,packetSize,j;
red = 0;
green = 0;
blue = 0;
alphabyte = 0xff;
for(row=rows-1; row>=0; row--) {
pixbuf = targa_rgba + row*columns*4;
for(column=0; column<columns; ) {
packetHeader= *buf_p++;
packetSize = 1 + (packetHeader & 0x7f);
if (packetHeader & 0x80) { // run-length packet
switch (targa_header.pixel_size) {
case 24:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alphabyte = 255;
break;
case 32:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alphabyte = *buf_p++;
break;
default:
ri.Error( ERR_DROP, "LoadTGA: illegal pixel_size '%d' in file '%s'\n", targa_header.pixel_size, name );
break;
}
for(j=0;j<packetSize;j++) {
*pixbuf++=red;
*pixbuf++=green;
*pixbuf++=blue;
*pixbuf++=alphabyte;
column++;
if (column==columns) { // run spans across rows
column=0;
if (row>0)
row--;
else
goto breakOut;
pixbuf = targa_rgba + row*columns*4;
}
}
}
else { // non run-length packet
for(j=0;j<packetSize;j++) {
switch (targa_header.pixel_size) {
case 24:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = 255;
break;
case 32:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alphabyte = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alphabyte;
break;
default:
ri.Error( ERR_DROP, "LoadTGA: illegal pixel_size '%d' in file '%s'\n", targa_header.pixel_size, name );
break;
}
column++;
if (column==columns) { // pixel packet run spans across rows
column=0;
if (row>0)
row--;
else
goto breakOut;
pixbuf = targa_rgba + row*columns*4;
}
}
}
}
breakOut:;
}
}
#if 0
// TTimo: this is the chunk of code to ensure a behavior that meets TGA specs
// bk0101024 - fix from Leonardo
// bit 5 set => top-down
if (targa_header.attributes & 0x20) {
unsigned char *flip = (unsigned char*)malloc (columns*4);
unsigned char *src, *dst;
for (row = 0; row < rows/2; row++) {
src = targa_rgba + row * 4 * columns;
dst = targa_rgba + (rows - row - 1) * 4 * columns;
memcpy (flip, src, columns*4);
memcpy (src, dst, columns*4);
memcpy (dst, flip, columns*4);
}
free (flip);
}
#endif
// instead we just print a warning
if (targa_header.attributes & 0x20) {
ri.Printf( PRINT_WARNING, "WARNING: '%s' TGA file header declares top-down image, ignoring\n", name);
}
ri.FS_FreeFile (buffer);
}
static void LoadJPG( const char *filename, unsigned char **pic, int *width, int *height ) {
/* This struct contains the JPEG decompression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
*/
struct jpeg_decompress_struct cinfo = {NULL};
/* We use our private extension JPEG error handler.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPARRAY buffer; /* Output row buffer */
unsigned row_stride; /* physical row width in output buffer */
unsigned pixelcount, memcount;
unsigned char *out;
byte *fbuffer;
byte *buf;
/* In this example we want to open the input file before doing anything else,
* so that the setjmp() error recovery below can assume the file is open.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to read binary files.
*/
ri.FS_ReadFile ( ( char * ) filename, (void **)&fbuffer);
if (!fbuffer) {
return;
}
/* Step 1: allocate and initialize JPEG decompression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG decompression object. */
jpeg_create_decompress(&cinfo);
/* Step 2: specify data source (eg, a file) */
jpeg_stdio_src(&cinfo, fbuffer);
/* Step 3: read file parameters with jpeg_read_header() */
(void) jpeg_read_header(&cinfo, TRUE);
/* We can ignore the return value from jpeg_read_header since
* (a) suspension is not possible with the stdio data source, and
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
* See libjpeg.doc for more info.
*/
/* Step 4: set parameters for decompression */
/* In this example, we don't need to change any of the defaults set by
* jpeg_read_header(), so we do nothing here.
*/
/* Step 5: Start decompressor */
(void) jpeg_start_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
/* We may need to do some setup of our own at this point before reading
* the data. After jpeg_start_decompress() we have the correct scaled
* output image dimensions available, as well as the output colormap
* if we asked for color quantization.
* In this example, we need to make an output work buffer of the right size.
*/
/* JSAMPLEs per row in output buffer */
pixelcount = cinfo.output_width * cinfo.output_height;
if(!cinfo.output_width || !cinfo.output_height
|| ((pixelcount * 4) / cinfo.output_width) / 4 != cinfo.output_height
|| pixelcount > 0x1FFFFFFF || cinfo.output_components > 4) // 4*1FFFFFFF == 0x7FFFFFFC < 0x7FFFFFFF
{
ri.Error (ERR_DROP, "LoadJPG: %s has an invalid image size: %dx%d*4=%d, components: %d\n", filename,
cinfo.output_width, cinfo.output_height, pixelcount * 4, cinfo.output_components);
}
memcount = pixelcount * 4;
row_stride = cinfo.output_width * cinfo.output_components;
out = ri.Malloc(memcount);
*width = cinfo.output_width;
*height = cinfo.output_height;
/* Step 6: while (scan lines remain to be read) */
/* jpeg_read_scanlines(...); */
/* Here we use the library's state variable cinfo.output_scanline as the
* loop counter, so that we don't have to keep track ourselves.
*/
while (cinfo.output_scanline < cinfo.output_height) {
/* jpeg_read_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could ask for
* more than one scanline at a time if that's more convenient.
*/
buf = ((out+(row_stride*cinfo.output_scanline)));
buffer = &buf;
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
}
buf = out;
// If we are processing an 8-bit JPEG (greyscale), we'll have to convert
// the greyscale values to RGBA.
if(cinfo.output_components == 1)
{
int sindex = pixelcount, dindex = memcount;
unsigned char greyshade;
// Only pixelcount number of bytes have been written.
// Expand the color values over the rest of the buffer, starting
// from the end.
do
{
greyshade = buf[--sindex];
buf[--dindex] = 255;
buf[--dindex] = greyshade;
buf[--dindex] = greyshade;
buf[--dindex] = greyshade;
} while(sindex);
}
else
{
// clear all the alphas to 255
int i;
for ( i = 3 ; i < memcount ; i+=4 )
{
buf[i] = 255;
}
}
*pic = out;
/* Step 7: Finish decompression */
(void) jpeg_finish_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
/* Step 8: Release JPEG decompression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_decompress(&cinfo);
/* After finish_decompress, we can close the input file.
* Here we postpone it until after no more JPEG errors are possible,
* so as to simplify the setjmp error logic above. (Actually, I don't
* think that jpeg_destroy can do an error exit, but why assume anything...)
*/
ri.FS_FreeFile (fbuffer);
/* At this point you may want to check to see whether any corrupt-data
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
*/
/* And we're done! */
}
/* Expanded data destination object for stdio output */
typedef struct {
struct jpeg_destination_mgr pub; /* public fields */
byte* outfile; /* target stream */
int size;
} my_destination_mgr;
typedef my_destination_mgr * my_dest_ptr;
/*
* Initialize destination --- called by jpeg_start_compress
* before any data is actually written.
*/
void init_destination (j_compress_ptr cinfo)
{
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
dest->pub.next_output_byte = dest->outfile;
dest->pub.free_in_buffer = dest->size;
}
/*
* Empty the output buffer --- called whenever buffer fills up.
*
* In typical applications, this should write the entire output buffer
* (ignoring the current state of next_output_byte & free_in_buffer),
* reset the pointer & count to the start of the buffer, and return TRUE
* indicating that the buffer has been dumped.
*
* In applications that need to be able to suspend compression due to output
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
* In this situation, the compressor will return to its caller (possibly with
* an indication that it has not accepted all the supplied scanlines). The
* application should resume compression after it has made more room in the
* output buffer. Note that there are substantial restrictions on the use of
* suspension --- see the documentation.
*
* When suspending, the compressor will back up to a convenient restart point
* (typically the start of the current MCU). next_output_byte & free_in_buffer
* indicate where the restart point will be if the current call returns FALSE.
* Data beyond this point will be regenerated after resumption, so do not
* write it out when emptying the buffer externally.
*/
boolean empty_output_buffer (j_compress_ptr cinfo)
{
return TRUE;
}
/*
* Compression initialization.
* Before calling this, all parameters and a data destination must be set up.
*
* We require a write_all_tables parameter as a failsafe check when writing
* multiple datastreams from the same compression object. Since prior runs
* will have left all the tables marked sent_table=TRUE, a subsequent run
* would emit an abbreviated stream (no tables) by default. This may be what
* is wanted, but for safety's sake it should not be the default behavior:
* programmers should have to make a deliberate choice to emit abbreviated
* images. Therefore the documentation and examples should encourage people
* to pass write_all_tables=TRUE; then it will take active thought to do the
* wrong thing.
*/
GLOBAL void
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (write_all_tables)
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Perform master selection of active modules */
jinit_compress_master(cinfo);
/* Set up for the first pass */
(*cinfo->master->prepare_for_pass) (cinfo);
/* Ready for application to drive first pass through jpeg_write_scanlines
* or jpeg_write_raw_data.
*/
cinfo->next_scanline = 0;
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
}
/*
* Write some scanlines of data to the JPEG compressor.
*
* The return value will be the number of lines actually written.
* This should be less than the supplied num_lines only in case that
* the data destination module has requested suspension of the compressor,
* or if more than image_height scanlines are passed in.
*
* Note: we warn about excess calls to jpeg_write_scanlines() since
* this likely signals an application programmer error. However,
* excess scanlines passed in the last valid call are *silently* ignored,
* so that the application need not adjust num_lines for end-of-image
* when using a multiple-scanline buffer.
*/
GLOBAL JDIMENSION
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION num_lines)
{
JDIMENSION row_ctr, rows_left;
if (cinfo->global_state != CSTATE_SCANNING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->next_scanline >= cinfo->image_height)
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
cinfo->progress->pass_limit = (long) cinfo->image_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Give master control module another chance if this is first call to
* jpeg_write_scanlines. This lets output of the frame/scan headers be
* delayed so that application can write COM, etc, markers between
* jpeg_start_compress and jpeg_write_scanlines.
*/
if (cinfo->master->call_pass_startup)
(*cinfo->master->pass_startup) (cinfo);
/* Ignore any extra scanlines at bottom of image. */
rows_left = cinfo->image_height - cinfo->next_scanline;
if (num_lines > rows_left)
num_lines = rows_left;
row_ctr = 0;
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
cinfo->next_scanline += row_ctr;
return row_ctr;
}
/*
* Terminate destination --- called by jpeg_finish_compress
* after all data has been written. Usually needs to flush buffer.
*
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
* application must deal with any cleanup that should happen even
* for error exit.
*/
static int hackSize;
void term_destination (j_compress_ptr cinfo)
{
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
size_t datacount = dest->size - dest->pub.free_in_buffer;
hackSize = datacount;
}
/*
* Prepare for output to a stdio stream.
* The caller must have already opened the stream, and is responsible
* for closing it after finishing compression.
*/
void jpegDest (j_compress_ptr cinfo, byte* outfile, int size)
{
my_dest_ptr dest;
/* The destination object is made permanent so that multiple JPEG images
* can be written to the same file without re-executing jpeg_stdio_dest.
* This makes it dangerous to use this manager and a different destination
* manager serially with the same JPEG object, because their private object
* sizes may be different. Caveat programmer.
*/
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
cinfo->dest = (struct jpeg_destination_mgr *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
sizeof(my_destination_mgr));
}
dest = (my_dest_ptr) cinfo->dest;
dest->pub.init_destination = init_destination;
dest->pub.empty_output_buffer = empty_output_buffer;
dest->pub.term_destination = term_destination;
dest->outfile = outfile;
dest->size = size;
}
void SaveJPG(char * filename, int quality, int image_width, int image_height, unsigned char *image_buffer) {
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
unsigned char *out;
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
out = ri.Hunk_AllocateTempMemory(image_width*image_height*4);
jpegDest(&cinfo, out, image_width*image_height*4);
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* If quality is set high, disable chroma subsampling */
if (quality >= 85) {
cinfo.comp_info[0].h_samp_factor = 1;
cinfo.comp_info[0].v_samp_factor = 1;
}
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & image_buffer[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* After finish_compress, we can close the output file. */
ri.FS_WriteFile( filename, out, hackSize );
ri.Hunk_FreeTempMemory(out);
/* Step 7: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
}
/*
=================
SaveJPGToBuffer
=================
*/
int SaveJPGToBuffer( byte *buffer, int quality,
int image_width, int image_height,
byte *image_buffer )
{
struct jpeg_compress_struct cinfo;
struct jpeg_error_mgr jerr;
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
/* Step 1: allocate and initialize JPEG compression object */
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
jpegDest(&cinfo, buffer, image_width*image_height*4);
/* Step 3: set parameters for compression */
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
jpeg_set_defaults(&cinfo);
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* If quality is set high, disable chroma subsampling */
if (quality >= 85) {
cinfo.comp_info[0].h_samp_factor = 1;
cinfo.comp_info[0].v_samp_factor = 1;
}
/* Step 4: Start compressor */
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & image_buffer[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* Step 7: release JPEG compression object */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
return hackSize;
}
//===================================================================
/*
=================
PNG LOADING
=================
*/
/*
* Quake 3 image format : RGBA
*/
#define Q3IMAGE_BYTESPERPIXEL (4)
/*
* PNG specifications
*/
/*
* The first 8 Bytes of every PNG-File are a fixed signature
* to identify the file as a PNG.
*/
#define PNG_Signature "\x89\x50\x4E\x47\xD\xA\x1A\xA"
#define PNG_Signature_Size (8)
/*
* After the signature diverse chunks follow.
* A chunk consists of a header and if Length
* is bigger than 0 a body and a CRC of the body follow.
*/
struct PNG_ChunkHeader
{
uint32_t Length;
uint32_t Type;
};
#define PNG_ChunkHeader_Size (8)
typedef uint32_t PNG_ChunkCRC;
#define PNG_ChunkCRC_Size (4)
/*
* We use the following ChunkTypes.
* All others are ignored.
*/
#define MAKE_CHUNKTYPE(a,b,c,d) (((a) << 24) | ((b) << 16) | ((c) << 8) | ((d)))
#define PNG_ChunkType_IHDR MAKE_CHUNKTYPE('I', 'H', 'D', 'R')
#define PNG_ChunkType_PLTE MAKE_CHUNKTYPE('P', 'L', 'T', 'E')
#define PNG_ChunkType_IDAT MAKE_CHUNKTYPE('I', 'D', 'A', 'T')
#define PNG_ChunkType_IEND MAKE_CHUNKTYPE('I', 'E', 'N', 'D')
#define PNG_ChunkType_tRNS MAKE_CHUNKTYPE('t', 'R', 'N', 'S')
/*
* Per specification the first chunk after the signature SHALL be IHDR.
*/
struct PNG_Chunk_IHDR
{
uint32_t Width;
uint32_t Height;
uint8_t BitDepth;
uint8_t ColourType;
uint8_t CompressionMethod;
uint8_t FilterMethod;
uint8_t InterlaceMethod;
};
#define PNG_Chunk_IHDR_Size (13)
/*
* ColourTypes
*/
#define PNG_ColourType_Grey (0)
#define PNG_ColourType_True (2)
#define PNG_ColourType_Indexed (3)
#define PNG_ColourType_GreyAlpha (4)
#define PNG_ColourType_TrueAlpha (6)
/*
* number of colour components
*
* Grey : 1 grey
* True : 1 R, 1 G, 1 B
* Indexed : 1 index
* GreyAlpha : 1 grey, 1 alpha
* TrueAlpha : 1 R, 1 G, 1 B, 1 alpha
*/
#define PNG_NumColourComponents_Grey (1)
#define PNG_NumColourComponents_True (3)
#define PNG_NumColourComponents_Indexed (1)
#define PNG_NumColourComponents_GreyAlpha (2)
#define PNG_NumColourComponents_TrueAlpha (4)
/*
* For the different ColourTypes
* different BitDepths are specified.
*/
#define PNG_BitDepth_1 ( 1)
#define PNG_BitDepth_2 ( 2)
#define PNG_BitDepth_4 ( 4)
#define PNG_BitDepth_8 ( 8)
#define PNG_BitDepth_16 (16)
/*
* Only one valid CompressionMethod is standardized.
*/
#define PNG_CompressionMethod_0 (0)
/*
* Only one valid FilterMethod is currently standardized.
*/
#define PNG_FilterMethod_0 (0)
/*
* This FilterMethod defines 5 FilterTypes
*/
#define PNG_FilterType_None (0)
#define PNG_FilterType_Sub (1)
#define PNG_FilterType_Up (2)
#define PNG_FilterType_Average (3)
#define PNG_FilterType_Paeth (4)
/*
* Two InterlaceMethods are standardized :
* 0 - NonInterlaced
* 1 - Interlaced
*/
#define PNG_InterlaceMethod_NonInterlaced (0)
#define PNG_InterlaceMethod_Interlaced (1)
/*
* The Adam7 interlace method uses 7 passes.
*/
#define PNG_Adam7_NumPasses (7)
/*
* The compressed data starts with a header ...
*/
struct PNG_ZlibHeader
{
uint8_t CompressionMethod;
uint8_t Flags;
};
#define PNG_ZlibHeader_Size (2)
/*
* ... and is followed by a check value
*/
#define PNG_ZlibCheckValue_Size (4)
/*
* Some support functions for buffered files follow.
*/
/*
* buffered file representation
*/
struct BufferedFile
{
byte *Buffer;
int Length;
byte *Ptr;
int BytesLeft;
};
/*
* Read a file into a buffer.
*/
static struct BufferedFile *ReadBufferedFile(const char *name)
{
struct BufferedFile *BF;
/*
* input verification
*/
if(!name)
{
return(NULL);
}
/*
* Allocate control struct.
*/
BF = ri.Malloc(sizeof(struct BufferedFile));
if(!BF)
{
return(NULL);
}
/*
* Initialize the structs components.
*/
BF->Length = 0;
BF->Buffer = NULL;
BF->Ptr = NULL;
BF->BytesLeft = 0;
/*
* Read the file.
*/
BF->Length = ri.FS_ReadFile((char *) name, (void **) &BF->Buffer);
/*
* Did we get it? Is it big enough?
*/
if(!(BF->Buffer && (BF->Length > 0)))
{
ri.Free(BF);
return(NULL);
}
/*
* Set the pointers and counters.
*/
BF->Ptr = BF->Buffer;
BF->BytesLeft = BF->Length;
return(BF);
}
/*
* Close a buffered file.
*/
static void CloseBufferedFile(struct BufferedFile *BF)
{
if(BF)
{
if(BF->Buffer)
{
ri.FS_FreeFile(BF->Buffer);
}
ri.Free(BF);
}
}
/*
* Get a pointer to the requested bytes.
*/
static void *BufferedFileRead(struct BufferedFile *BF, int Length)
{
void *RetVal;
/*
* input verification
*/
if(!(BF && Length))
{
return(NULL);
}
/*
* not enough bytes left
*/
if(Length > BF->BytesLeft)
{
return(NULL);
}
/*
* the pointer to the requested data
*/
RetVal = BF->Ptr;
/*
* Raise the pointer and counter.
*/
BF->Ptr += Length;
BF->BytesLeft -= Length;
return(RetVal);
}
/*
* Rewind the buffer.
*/
static qboolean BufferedFileRewind(struct BufferedFile *BF, int Offset)
{
int BytesRead;
/*
* input verification
*/
if(!BF)
{
return(qfalse);
}
/*
* special trick to rewind to the beginning of the buffer
*/
if(Offset == -1)
{
BF->Ptr = BF->Buffer;
BF->BytesLeft = BF->Length;
return(qtrue);
}
/*
* How many bytes do we have already read?
*/
BytesRead = BF->Ptr - BF->Buffer;
/*
* We can only rewind to the beginning of the BufferedFile.
*/
if(Offset > BytesRead)
{
return(qfalse);
}
/*
* lower the pointer and counter.
*/
BF->Ptr -= Offset;
BF->BytesLeft += Offset;
return(qtrue);
}
/*
* Skip some bytes.
*/
static qboolean BufferedFileSkip(struct BufferedFile *BF, int Offset)
{
/*
* input verification
*/
if(!BF)
{
return(qfalse);
}
/*
* We can only skip to the end of the BufferedFile.
*/
if(Offset > BF->BytesLeft)
{
return(qfalse);
}
/*
* lower the pointer and counter.
*/
BF->Ptr += Offset;
BF->BytesLeft -= Offset;
return(qtrue);
}
/*
* Find a chunk
*/
static qboolean FindChunk(struct BufferedFile *BF, uint32_t ChunkType)
{
struct PNG_ChunkHeader *CH;
uint32_t Length;
uint32_t Type;
/*
* input verification
*/
if(!BF)
{
return(qfalse);
}
/*
* cycle trough the chunks
*/
while(qtrue)
{
/*
* Read the chunk-header.
*/
CH = BufferedFileRead(BF, PNG_ChunkHeader_Size);
if(!CH)
{
return(qfalse);
}
/*
* Do not swap the original types
* they might be needed later.
*/
Length = BigLong(CH->Length);
Type = BigLong(CH->Type);
/*
* We found it!
*/
if(Type == ChunkType)
{
/*
* Rewind to the start of the chunk.
*/
BufferedFileRewind(BF, PNG_ChunkHeader_Size);
break;
}
else
{
/*
* Skip the rest of the chunk.
*/
if(Length)
{
if(!BufferedFileSkip(BF, Length + PNG_ChunkCRC_Size))
{
return(qfalse);
}
}
}
}
return(qtrue);
}
/*
* Decompress all IDATs
*/
static uint32_t DecompressIDATs(struct BufferedFile *BF, uint8_t **Buffer)
{
uint8_t *DecompressedData;
uint32_t DecompressedDataLength;
uint8_t *CompressedData;
uint8_t *CompressedDataPtr;
uint32_t CompressedDataLength;
struct PNG_ChunkHeader *CH;
uint32_t Length;
uint32_t Type;
int BytesToRewind;
int32_t puffResult;
uint8_t *puffDest;
uint32_t puffDestLen;
uint8_t *puffSrc;
uint32_t puffSrcLen;
/*
* input verification
*/
if(!(BF && Buffer))
{
return(-1);
}
/*
* some zeroing
*/
DecompressedData = NULL;
DecompressedDataLength = 0;
*Buffer = DecompressedData;
CompressedData = NULL;
CompressedDataLength = 0;
BytesToRewind = 0;
/*
* Find the first IDAT chunk.
*/
if(!FindChunk(BF, PNG_ChunkType_IDAT))
{
return(-1);
}
/*
* Count the size of the uncompressed data
*/
while(qtrue)
{
/*
* Read chunk header
*/
CH = BufferedFileRead(BF, PNG_ChunkHeader_Size);
if(!CH)
{
/*
* Rewind to the start of this adventure
* and return unsuccessfull
*/
BufferedFileRewind(BF, BytesToRewind);
return(-1);
}
/*
* Length and Type of chunk
*/
Length = BigLong(CH->Length);
Type = BigLong(CH->Type);
/*
* We have reached the end of the IDAT chunks
*/
if(!(Type == PNG_ChunkType_IDAT))
{
BufferedFileRewind(BF, PNG_ChunkHeader_Size);
break;
}
/*
* Add chunk header to count.
*/
BytesToRewind += PNG_ChunkHeader_Size;
/*
* Skip to next chunk
*/
if(Length)
{
if(!BufferedFileSkip(BF, Length + PNG_ChunkCRC_Size))
{
BufferedFileRewind(BF, BytesToRewind);
return(-1);
}
BytesToRewind += Length + PNG_ChunkCRC_Size;
CompressedDataLength += Length;
}
}
BufferedFileRewind(BF, BytesToRewind);
CompressedData = ri.Malloc(CompressedDataLength);
if(!CompressedData)
{
return(-1);
}
CompressedDataPtr = CompressedData;
/*
* Collect the compressed Data
*/
while(qtrue)
{
/*
* Read chunk header
*/
CH = BufferedFileRead(BF, PNG_ChunkHeader_Size);
if(!CH)
{
ri.Free(CompressedData);
return(-1);
}
/*
* Length and Type of chunk
*/
Length = BigLong(CH->Length);
Type = BigLong(CH->Type);
/*
* We have reached the end of the IDAT chunks
*/
if(!(Type == PNG_ChunkType_IDAT))
{
BufferedFileRewind(BF, PNG_ChunkHeader_Size);
break;
}
/*
* Copy the Data
*/
if(Length)
{
uint8_t *OrigCompressedData;
OrigCompressedData = BufferedFileRead(BF, Length);
if(!OrigCompressedData)
{
ri.Free(CompressedData);
return(-1);
}
if(!BufferedFileSkip(BF, PNG_ChunkCRC_Size))
{
ri.Free(CompressedData);
return(-1);
}
memcpy(CompressedDataPtr, OrigCompressedData, Length);
CompressedDataPtr += Length;
}
}
/*
* Let puff() calculate the decompressed data length.
*/
puffDest = NULL;
puffDestLen = 0;
/*
* The zlib header and checkvalue don't belong to the compressed data.
*/
puffSrc = CompressedData + PNG_ZlibHeader_Size;
puffSrcLen = CompressedDataLength - PNG_ZlibHeader_Size - PNG_ZlibCheckValue_Size;
/*
* first puff() to calculate the size of the uncompressed data
*/
puffResult = puff(puffDest, &puffDestLen, puffSrc, &puffSrcLen);
if(!((puffResult == 0) && (puffDestLen > 0)))
{
ri.Free(CompressedData);
return(-1);
}
/*
* Allocate the buffer for the uncompressed data.
*/
DecompressedData = ri.Malloc(puffDestLen);
if(!DecompressedData)
{
ri.Free(CompressedData);
return(-1);
}
/*
* Set the input again in case something was changed by the last puff() .
*/
puffDest = DecompressedData;
puffSrc = CompressedData + PNG_ZlibHeader_Size;
puffSrcLen = CompressedDataLength - PNG_ZlibHeader_Size - PNG_ZlibCheckValue_Size;
/*
* decompression puff()
*/
puffResult = puff(puffDest, &puffDestLen, puffSrc, &puffSrcLen);
/*
* The compressed data is not needed anymore.
*/
ri.Free(CompressedData);
/*
* Check if the last puff() was successfull.
*/
if(!((puffResult == 0) && (puffDestLen > 0)))
{
ri.Free(DecompressedData);
return(-1);
}
/*
* Set the output of this function.
*/
DecompressedDataLength = puffDestLen;
*Buffer = DecompressedData;
return(DecompressedDataLength);
}
/*
* the Paeth predictor
*/
static uint8_t PredictPaeth(uint8_t a, uint8_t b, uint8_t c)
{
/*
* a == Left
* b == Up
* c == UpLeft
*/
uint8_t Pr;
int p;
int pa, pb, pc;
Pr = 0;
p = ((int) a) + ((int) b) - ((int) c);
pa = abs(p - ((int) a));
pb = abs(p - ((int) b));
pc = abs(p - ((int) c));
if((pa <= pb) && (pa <= pc))
{
Pr = a;
}
else if(pb <= pc)
{
Pr = b;
}
else
{
Pr = c;
}
return(Pr);
}
/*
* Reverse the filters.
*/
static qboolean UnfilterImage(uint8_t *DecompressedData,
uint32_t ImageHeight,
uint32_t BytesPerScanline,
uint32_t BytesPerPixel)
{
uint8_t *DecompPtr;
uint8_t FilterType;
uint8_t *PixelLeft, *PixelUp, *PixelUpLeft;
uint32_t w, h, p;
/*
* some zeros for the filters
*/
uint8_t Zeros[8] = {0, 0, 0, 0, 0, 0, 0, 0};
/*
* input verification
*
* ImageHeight and BytesPerScanline are not checked,
* because these can be zero in some interlace passes.
*/
if(!(DecompressedData && BytesPerPixel))
{
return(qfalse);
}
/*
* Set the pointer to the start of the decompressed Data.
*/
DecompPtr = DecompressedData;
/*
* Un-filtering is done in place.
*/
/*
* Go trough all scanlines.
*/
for(h = 0; h < ImageHeight; h++)
{
/*
* Every scanline starts with a FilterType byte.
*/
FilterType = *DecompPtr;
DecompPtr++;
/*
* Left pixel of the first byte in a scanline is zero.
*/
PixelLeft = Zeros;
/*
* Set PixelUp to previous line only if we are on the second line or above.
*
* Plus one byte for the FilterType
*/
if(h > 0)
{
PixelUp = DecompPtr - (BytesPerScanline + 1);
}
else
{
PixelUp = Zeros;
}
/*
* The pixel left to the first pixel of the previous scanline is zero too.
*/
PixelUpLeft = Zeros;
/*
* Cycle trough all pixels of the scanline.
*/
for(w = 0; w < (BytesPerScanline / BytesPerPixel); w++)
{
/*
* Cycle trough the bytes of the pixel.
*/
for(p = 0; p < BytesPerPixel; p++)
{
switch(FilterType)
{
case PNG_FilterType_None :
{
/*
* The byte is unfiltered.
*/
break;
}
case PNG_FilterType_Sub :
{
DecompPtr[p] += PixelLeft[p];
break;
}
case PNG_FilterType_Up :
{
DecompPtr[p] += PixelUp[p];
break;
}
case PNG_FilterType_Average :
{
DecompPtr[p] += ((uint8_t) ((((uint16_t) PixelLeft[p]) + ((uint16_t) PixelUp[p])) / 2));
break;
}
case PNG_FilterType_Paeth :
{
DecompPtr[p] += PredictPaeth(PixelLeft[p], PixelUp[p], PixelUpLeft[p]);
break;
}
default :
{
return(qfalse);
}
}
}
PixelLeft = DecompPtr;
/*
* We only have a upleft pixel if we are on the second line or above.
*/
if(h > 0)
{
PixelUpLeft = DecompPtr - (BytesPerScanline + 1);
}
/*
* Skip to the next pixel.
*/
DecompPtr += BytesPerPixel;
/*
* We only have a previous line if we are on the second line and above.
*/
if(h > 0)
{
PixelUp = DecompPtr - (BytesPerScanline + 1);
}
}
}
return(qtrue);
}
/*
* Convert a raw input pixel to Quake 3 RGA format.
*/
static qboolean ConvertPixel(struct PNG_Chunk_IHDR *IHDR,
byte *OutPtr,
uint8_t *DecompPtr,
qboolean HasTransparentColour,
uint8_t *TransparentColour,
uint8_t *OutPal)
{
/*
* input verification
*/
if(!(IHDR && OutPtr && DecompPtr && TransparentColour && OutPal))
{
return(qfalse);
}
switch(IHDR->ColourType)
{
case PNG_ColourType_Grey :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_1 :
case PNG_BitDepth_2 :
case PNG_BitDepth_4 :
{
uint8_t Step;
uint8_t GreyValue;
Step = 0xFF / ((1 << IHDR->BitDepth) - 1);
GreyValue = DecompPtr[0] * Step;
OutPtr[0] = GreyValue;
OutPtr[1] = GreyValue;
OutPtr[2] = GreyValue;
OutPtr[3] = 0xFF;
/*
* Grey supports full transparency for one specified colour
*/
if(HasTransparentColour)
{
if(TransparentColour[1] == DecompPtr[0])
{
OutPtr[3] = 0x00;
}
}
break;
}
case PNG_BitDepth_8 :
case PNG_BitDepth_16 :
{
OutPtr[0] = DecompPtr[0];
OutPtr[1] = DecompPtr[0];
OutPtr[2] = DecompPtr[0];
OutPtr[3] = 0xFF;
/*
* Grey supports full transparency for one specified colour
*/
if(HasTransparentColour)
{
if(IHDR->BitDepth == PNG_BitDepth_8)
{
if(TransparentColour[1] == DecompPtr[0])
{
OutPtr[3] = 0x00;
}
}
else
{
if((TransparentColour[0] == DecompPtr[0]) && (TransparentColour[1] == DecompPtr[1]))
{
OutPtr[3] = 0x00;
}
}
}
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_True :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_8 :
{
OutPtr[0] = DecompPtr[0];
OutPtr[1] = DecompPtr[1];
OutPtr[2] = DecompPtr[2];
OutPtr[3] = 0xFF;
/*
* True supports full transparency for one specified colour
*/
if(HasTransparentColour)
{
if((TransparentColour[1] == DecompPtr[0]) &&
(TransparentColour[3] == DecompPtr[1]) &&
(TransparentColour[5] == DecompPtr[3]))
{
OutPtr[3] = 0x00;
}
}
break;
}
case PNG_BitDepth_16 :
{
/*
* We use only the upper byte.
*/
OutPtr[0] = DecompPtr[0];
OutPtr[1] = DecompPtr[2];
OutPtr[2] = DecompPtr[4];
OutPtr[3] = 0xFF;
/*
* True supports full transparency for one specified colour
*/
if(HasTransparentColour)
{
if((TransparentColour[0] == DecompPtr[0]) && (TransparentColour[1] == DecompPtr[1]) &&
(TransparentColour[2] == DecompPtr[2]) && (TransparentColour[3] == DecompPtr[3]) &&
(TransparentColour[4] == DecompPtr[4]) && (TransparentColour[5] == DecompPtr[5]))
{
OutPtr[3] = 0x00;
}
}
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_Indexed :
{
OutPtr[0] = OutPal[DecompPtr[0] * Q3IMAGE_BYTESPERPIXEL + 0];
OutPtr[1] = OutPal[DecompPtr[0] * Q3IMAGE_BYTESPERPIXEL + 1];
OutPtr[2] = OutPal[DecompPtr[0] * Q3IMAGE_BYTESPERPIXEL + 2];
OutPtr[3] = OutPal[DecompPtr[0] * Q3IMAGE_BYTESPERPIXEL + 3];
break;
}
case PNG_ColourType_GreyAlpha :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_8 :
{
OutPtr[0] = DecompPtr[0];
OutPtr[1] = DecompPtr[0];
OutPtr[2] = DecompPtr[0];
OutPtr[3] = DecompPtr[1];
break;
}
case PNG_BitDepth_16 :
{
/*
* We use only the upper byte.
*/
OutPtr[0] = DecompPtr[0];
OutPtr[1] = DecompPtr[0];
OutPtr[2] = DecompPtr[0];
OutPtr[3] = DecompPtr[2];
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_TrueAlpha :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_8 :
{
OutPtr[0] = DecompPtr[0];
OutPtr[1] = DecompPtr[1];
OutPtr[2] = DecompPtr[2];
OutPtr[3] = DecompPtr[3];
break;
}
case PNG_BitDepth_16 :
{
/*
* We use only the upper byte.
*/
OutPtr[0] = DecompPtr[0];
OutPtr[1] = DecompPtr[2];
OutPtr[2] = DecompPtr[4];
OutPtr[3] = DecompPtr[6];
break;
}
default :
{
return(qfalse);
}
}
break;
}
default :
{
return(qfalse);
}
}
return(qtrue);
}
/*
* Decode a non-interlaced image.
*/
static qboolean DecodeImageNonInterlaced(struct PNG_Chunk_IHDR *IHDR,
byte *OutBuffer,
uint8_t *DecompressedData,
uint32_t DecompressedDataLength,
qboolean HasTransparentColour,
uint8_t *TransparentColour,
uint8_t *OutPal)
{
uint32_t IHDR_Width;
uint32_t IHDR_Height;
uint32_t BytesPerScanline, BytesPerPixel, PixelsPerByte;
uint32_t w, h, p;
byte *OutPtr;
uint8_t *DecompPtr;
/*
* input verification
*/
if(!(IHDR && OutBuffer && DecompressedData && DecompressedDataLength && TransparentColour && OutPal))
{
return(qfalse);
}
/*
* byte swapping
*/
IHDR_Width = BigLong(IHDR->Width);
IHDR_Height = BigLong(IHDR->Height);
/*
* information for un-filtering
*/
switch(IHDR->ColourType)
{
case PNG_ColourType_Grey :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_1 :
case PNG_BitDepth_2 :
case PNG_BitDepth_4 :
{
BytesPerPixel = 1;
PixelsPerByte = 8 / IHDR->BitDepth;
break;
}
case PNG_BitDepth_8 :
case PNG_BitDepth_16 :
{
BytesPerPixel = (IHDR->BitDepth / 8) * PNG_NumColourComponents_Grey;
PixelsPerByte = 1;
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_True :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_8 :
case PNG_BitDepth_16 :
{
BytesPerPixel = (IHDR->BitDepth / 8) * PNG_NumColourComponents_True;
PixelsPerByte = 1;
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_Indexed :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_1 :
case PNG_BitDepth_2 :
case PNG_BitDepth_4 :
{
BytesPerPixel = 1;
PixelsPerByte = 8 / IHDR->BitDepth;
break;
}
case PNG_BitDepth_8 :
{
BytesPerPixel = PNG_NumColourComponents_Indexed;
PixelsPerByte = 1;
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_GreyAlpha :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_8 :
case PNG_BitDepth_16 :
{
BytesPerPixel = (IHDR->BitDepth / 8) * PNG_NumColourComponents_GreyAlpha;
PixelsPerByte = 1;
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_TrueAlpha :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_8 :
case PNG_BitDepth_16 :
{
BytesPerPixel = (IHDR->BitDepth / 8) * PNG_NumColourComponents_TrueAlpha;
PixelsPerByte = 1;
break;
}
default :
{
return(qfalse);
}
}
break;
}
default :
{
return(qfalse);
}
}
/*
* Calculate the size of one scanline
*/
BytesPerScanline = (IHDR_Width * BytesPerPixel + (PixelsPerByte - 1)) / PixelsPerByte;
/*
* Check if we have enough data for the whole image.
*/
if(!(DecompressedDataLength == ((BytesPerScanline + 1) * IHDR_Height)))
{
return(qfalse);
}
/*
* Unfilter the image.
*/
if(!UnfilterImage(DecompressedData, IHDR_Height, BytesPerScanline, BytesPerPixel))
{
return(qfalse);
}
/*
* Set the working pointers to the beginning of the buffers.
*/
OutPtr = OutBuffer;
DecompPtr = DecompressedData;
/*
* Create the output image.
*/
for(h = 0; h < IHDR_Height; h++)
{
/*
* Count the pixels on the scanline for those multipixel bytes
*/
uint32_t CurrPixel;
/*
* skip FilterType
*/
DecompPtr++;
/*
* Reset the pixel count.
*/
CurrPixel = 0;
for(w = 0; w < (BytesPerScanline / BytesPerPixel); w++)
{
if(PixelsPerByte > 1)
{
uint8_t Mask;
uint32_t Shift;
uint8_t SinglePixel;
for(p = 0; p < PixelsPerByte; p++)
{
if(CurrPixel < IHDR_Width)
{
Mask = (1 << IHDR->BitDepth) - 1;
Shift = (PixelsPerByte - 1 - p) * IHDR->BitDepth;
SinglePixel = ((DecompPtr[0] & (Mask << Shift)) >> Shift);
if(!ConvertPixel(IHDR, OutPtr, &SinglePixel, HasTransparentColour, TransparentColour, OutPal))
{
return(qfalse);
}
OutPtr += Q3IMAGE_BYTESPERPIXEL;
CurrPixel++;
}
}
}
else
{
if(!ConvertPixel(IHDR, OutPtr, DecompPtr, HasTransparentColour, TransparentColour, OutPal))
{
return(qfalse);
}
OutPtr += Q3IMAGE_BYTESPERPIXEL;
}
DecompPtr += BytesPerPixel;
}
}
return(qtrue);
}
/*
* Decode an interlaced image.
*/
static qboolean DecodeImageInterlaced(struct PNG_Chunk_IHDR *IHDR,
byte *OutBuffer,
uint8_t *DecompressedData,
uint32_t DecompressedDataLength,
qboolean HasTransparentColour,
uint8_t *TransparentColour,
uint8_t *OutPal)
{
uint32_t IHDR_Width;
uint32_t IHDR_Height;
uint32_t BytesPerScanline[PNG_Adam7_NumPasses], BytesPerPixel, PixelsPerByte;
uint32_t PassWidth[PNG_Adam7_NumPasses], PassHeight[PNG_Adam7_NumPasses];
uint32_t WSkip[PNG_Adam7_NumPasses], WOffset[PNG_Adam7_NumPasses], HSkip[PNG_Adam7_NumPasses], HOffset[PNG_Adam7_NumPasses];
uint32_t w, h, p, a;
byte *OutPtr;
uint8_t *DecompPtr;
uint32_t TargetLength;
/*
* input verification
*/
if(!(IHDR && OutBuffer && DecompressedData && DecompressedDataLength && TransparentColour && OutPal))
{
return(qfalse);
}
/*
* byte swapping
*/
IHDR_Width = BigLong(IHDR->Width);
IHDR_Height = BigLong(IHDR->Height);
/*
* Skip and Offset for the passes.
*/
WSkip[0] = 8;
WOffset[0] = 0;
HSkip[0] = 8;
HOffset[0] = 0;
WSkip[1] = 8;
WOffset[1] = 4;
HSkip[1] = 8;
HOffset[1] = 0;
WSkip[2] = 4;
WOffset[2] = 0;
HSkip[2] = 8;
HOffset[2] = 4;
WSkip[3] = 4;
WOffset[3] = 2;
HSkip[3] = 4;
HOffset[3] = 0;
WSkip[4] = 2;
WOffset[4] = 0;
HSkip[4] = 4;
HOffset[4] = 2;
WSkip[5] = 2;
WOffset[5] = 1;
HSkip[5] = 2;
HOffset[5] = 0;
WSkip[6] = 1;
WOffset[6] = 0;
HSkip[6] = 2;
HOffset[6] = 1;
/*
* Calculate the sizes of the passes.
*/
PassWidth[0] = (IHDR_Width + 7) / 8;
PassHeight[0] = (IHDR_Height + 7) / 8;
PassWidth[1] = (IHDR_Width + 3) / 8;
PassHeight[1] = (IHDR_Height + 7) / 8;
PassWidth[2] = (IHDR_Width + 3) / 4;
PassHeight[2] = (IHDR_Height + 3) / 8;
PassWidth[3] = (IHDR_Width + 1) / 4;
PassHeight[3] = (IHDR_Height + 3) / 4;
PassWidth[4] = (IHDR_Width + 1) / 2;
PassHeight[4] = (IHDR_Height + 1) / 4;
PassWidth[5] = (IHDR_Width + 0) / 2;
PassHeight[5] = (IHDR_Height + 1) / 2;
PassWidth[6] = (IHDR_Width + 0) / 1;
PassHeight[6] = (IHDR_Height + 0) / 2;
/*
* information for un-filtering
*/
switch(IHDR->ColourType)
{
case PNG_ColourType_Grey :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_1 :
case PNG_BitDepth_2 :
case PNG_BitDepth_4 :
{
BytesPerPixel = 1;
PixelsPerByte = 8 / IHDR->BitDepth;
break;
}
case PNG_BitDepth_8 :
case PNG_BitDepth_16 :
{
BytesPerPixel = (IHDR->BitDepth / 8) * PNG_NumColourComponents_Grey;
PixelsPerByte = 1;
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_True :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_8 :
case PNG_BitDepth_16 :
{
BytesPerPixel = (IHDR->BitDepth / 8) * PNG_NumColourComponents_True;
PixelsPerByte = 1;
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_Indexed :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_1 :
case PNG_BitDepth_2 :
case PNG_BitDepth_4 :
{
BytesPerPixel = 1;
PixelsPerByte = 8 / IHDR->BitDepth;
break;
}
case PNG_BitDepth_8 :
{
BytesPerPixel = PNG_NumColourComponents_Indexed;
PixelsPerByte = 1;
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_GreyAlpha :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_8 :
case PNG_BitDepth_16 :
{
BytesPerPixel = (IHDR->BitDepth / 8) * PNG_NumColourComponents_GreyAlpha;
PixelsPerByte = 1;
break;
}
default :
{
return(qfalse);
}
}
break;
}
case PNG_ColourType_TrueAlpha :
{
switch(IHDR->BitDepth)
{
case PNG_BitDepth_8 :
case PNG_BitDepth_16 :
{
BytesPerPixel = (IHDR->BitDepth / 8) * PNG_NumColourComponents_TrueAlpha;
PixelsPerByte = 1;
break;
}
default :
{
return(qfalse);
}
}
break;
}
default :
{
return(qfalse);
}
}
/*
* Calculate the size of the scanlines per pass
*/
for(a = 0; a < PNG_Adam7_NumPasses; a++)
{
BytesPerScanline[a] = (PassWidth[a] * BytesPerPixel + (PixelsPerByte - 1)) / PixelsPerByte;
}
/*
* Calculate the size of all passes
*/
TargetLength = 0;
for(a = 0; a < PNG_Adam7_NumPasses; a++)
{
TargetLength += ((BytesPerScanline[a] + (BytesPerScanline[a] ? 1 : 0)) * PassHeight[a]);
}
/*
* Check if we have enough data for the whole image.
*/
if(!(DecompressedDataLength == TargetLength))
{
return(qfalse);
}
/*
* Unfilter the image.
*/
DecompPtr = DecompressedData;
for(a = 0; a < PNG_Adam7_NumPasses; a++)
{
if(!UnfilterImage(DecompPtr, PassHeight[a], BytesPerScanline[a], BytesPerPixel))
{
return(qfalse);
}
DecompPtr += ((BytesPerScanline[a] + (BytesPerScanline[a] ? 1 : 0)) * PassHeight[a]);
}
/*
* Set the working pointers to the beginning of the buffers.
*/
DecompPtr = DecompressedData;
/*
* Create the output image.
*/
for(a = 0; a < PNG_Adam7_NumPasses; a++)
{
for(h = 0; h < PassHeight[a]; h++)
{
/*
* Count the pixels on the scanline for those multipixel bytes
*/
uint32_t CurrPixel;
/*
* skip FilterType
*/
DecompPtr++;
/*
* Reset the pixel count.
*/
CurrPixel = 0;
for(w = 0; w < (BytesPerScanline[a] / BytesPerPixel); w++)
{
if(PixelsPerByte > 1)
{
uint8_t Mask;
uint32_t Shift;
uint8_t SinglePixel;
for(p = 0; p < PixelsPerByte; p++)
{
if(CurrPixel < PassWidth[a])
{
Mask = (1 << IHDR->BitDepth) - 1;
Shift = (PixelsPerByte - 1 - p) * IHDR->BitDepth;
SinglePixel = ((DecompPtr[0] & (Mask << Shift)) >> Shift);
OutPtr = OutBuffer + (((((h * HSkip[a]) + HOffset[a]) * IHDR_Width) + ((CurrPixel * WSkip[a]) + WOffset[a])) * Q3IMAGE_BYTESPERPIXEL);
if(!ConvertPixel(IHDR, OutPtr, &SinglePixel, HasTransparentColour, TransparentColour, OutPal))
{
return(qfalse);
}
CurrPixel++;
}
}
}
else
{
OutPtr = OutBuffer + (((((h * HSkip[a]) + HOffset[a]) * IHDR_Width) + ((w * WSkip[a]) + WOffset[a])) * Q3IMAGE_BYTESPERPIXEL);
if(!ConvertPixel(IHDR, OutPtr, DecompPtr, HasTransparentColour, TransparentColour, OutPal))
{
return(qfalse);
}
}
DecompPtr += BytesPerPixel;
}
}
}
return(qtrue);
}
/*
* The PNG loader
*/
static void LoadPNG(const char *name, byte **pic, int *width, int *height)
{
struct BufferedFile *ThePNG;
byte *OutBuffer;
uint8_t *Signature;
struct PNG_ChunkHeader *CH;
uint32_t ChunkHeaderLength;
uint32_t ChunkHeaderType;
struct PNG_Chunk_IHDR *IHDR;
uint32_t IHDR_Width;
uint32_t IHDR_Height;
PNG_ChunkCRC *CRC;
uint8_t *InPal;
uint8_t *DecompressedData;
uint32_t DecompressedDataLength;
uint32_t i;
/*
* palette with 256 RGBA entries
*/
uint8_t OutPal[1024];
/*
* transparent colour from the tRNS chunk
*/
qboolean HasTransparentColour = qfalse;
uint8_t TransparentColour[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
/*
* input verification
*/
if(!(name && pic))
{
return;
}
/*
* Zero out return values.
*/
*pic = NULL;
if(width)
{
*width = 0;
}
if(height)
{
*height = 0;
}
/*
* Read the file.
*/
ThePNG = ReadBufferedFile(name);
if(!ThePNG)
{
return;
}
/*
* Read the siganture of the file.
*/
Signature = BufferedFileRead(ThePNG, PNG_Signature_Size);
if(!Signature)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Is it a PNG?
*/
if(memcmp(Signature, PNG_Signature, PNG_Signature_Size))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Read the first chunk-header.
*/
CH = BufferedFileRead(ThePNG, PNG_ChunkHeader_Size);
if(!CH)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* PNG multi-byte types are in Big Endian
*/
ChunkHeaderLength = BigLong(CH->Length);
ChunkHeaderType = BigLong(CH->Type);
/*
* Check if the first chunk is an IHDR.
*/
if(!((ChunkHeaderType == PNG_ChunkType_IHDR) && (ChunkHeaderLength == PNG_Chunk_IHDR_Size)))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Read the IHDR.
*/
IHDR = BufferedFileRead(ThePNG, PNG_Chunk_IHDR_Size);
if(!IHDR)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Read the CRC for IHDR
*/
CRC = BufferedFileRead(ThePNG, PNG_ChunkCRC_Size);
if(!CRC)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Here we could check the CRC if we wanted to.
*/
/*
* multi-byte type swapping
*/
IHDR_Width = BigLong(IHDR->Width);
IHDR_Height = BigLong(IHDR->Height);
/*
* Check if Width and Height are valid.
*/
if(!((IHDR_Width > 0) && (IHDR_Height > 0)))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Do we need to check if the dimensions of the image are valid for Quake3?
*/
/*
* Check if CompressionMethod and FilterMethod are valid.
*/
if(!((IHDR->CompressionMethod == PNG_CompressionMethod_0) && (IHDR->FilterMethod == PNG_FilterMethod_0)))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Check if InterlaceMethod is valid.
*/
if(!((IHDR->InterlaceMethod == PNG_InterlaceMethod_NonInterlaced) || (IHDR->InterlaceMethod == PNG_InterlaceMethod_Interlaced)))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Read palette for an indexed image.
*/
if(IHDR->ColourType == PNG_ColourType_Indexed)
{
/*
* We need the palette first.
*/
if(!FindChunk(ThePNG, PNG_ChunkType_PLTE))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Read the chunk-header.
*/
CH = BufferedFileRead(ThePNG, PNG_ChunkHeader_Size);
if(!CH)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* PNG multi-byte types are in Big Endian
*/
ChunkHeaderLength = BigLong(CH->Length);
ChunkHeaderType = BigLong(CH->Type);
/*
* Check if the chunk is an PLTE.
*/
if(!(ChunkHeaderType == PNG_ChunkType_PLTE))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Check if Length is divisible by 3
*/
if(ChunkHeaderLength % 3)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Read the raw palette data
*/
InPal = BufferedFileRead(ThePNG, ChunkHeaderLength);
if(!InPal)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Read the CRC for the palette
*/
CRC = BufferedFileRead(ThePNG, PNG_ChunkCRC_Size);
if(!CRC)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Set some default values.
*/
for(i = 0; i < 256; i++)
{
OutPal[i * Q3IMAGE_BYTESPERPIXEL + 0] = 0x00;
OutPal[i * Q3IMAGE_BYTESPERPIXEL + 1] = 0x00;
OutPal[i * Q3IMAGE_BYTESPERPIXEL + 2] = 0x00;
OutPal[i * Q3IMAGE_BYTESPERPIXEL + 3] = 0xFF;
}
/*
* Convert to the Quake3 RGBA-format.
*/
for(i = 0; i < (ChunkHeaderLength / 3); i++)
{
OutPal[i * Q3IMAGE_BYTESPERPIXEL + 0] = InPal[i*3+0];
OutPal[i * Q3IMAGE_BYTESPERPIXEL + 1] = InPal[i*3+1];
OutPal[i * Q3IMAGE_BYTESPERPIXEL + 2] = InPal[i*3+2];
OutPal[i * Q3IMAGE_BYTESPERPIXEL + 3] = 0xFF;
}
}
/*
* transparency information is sometimes stored in an tRNS chunk
*/
/*
* Let's see if there is a tRNS chunk
*/
if(FindChunk(ThePNG, PNG_ChunkType_tRNS))
{
uint8_t *Trans;
/*
* Read the chunk-header.
*/
CH = BufferedFileRead(ThePNG, PNG_ChunkHeader_Size);
if(!CH)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* PNG multi-byte types are in Big Endian
*/
ChunkHeaderLength = BigLong(CH->Length);
ChunkHeaderType = BigLong(CH->Type);
/*
* Check if the chunk is an tRNS.
*/
if(!(ChunkHeaderType == PNG_ChunkType_tRNS))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Read the transparency information.
*/
Trans = BufferedFileRead(ThePNG, ChunkHeaderLength);
if(!Trans)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Read the CRC.
*/
CRC = BufferedFileRead(ThePNG, PNG_ChunkCRC_Size);
if(!CRC)
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Only for Grey, True and Indexed ColourType should tRNS exist.
*/
switch(IHDR->ColourType)
{
case PNG_ColourType_Grey :
{
if(!ChunkHeaderLength == 2)
{
CloseBufferedFile(ThePNG);
return;
}
HasTransparentColour = qtrue;
/*
* Grey can have one colour which is completely transparent.
* This colour is always stored in 16 bits.
*/
TransparentColour[0] = Trans[0];
TransparentColour[1] = Trans[1];
break;
}
case PNG_ColourType_True :
{
if(!ChunkHeaderLength == 6)
{
CloseBufferedFile(ThePNG);
return;
}
HasTransparentColour = qtrue;
/*
* True can have one colour which is completely transparent.
* This colour is always stored in 16 bits.
*/
TransparentColour[0] = Trans[0];
TransparentColour[1] = Trans[1];
TransparentColour[2] = Trans[2];
TransparentColour[3] = Trans[3];
TransparentColour[4] = Trans[4];
TransparentColour[5] = Trans[5];
break;
}
case PNG_ColourType_Indexed :
{
/*
* Maximum of 256 one byte transparency entries.
*/
if(ChunkHeaderLength > 256)
{
CloseBufferedFile(ThePNG);
return;
}
HasTransparentColour = qtrue;
/*
* alpha values for palette entries
*/
for(i = 0; i < ChunkHeaderLength; i++)
{
OutPal[i * Q3IMAGE_BYTESPERPIXEL + 3] = Trans[i];
}
break;
}
/*
* All other ColourTypes should not have tRNS chunks
*/
default :
{
CloseBufferedFile(ThePNG);
return;
}
}
}
/*
* Rewind to the start of the file.
*/
if(!BufferedFileRewind(ThePNG, -1))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Skip the signature
*/
if(!BufferedFileSkip(ThePNG, PNG_Signature_Size))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Decompress all IDAT chunks
*/
DecompressedDataLength = DecompressIDATs(ThePNG, &DecompressedData);
if(!(DecompressedDataLength && DecompressedData))
{
CloseBufferedFile(ThePNG);
return;
}
/*
* Allocate output buffer.
*/
OutBuffer = ri.Malloc(IHDR_Width * IHDR_Height * Q3IMAGE_BYTESPERPIXEL);
if(!OutBuffer)
{
ri.Free(DecompressedData);
CloseBufferedFile(ThePNG);
return;
}
/*
* Interlaced and Non-interlaced images need to be handled differently.
*/
switch(IHDR->InterlaceMethod)
{
case PNG_InterlaceMethod_NonInterlaced :
{
if(!DecodeImageNonInterlaced(IHDR, OutBuffer, DecompressedData, DecompressedDataLength, HasTransparentColour, TransparentColour, OutPal))
{
ri.Free(OutBuffer);
ri.Free(DecompressedData);
CloseBufferedFile(ThePNG);
return;
}
break;
}
case PNG_InterlaceMethod_Interlaced :
{
if(!DecodeImageInterlaced(IHDR, OutBuffer, DecompressedData, DecompressedDataLength, HasTransparentColour, TransparentColour, OutPal))
{
ri.Free(OutBuffer);
ri.Free(DecompressedData);
CloseBufferedFile(ThePNG);
return;
}
break;
}
default :
{
ri.Free(OutBuffer);
ri.Free(DecompressedData);
CloseBufferedFile(ThePNG);
return;
}
}
/*
* update the pointer to the image data
*/
*pic = OutBuffer;
/*
* Fill width and height.
*/
if(width)
{
*width = IHDR_Width;
}
if(height)
{
*height = IHDR_Height;
}
/*
* DecompressedData is not needed anymore.
*/
ri.Free(DecompressedData);
/*
* We have all data, so close the file.
*/
CloseBufferedFile(ThePNG);
}
//===================================================================
/*
=================
R_LoadImage
Loads any of the supported image types into a cannonical
32 bit format.
=================
*/
void R_LoadImage( const char *name, byte **pic, int *width, int *height ) {
int len;
*pic = NULL;
*width = 0;
*height = 0;
len = strlen(name);
if (len<5) {
return;
}
if ( !Q_stricmp( name+len-4, ".tga" ) ) {
LoadTGA( name, pic, width, height );
// This is a hack to get around the fact that some
// baseq3 shaders refer to tga files where the images
// are actually jpgs
if (!*pic) {
// try jpg in place of tga
char altname[MAX_QPATH];
strcpy( altname, name );
len = strlen( altname );
altname[len-3] = 'j';
altname[len-2] = 'p';
altname[len-1] = 'g';
LoadJPG( altname, pic, width, height );
}
}
else if ( !Q_stricmp(name+len-4, ".pcx") )
{
LoadPCX32( name, pic, width, height );
}
else if ( !Q_stricmp( name+len-4, ".bmp" ) )
{
LoadBMP( name, pic, width, height );
}
else if ( !Q_stricmp( name+len-4, ".jpg" ) )
{
LoadJPG( name, pic, width, height );
}
else if ( !Q_stricmp( name+len-4, ".png" ) )
{
LoadPNG( name, pic, width, height );
}
}
/*
===============
R_FindImageFile
Finds or loads the given image.
Returns NULL if it fails, not a default image.
==============
*/
image_t *R_FindImageFile( const char *name, qboolean mipmap, qboolean allowPicmip, int glWrapClampMode ) {
image_t *image;
int width, height;
byte *pic;
long hash;
if (!name) {
return NULL;
}
hash = generateHashValue(name);
//
// see if the image is already loaded
//
for (image=hashTable[hash]; image; image=image->next) {
if ( !strcmp( name, image->imgName ) ) {
// the white image can be used with any set of parms, but other mismatches are errors
if ( strcmp( name, "*white" ) ) {
if ( image->mipmap != mipmap ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed mipmap parm\n", name );
}
if ( image->allowPicmip != allowPicmip ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed allowPicmip parm\n", name );
}
if ( image->wrapClampMode != glWrapClampMode ) {
ri.Printf( PRINT_ALL, "WARNING: reused image %s with mixed glWrapClampMode parm\n", name );
}
}
return image;
}
}
//
// load the pic from disk
//
R_LoadImage( name, &pic, &width, &height );
if ( pic == NULL ) { // if we dont get a successful load
char altname[MAX_QPATH]; // copy the name
int len; //
strcpy( altname, name ); //
len = strlen( altname ); //
altname[len-3] = toupper(altname[len-3]); // and try upper case extension for unix systems
altname[len-2] = toupper(altname[len-2]); //
altname[len-1] = toupper(altname[len-1]); //
ri.Printf( PRINT_DEVELOPER, "trying %s...\n", altname ); //
R_LoadImage( altname, &pic, &width, &height ); //
if (pic == NULL) { // if that fails
return NULL; // bail
}
}
image = R_CreateImage( ( char * ) name, pic, width, height, mipmap, allowPicmip, glWrapClampMode );
ri.Free( pic );
return image;
}
/*
================
R_CreateDlightImage
================
*/
#define DLIGHT_SIZE 16
static void R_CreateDlightImage( void ) {
int x,y;
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
int b;
// make a centered inverse-square falloff blob for dynamic lighting
for (x=0 ; x<DLIGHT_SIZE ; x++) {
for (y=0 ; y<DLIGHT_SIZE ; y++) {
float d;
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
b = 4000 / d;
if (b > 255) {
b = 255;
} else if ( b < 75 ) {
b = 0;
}
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = b;
data[y][x][3] = 255;
}
}
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, qfalse, qfalse, GL_CLAMP );
}
/*
=================
R_InitFogTable
=================
*/
void R_InitFogTable( void ) {
int i;
float d;
float exp;
exp = 0.5;
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
tr.fogTable[i] = d;
}
}
/*
================
R_FogFactor
Returns a 0.0 to 1.0 fog density value
This is called for each texel of the fog texture on startup
and for each vertex of transparent shaders in fog dynamically
================
*/
float R_FogFactor( float s, float t ) {
float d;
s -= 1.0/512;
if ( s < 0 ) {
return 0;
}
if ( t < 1.0/32 ) {
return 0;
}
if ( t < 31.0/32 ) {
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
}
// we need to leave a lot of clamp range
s *= 8;
if ( s > 1.0 ) {
s = 1.0;
}
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
return d;
}
/*
================
R_CreateFogImage
================
*/
#define FOG_S 256
#define FOG_T 32
static void R_CreateFogImage( void ) {
int x,y;
byte *data;
float g;
float d;
float borderColor[4];
data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
g = 2.0;
// S is distance, T is depth
for (x=0 ; x<FOG_S ; x++) {
for (y=0 ; y<FOG_T ; y++) {
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
data[(y*FOG_S+x)*4+0] =
data[(y*FOG_S+x)*4+1] =
data[(y*FOG_S+x)*4+2] = 255;
data[(y*FOG_S+x)*4+3] = 255*d;
}
}
// standard openGL clamping doesn't really do what we want -- it includes
// the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does
// what we want.
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, qfalse, qfalse, GL_CLAMP );
ri.Hunk_FreeTempMemory( data );
borderColor[0] = 1.0;
borderColor[1] = 1.0;
borderColor[2] = 1.0;
borderColor[3] = 1;
qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor );
}
/*
==================
R_CreateDefaultImage
==================
*/
#define DEFAULT_SIZE 16
static void R_CreateDefaultImage( void ) {
int x;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
// the default image will be a box, to allow you to see the mapping coordinates
Com_Memset( data, 32, sizeof( data ) );
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
data[0][x][0] =
data[0][x][1] =
data[0][x][2] =
data[0][x][3] = 255;
data[x][0][0] =
data[x][0][1] =
data[x][0][2] =
data[x][0][3] = 255;
data[DEFAULT_SIZE-1][x][0] =
data[DEFAULT_SIZE-1][x][1] =
data[DEFAULT_SIZE-1][x][2] =
data[DEFAULT_SIZE-1][x][3] = 255;
data[x][DEFAULT_SIZE-1][0] =
data[x][DEFAULT_SIZE-1][1] =
data[x][DEFAULT_SIZE-1][2] =
data[x][DEFAULT_SIZE-1][3] = 255;
}
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, qtrue, qfalse, GL_REPEAT );
}
/*
==================
R_CreateBuiltinImages
==================
*/
void R_CreateBuiltinImages( void ) {
int x,y;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
R_CreateDefaultImage();
// we use a solid white image instead of disabling texturing
Com_Memset( data, 255, sizeof( data ) );
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, qfalse, qfalse, GL_REPEAT );
// with overbright bits active, we need an image which is some fraction of full color,
// for default lightmaps, etc
for (x=0 ; x<DEFAULT_SIZE ; x++) {
for (y=0 ; y<DEFAULT_SIZE ; y++) {
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = tr.identityLightByte;
data[y][x][3] = 255;
}
}
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, qfalse, qfalse, GL_REPEAT );
for(x=0;x<32;x++) {
// scratchimage is usually used for cinematic drawing
tr.scratchImage[x] = R_CreateImage("*scratch", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, qfalse, qtrue, GL_CLAMP );
}
R_CreateDlightImage();
R_CreateFogImage();
}
/*
===============
R_SetColorMappings
===============
*/
void R_SetColorMappings( void ) {
int i, j;
float g;
int inf;
int shift;
// setup the overbright lighting
tr.overbrightBits = r_overBrightBits->integer;
if ( !glConfig.deviceSupportsGamma ) {
tr.overbrightBits = 0; // need hardware gamma for overbright
}
// never overbright in windowed mode
if ( !glConfig.isFullscreen )
{
tr.overbrightBits = 0;
}
// allow 2 overbright bits in 24 bit, but only 1 in 16 bit
if ( glConfig.colorBits > 16 ) {
if ( tr.overbrightBits > 2 ) {
tr.overbrightBits = 2;
}
} else {
if ( tr.overbrightBits > 1 ) {
tr.overbrightBits = 1;
}
}
if ( tr.overbrightBits < 0 ) {
tr.overbrightBits = 0;
}
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
tr.identityLightByte = 255 * tr.identityLight;
if ( r_intensity->value <= 1 ) {
ri.Cvar_Set( "r_intensity", "1" );
}
if ( r_gamma->value < 0.5f ) {
ri.Cvar_Set( "r_gamma", "0.5" );
} else if ( r_gamma->value > 3.0f ) {
ri.Cvar_Set( "r_gamma", "3.0" );
}
g = r_gamma->value;
shift = tr.overbrightBits;
for ( i = 0; i < 256; i++ ) {
if ( g == 1 ) {
inf = i;
} else {
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
}
inf <<= shift;
if (inf < 0) {
inf = 0;
}
if (inf > 255) {
inf = 255;
}
s_gammatable[i] = inf;
}
for (i=0 ; i<256 ; i++) {
j = i * r_intensity->value;
if (j > 255) {
j = 255;
}
s_intensitytable[i] = j;
}
if ( glConfig.deviceSupportsGamma )
{
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
}
}
/*
===============
R_InitImages
===============
*/
void R_InitImages( void ) {
Com_Memset(hashTable, 0, sizeof(hashTable));
// build brightness translation tables
R_SetColorMappings();
// create default texture and white texture
R_CreateBuiltinImages();
}
/*
===============
R_DeleteTextures
===============
*/
void R_DeleteTextures( void ) {
int i;
for ( i=0; i<tr.numImages ; i++ ) {
qglDeleteTextures( 1, &tr.images[i]->texnum );
}
Com_Memset( tr.images, 0, sizeof( tr.images ) );
tr.numImages = 0;
Com_Memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
if ( qglBindTexture ) {
if ( qglActiveTextureARB ) {
GL_SelectTexture( 1 );
qglBindTexture( GL_TEXTURE_2D, 0 );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, 0 );
} else {
qglBindTexture( GL_TEXTURE_2D, 0 );
}
}
}
/*
============================================================================
SKINS
============================================================================
*/
/*
==================
CommaParse
This is unfortunate, but the skin files aren't
compatable with our normal parsing rules.
==================
*/
static char *CommaParse( char **data_p ) {
int c = 0, len;
char *data;
static char com_token[MAX_TOKEN_CHARS];
data = *data_p;
len = 0;
com_token[0] = 0;
// make sure incoming data is valid
if ( !data ) {
*data_p = NULL;
return com_token;
}
while ( 1 ) {
// skip whitespace
while( (c = *data) <= ' ') {
if( !c ) {
break;
}
data++;
}
c = *data;
// skip double slash comments
if ( c == '/' && data[1] == '/' )
{
while (*data && *data != '\n')
data++;
}
// skip /* */ comments
else if ( c=='/' && data[1] == '*' )
{
while ( *data && ( *data != '*' || data[1] != '/' ) )
{
data++;
}
if ( *data )
{
data += 2;
}
}
else
{
break;
}
}
if ( c == 0 ) {
return "";
}
// handle quoted strings
if (c == '\"')
{
data++;
while (1)
{
c = *data++;
if (c=='\"' || !c)
{
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
if (len < MAX_TOKEN_CHARS)
{
com_token[len] = c;
len++;
}
}
}
// parse a regular word
do
{
if (len < MAX_TOKEN_CHARS)
{
com_token[len] = c;
len++;
}
data++;
c = *data;
} while (c>32 && c != ',' );
if (len == MAX_TOKEN_CHARS)
{
// Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS);
len = 0;
}
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
/*
===============
RE_RegisterSkin
===============
*/
qhandle_t RE_RegisterSkin( const char *name ) {
qhandle_t hSkin;
skin_t *skin;
skinSurface_t *surf;
char *text, *text_p;
char *token;
char surfName[MAX_QPATH];
if ( !name || !name[0] ) {
Com_Printf( "Empty name passed to RE_RegisterSkin\n" );
return 0;
}
if ( strlen( name ) >= MAX_QPATH ) {
Com_Printf( "Skin name exceeds MAX_QPATH\n" );
return 0;
}
// see if the skin is already loaded
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
skin = tr.skins[hSkin];
if ( !Q_stricmp( skin->name, name ) ) {
if( skin->numSurfaces == 0 ) {
return 0; // default skin
}
return hSkin;
}
}
// allocate a new skin
if ( tr.numSkins == MAX_SKINS ) {
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
return 0;
}
tr.numSkins++;
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
tr.skins[hSkin] = skin;
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
skin->numSurfaces = 0;
// make sure the render thread is stopped
R_SyncRenderThread();
// If not a .skin file, load as a single shader
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
skin->numSurfaces = 1;
skin->surfaces[0] = ri.Hunk_Alloc( sizeof(skin->surfaces[0]), h_low );
skin->surfaces[0]->shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
return hSkin;
}
// load and parse the skin file
ri.FS_ReadFile( name, (void **)&text );
if ( !text ) {
return 0;
}
text_p = text;
while ( text_p && *text_p ) {
// get surface name
token = CommaParse( &text_p );
Q_strncpyz( surfName, token, sizeof( surfName ) );
if ( !token[0] ) {
break;
}
// lowercase the surface name so skin compares are faster
Q_strlwr( surfName );
if ( *text_p == ',' ) {
text_p++;
}
if ( strstr( token, "tag_" ) ) {
continue;
}
// parse the shader name
token = CommaParse( &text_p );
surf = skin->surfaces[ skin->numSurfaces ] = ri.Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
skin->numSurfaces++;
}
ri.FS_FreeFile( text );
// never let a skin have 0 shaders
if ( skin->numSurfaces == 0 ) {
return 0; // use default skin
}
return hSkin;
}
/*
===============
R_InitSkins
===============
*/
void R_InitSkins( void ) {
skin_t *skin;
tr.numSkins = 1;
// make the default skin have all default shaders
skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
skin->numSurfaces = 1;
skin->surfaces[0] = ri.Hunk_Alloc( sizeof( *skin->surfaces ), h_low );
skin->surfaces[0]->shader = tr.defaultShader;
}
/*
===============
R_GetSkinByHandle
===============
*/
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
return tr.skins[0];
}
return tr.skins[ hSkin ];
}
/*
===============
R_SkinList_f
===============
*/
void R_SkinList_f( void ) {
int i, j;
skin_t *skin;
ri.Printf (PRINT_ALL, "------------------\n");
for ( i = 0 ; i < tr.numSkins ; i++ ) {
skin = tr.skins[i];
ri.Printf( PRINT_ALL, "%3i:%s\n", i, skin->name );
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
ri.Printf( PRINT_ALL, " %s = %s\n",
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
}
}
ri.Printf (PRINT_ALL, "------------------\n");
}