ioq3/code/renderer/tr_image_jpg.c

498 lines
17 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "tr_local.h"
/*
* Include file for users of JPEG library.
* You will need to have included system headers that define at least
* the typedefs FILE and size_t before you can include jpeglib.h.
* (stdio.h is sufficient on ANSI-conforming systems.)
* You may also wish to include "jerror.h".
*/
#define JPEG_INTERNALS
#include "../jpeg-6b/jpeglib.h"
void R_LoadJPG( const char *filename, unsigned char **pic, int *width, int *height ) {
/* This struct contains the JPEG decompression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
*/
struct jpeg_decompress_struct cinfo = {NULL};
/* We use our private extension JPEG error handler.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPARRAY buffer; /* Output row buffer */
unsigned row_stride; /* physical row width in output buffer */
unsigned pixelcount, memcount;
unsigned char *out;
int len;
union {
byte *b;
void *v;
} fbuffer;
byte *buf;
/* In this example we want to open the input file before doing anything else,
* so that the setjmp() error recovery below can assume the file is open.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to read binary files.
*/
len = ri.FS_ReadFile ( ( char * ) filename, &fbuffer.v);
if (!fbuffer.b || len < 0) {
return;
}
/* Step 1: allocate and initialize JPEG decompression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG decompression object. */
jpeg_create_decompress(&cinfo);
/* Step 2: specify data source (eg, a file) */
jpeg_mem_src(&cinfo, fbuffer.b, len);
/* Step 3: read file parameters with jpeg_read_header() */
(void) jpeg_read_header(&cinfo, TRUE);
/* We can ignore the return value from jpeg_read_header since
* (a) suspension is not possible with the stdio data source, and
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
* See libjpeg.doc for more info.
*/
/* Step 4: set parameters for decompression */
/* In this example, we don't need to change any of the defaults set by
* jpeg_read_header(), so we do nothing here.
*/
/* Step 5: Start decompressor */
(void) jpeg_start_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
/* We may need to do some setup of our own at this point before reading
* the data. After jpeg_start_decompress() we have the correct scaled
* output image dimensions available, as well as the output colormap
* if we asked for color quantization.
* In this example, we need to make an output work buffer of the right size.
*/
/* JSAMPLEs per row in output buffer */
pixelcount = cinfo.output_width * cinfo.output_height;
if(!cinfo.output_width || !cinfo.output_height
|| ((pixelcount * 4) / cinfo.output_width) / 4 != cinfo.output_height
|| pixelcount > 0x1FFFFFFF || cinfo.output_components > 4) // 4*1FFFFFFF == 0x7FFFFFFC < 0x7FFFFFFF
{
ri.Error (ERR_DROP, "LoadJPG: %s has an invalid image size: %dx%d*4=%d, components: %d\n", filename,
cinfo.output_width, cinfo.output_height, pixelcount * 4, cinfo.output_components);
}
memcount = pixelcount * 4;
row_stride = cinfo.output_width * cinfo.output_components;
out = ri.Malloc(memcount);
*width = cinfo.output_width;
*height = cinfo.output_height;
/* Step 6: while (scan lines remain to be read) */
/* jpeg_read_scanlines(...); */
/* Here we use the library's state variable cinfo.output_scanline as the
* loop counter, so that we don't have to keep track ourselves.
*/
while (cinfo.output_scanline < cinfo.output_height) {
/* jpeg_read_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could ask for
* more than one scanline at a time if that's more convenient.
*/
buf = ((out+(row_stride*cinfo.output_scanline)));
buffer = &buf;
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
}
buf = out;
// If we are processing an 8-bit JPEG (greyscale), we'll have to convert
// the greyscale values to RGBA.
if(cinfo.output_components == 1)
{
int sindex = pixelcount, dindex = memcount;
unsigned char greyshade;
// Only pixelcount number of bytes have been written.
// Expand the color values over the rest of the buffer, starting
// from the end.
do
{
greyshade = buf[--sindex];
buf[--dindex] = 255;
buf[--dindex] = greyshade;
buf[--dindex] = greyshade;
buf[--dindex] = greyshade;
} while(sindex);
}
else
{
// clear all the alphas to 255
int i;
for ( i = 3 ; i < memcount ; i+=4 )
{
buf[i] = 255;
}
}
*pic = out;
/* Step 7: Finish decompression */
(void) jpeg_finish_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
/* Step 8: Release JPEG decompression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_decompress(&cinfo);
/* After finish_decompress, we can close the input file.
* Here we postpone it until after no more JPEG errors are possible,
* so as to simplify the setjmp error logic above. (Actually, I don't
* think that jpeg_destroy can do an error exit, but why assume anything...)
*/
ri.FS_FreeFile (fbuffer.v);
/* At this point you may want to check to see whether any corrupt-data
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
*/
/* And we're done! */
}
/* Expanded data destination object for stdio output */
typedef struct {
struct jpeg_destination_mgr pub; /* public fields */
byte* outfile; /* target stream */
int size;
} my_destination_mgr;
typedef my_destination_mgr * my_dest_ptr;
/*
* Initialize destination --- called by jpeg_start_compress
* before any data is actually written.
*/
static void
init_destination (j_compress_ptr cinfo)
{
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
dest->pub.next_output_byte = dest->outfile;
dest->pub.free_in_buffer = dest->size;
}
/*
* Empty the output buffer --- called whenever buffer fills up.
*
* In typical applications, this should write the entire output buffer
* (ignoring the current state of next_output_byte & free_in_buffer),
* reset the pointer & count to the start of the buffer, and return TRUE
* indicating that the buffer has been dumped.
*
* In applications that need to be able to suspend compression due to output
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
* In this situation, the compressor will return to its caller (possibly with
* an indication that it has not accepted all the supplied scanlines). The
* application should resume compression after it has made more room in the
* output buffer. Note that there are substantial restrictions on the use of
* suspension --- see the documentation.
*
* When suspending, the compressor will back up to a convenient restart point
* (typically the start of the current MCU). next_output_byte & free_in_buffer
* indicate where the restart point will be if the current call returns FALSE.
* Data beyond this point will be regenerated after resumption, so do not
* write it out when emptying the buffer externally.
*/
static boolean
empty_output_buffer (j_compress_ptr cinfo)
{
return TRUE;
}
/*
* Terminate destination --- called by jpeg_finish_compress
* after all data has been written. Usually needs to flush buffer.
*
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
* application must deal with any cleanup that should happen even
* for error exit.
*/
static int hackSize;
static void
term_destination (j_compress_ptr cinfo)
{
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
size_t datacount = dest->size - dest->pub.free_in_buffer;
hackSize = datacount;
}
/*
* Prepare for output to a stdio stream.
* The caller must have already opened the stream, and is responsible
* for closing it after finishing compression.
*/
static void
jpegDest (j_compress_ptr cinfo, byte* outfile, int size)
{
my_dest_ptr dest;
/* The destination object is made permanent so that multiple JPEG images
* can be written to the same file without re-executing jpeg_stdio_dest.
* This makes it dangerous to use this manager and a different destination
* manager serially with the same JPEG object, because their private object
* sizes may be different. Caveat programmer.
*/
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
cinfo->dest = (struct jpeg_destination_mgr *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
sizeof(my_destination_mgr));
}
dest = (my_dest_ptr) cinfo->dest;
dest->pub.init_destination = init_destination;
dest->pub.empty_output_buffer = empty_output_buffer;
dest->pub.term_destination = term_destination;
dest->outfile = outfile;
dest->size = size;
}
void SaveJPG(char * filename, int quality, int image_width, int image_height, unsigned char *image_buffer) {
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
unsigned char *out;
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
out = ri.Hunk_AllocateTempMemory(image_width*image_height*4);
jpegDest(&cinfo, out, image_width*image_height*4);
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* If quality is set high, disable chroma subsampling */
if (quality >= 85) {
cinfo.comp_info[0].h_samp_factor = 1;
cinfo.comp_info[0].v_samp_factor = 1;
}
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & image_buffer[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* After finish_compress, we can close the output file. */
ri.FS_WriteFile( filename, out, hackSize );
ri.Hunk_FreeTempMemory(out);
/* Step 7: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
}
/*
=================
SaveJPGToBuffer
=================
*/
int SaveJPGToBuffer( byte *buffer, int quality,
int image_width, int image_height,
byte *image_buffer )
{
struct jpeg_compress_struct cinfo;
struct jpeg_error_mgr jerr;
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
/* Step 1: allocate and initialize JPEG compression object */
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
jpegDest(&cinfo, buffer, image_width*image_height*4);
/* Step 3: set parameters for compression */
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
jpeg_set_defaults(&cinfo);
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* If quality is set high, disable chroma subsampling */
if (quality >= 85) {
cinfo.comp_info[0].h_samp_factor = 1;
cinfo.comp_info[0].v_samp_factor = 1;
}
/* Step 4: Start compressor */
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & image_buffer[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* Step 7: release JPEG compression object */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
return hackSize;
}