ioq3/code/renderergl2/tr_backend.c
2023-11-18 22:03:22 -05:00

1788 lines
47 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "tr_local.h"
#include "tr_fbo.h"
#include "tr_dsa.h"
backEndData_t *backEndData;
backEndState_t backEnd;
static float s_flipMatrix[16] = {
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
0, 0, -1, 0,
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 1
};
/*
** GL_BindToTMU
*/
void GL_BindToTMU( image_t *image, int tmu )
{
GLuint texture = (tmu == TB_COLORMAP) ? tr.defaultImage->texnum : 0;
GLenum target = GL_TEXTURE_2D;
if (image)
{
if (image->flags & IMGFLAG_CUBEMAP)
target = GL_TEXTURE_CUBE_MAP;
image->frameUsed = tr.frameCount;
texture = image->texnum;
}
else
{
ri.Printf(PRINT_WARNING, "GL_BindToTMU: NULL image\n");
}
GL_BindMultiTexture(GL_TEXTURE0 + tmu, target, texture);
}
/*
** GL_Cull
*/
void GL_Cull( int cullType ) {
if ( glState.faceCulling == cullType ) {
return;
}
if ( cullType == CT_TWO_SIDED )
{
qglDisable( GL_CULL_FACE );
}
else
{
qboolean cullFront = (cullType == CT_FRONT_SIDED);
if ( glState.faceCulling == CT_TWO_SIDED )
qglEnable( GL_CULL_FACE );
if ( glState.faceCullFront != cullFront )
qglCullFace( cullFront ? GL_FRONT : GL_BACK );
glState.faceCullFront = cullFront;
}
glState.faceCulling = cullType;
}
/*
** GL_State
**
** This routine is responsible for setting the most commonly changed state
** in Q3.
*/
void GL_State( unsigned long stateBits )
{
unsigned long diff = stateBits ^ glState.glStateBits;
if ( !diff )
{
return;
}
//
// check depthFunc bits
//
if ( diff & GLS_DEPTHFUNC_BITS )
{
if ( stateBits & GLS_DEPTHFUNC_EQUAL )
{
qglDepthFunc( GL_EQUAL );
}
else if ( stateBits & GLS_DEPTHFUNC_GREATER)
{
qglDepthFunc( GL_GREATER );
}
else
{
qglDepthFunc( GL_LEQUAL );
}
}
//
// check blend bits
//
if ( diff & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS ) )
{
uint32_t oldState = glState.glStateBits & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS );
uint32_t newState = stateBits & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS );
uint32_t storedState = glState.storedGlState & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS );
if (oldState == 0)
{
qglEnable( GL_BLEND );
}
else if (newState == 0)
{
qglDisable( GL_BLEND );
}
if (newState != 0 && storedState != newState)
{
GLenum srcFactor = GL_ONE, dstFactor = GL_ONE;
glState.storedGlState &= ~( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS );
glState.storedGlState |= newState;
switch ( stateBits & GLS_SRCBLEND_BITS )
{
case GLS_SRCBLEND_ZERO:
srcFactor = GL_ZERO;
break;
case GLS_SRCBLEND_ONE:
srcFactor = GL_ONE;
break;
case GLS_SRCBLEND_DST_COLOR:
srcFactor = GL_DST_COLOR;
break;
case GLS_SRCBLEND_ONE_MINUS_DST_COLOR:
srcFactor = GL_ONE_MINUS_DST_COLOR;
break;
case GLS_SRCBLEND_SRC_ALPHA:
srcFactor = GL_SRC_ALPHA;
break;
case GLS_SRCBLEND_ONE_MINUS_SRC_ALPHA:
srcFactor = GL_ONE_MINUS_SRC_ALPHA;
break;
case GLS_SRCBLEND_DST_ALPHA:
srcFactor = GL_DST_ALPHA;
break;
case GLS_SRCBLEND_ONE_MINUS_DST_ALPHA:
srcFactor = GL_ONE_MINUS_DST_ALPHA;
break;
case GLS_SRCBLEND_ALPHA_SATURATE:
srcFactor = GL_SRC_ALPHA_SATURATE;
break;
default:
ri.Error( ERR_DROP, "GL_State: invalid src blend state bits" );
break;
}
switch ( stateBits & GLS_DSTBLEND_BITS )
{
case GLS_DSTBLEND_ZERO:
dstFactor = GL_ZERO;
break;
case GLS_DSTBLEND_ONE:
dstFactor = GL_ONE;
break;
case GLS_DSTBLEND_SRC_COLOR:
dstFactor = GL_SRC_COLOR;
break;
case GLS_DSTBLEND_ONE_MINUS_SRC_COLOR:
dstFactor = GL_ONE_MINUS_SRC_COLOR;
break;
case GLS_DSTBLEND_SRC_ALPHA:
dstFactor = GL_SRC_ALPHA;
break;
case GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA:
dstFactor = GL_ONE_MINUS_SRC_ALPHA;
break;
case GLS_DSTBLEND_DST_ALPHA:
dstFactor = GL_DST_ALPHA;
break;
case GLS_DSTBLEND_ONE_MINUS_DST_ALPHA:
dstFactor = GL_ONE_MINUS_DST_ALPHA;
break;
default:
ri.Error( ERR_DROP, "GL_State: invalid dst blend state bits" );
break;
}
qglBlendFunc( srcFactor, dstFactor );
}
}
//
// check depthmask
//
if ( diff & GLS_DEPTHMASK_TRUE )
{
if ( stateBits & GLS_DEPTHMASK_TRUE )
{
qglDepthMask( GL_TRUE );
}
else
{
qglDepthMask( GL_FALSE );
}
}
//
// fill/line mode
//
if ( diff & GLS_POLYMODE_LINE )
{
if ( stateBits & GLS_POLYMODE_LINE )
{
qglPolygonMode( GL_FRONT_AND_BACK, GL_LINE );
}
else
{
qglPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
}
}
//
// depthtest
//
if ( diff & GLS_DEPTHTEST_DISABLE )
{
if ( stateBits & GLS_DEPTHTEST_DISABLE )
{
qglDisable( GL_DEPTH_TEST );
}
else
{
qglEnable( GL_DEPTH_TEST );
}
}
glState.glStateBits = stateBits;
}
void GL_SetProjectionMatrix(mat4_t matrix)
{
Mat4Copy(matrix, glState.projection);
Mat4Multiply(glState.projection, glState.modelview, glState.modelviewProjection);
}
void GL_SetModelviewMatrix(mat4_t matrix)
{
Mat4Copy(matrix, glState.modelview);
Mat4Multiply(glState.projection, glState.modelview, glState.modelviewProjection);
}
/*
================
RB_Hyperspace
A player has predicted a teleport, but hasn't arrived yet
================
*/
static void RB_Hyperspace( void ) {
float c;
if ( !backEnd.isHyperspace ) {
// do initialization shit
}
c = ( backEnd.refdef.time & 255 ) / 255.0f;
qglClearColor( c, c, c, 1 );
qglClear( GL_COLOR_BUFFER_BIT );
qglClearColor(0.0f, 0.0f, 0.0f, 1.0f);
backEnd.isHyperspace = qtrue;
}
static void SetViewportAndScissor( void ) {
GL_SetProjectionMatrix( backEnd.viewParms.projectionMatrix );
// set the window clipping
qglViewport( backEnd.viewParms.viewportX, backEnd.viewParms.viewportY,
backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportHeight );
qglScissor( backEnd.viewParms.viewportX, backEnd.viewParms.viewportY,
backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportHeight );
}
/*
=================
RB_BeginDrawingView
Any mirrored or portaled views have already been drawn, so prepare
to actually render the visible surfaces for this view
=================
*/
void RB_BeginDrawingView (void) {
int clearBits = 0;
// sync with gl if needed
if ( r_finish->integer == 1 && !glState.finishCalled ) {
qglFinish ();
glState.finishCalled = qtrue;
}
if ( r_finish->integer == 0 ) {
glState.finishCalled = qtrue;
}
// we will need to change the projection matrix before drawing
// 2D images again
backEnd.projection2D = qfalse;
if (glRefConfig.framebufferObject)
{
FBO_t *fbo = backEnd.viewParms.targetFbo;
if (fbo == NULL && (!r_postProcess->integer || !(backEnd.refdef.rdflags & RDF_NOWORLDMODEL)))
fbo = tr.renderFbo;
if (tr.renderCubeFbo && fbo == tr.renderCubeFbo)
{
cubemap_t *cubemap = &tr.cubemaps[backEnd.viewParms.targetFboCubemapIndex];
FBO_AttachImage(fbo, cubemap->image, GL_COLOR_ATTACHMENT0_EXT, backEnd.viewParms.targetFboLayer);
}
FBO_Bind(fbo);
}
//
// set the modelview matrix for the viewer
//
SetViewportAndScissor();
// ensures that depth writes are enabled for the depth clear
GL_State( GLS_DEFAULT );
// clear relevant buffers
clearBits = GL_DEPTH_BUFFER_BIT;
if ( r_measureOverdraw->integer || r_shadows->integer == 2 )
{
clearBits |= GL_STENCIL_BUFFER_BIT;
}
if ( r_fastsky->integer && !( backEnd.refdef.rdflags & RDF_NOWORLDMODEL ) )
{
clearBits |= GL_COLOR_BUFFER_BIT; // FIXME: only if sky shaders have been used
}
// clear to black for cube maps
if (tr.renderCubeFbo && backEnd.viewParms.targetFbo == tr.renderCubeFbo)
{
clearBits |= GL_COLOR_BUFFER_BIT;
}
qglClear( clearBits );
if ( ( backEnd.refdef.rdflags & RDF_HYPERSPACE ) )
{
RB_Hyperspace();
return;
}
else
{
backEnd.isHyperspace = qfalse;
}
// we will only draw a sun if there was sky rendered in this view
backEnd.skyRenderedThisView = qfalse;
// clip to the plane of the portal
if ( backEnd.viewParms.isPortal ) {
#if 0
float plane[4];
GLdouble plane2[4];
plane[0] = backEnd.viewParms.portalPlane.normal[0];
plane[1] = backEnd.viewParms.portalPlane.normal[1];
plane[2] = backEnd.viewParms.portalPlane.normal[2];
plane[3] = backEnd.viewParms.portalPlane.dist;
plane2[0] = DotProduct (backEnd.viewParms.or.axis[0], plane);
plane2[1] = DotProduct (backEnd.viewParms.or.axis[1], plane);
plane2[2] = DotProduct (backEnd.viewParms.or.axis[2], plane);
plane2[3] = DotProduct (plane, backEnd.viewParms.or.origin) - plane[3];
#endif
GL_SetModelviewMatrix( s_flipMatrix );
}
}
/*
==================
RB_RenderDrawSurfList
==================
*/
void RB_RenderDrawSurfList( drawSurf_t *drawSurfs, int numDrawSurfs ) {
shader_t *shader = NULL, *oldShader;
int fogNum, oldFogNum;
int entityNum, oldEntityNum;
int dlighted, oldDlighted;
int pshadowed, oldPshadowed;
int cubemapIndex, oldCubemapIndex;
qboolean depthRange, oldDepthRange, isCrosshair, wasCrosshair;
int i;
drawSurf_t *drawSurf;
int oldSort;
double originalTime;
FBO_t* fbo = NULL;
// save original time for entity shader offsets
originalTime = backEnd.refdef.floatTime;
fbo = glState.currentFBO;
// draw everything
oldEntityNum = -1;
backEnd.currentEntity = &tr.worldEntity;
oldShader = NULL;
oldFogNum = -1;
oldDepthRange = qfalse;
wasCrosshair = qfalse;
oldDlighted = qfalse;
oldPshadowed = qfalse;
oldCubemapIndex = -1;
oldSort = -1;
backEnd.pc.c_surfaces += numDrawSurfs;
for (i = 0, drawSurf = drawSurfs ; i < numDrawSurfs ; i++, drawSurf++) {
if ( drawSurf->sort == oldSort && drawSurf->cubemapIndex == oldCubemapIndex) {
if (backEnd.depthFill && shader && shader->sort != SS_OPAQUE)
continue;
// fast path, same as previous sort
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
continue;
}
oldSort = drawSurf->sort;
R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted, &pshadowed );
cubemapIndex = drawSurf->cubemapIndex;
//
// change the tess parameters if needed
// a "entityMergable" shader is a shader that can have surfaces from separate
// entities merged into a single batch, like smoke and blood puff sprites
if ( shader != NULL && ( shader != oldShader || fogNum != oldFogNum || dlighted != oldDlighted || pshadowed != oldPshadowed || cubemapIndex != oldCubemapIndex
|| ( entityNum != oldEntityNum && !shader->entityMergable ) ) ) {
if (oldShader != NULL) {
RB_EndSurface();
}
RB_BeginSurface( shader, fogNum, cubemapIndex );
backEnd.pc.c_surfBatches++;
oldShader = shader;
oldFogNum = fogNum;
oldDlighted = dlighted;
oldPshadowed = pshadowed;
oldCubemapIndex = cubemapIndex;
}
if (backEnd.depthFill && shader && shader->sort != SS_OPAQUE)
continue;
//
// change the modelview matrix if needed
//
if ( entityNum != oldEntityNum ) {
depthRange = isCrosshair = qfalse;
if ( entityNum != REFENTITYNUM_WORLD ) {
backEnd.currentEntity = &backEnd.refdef.entities[entityNum];
// FIXME: e.shaderTime must be passed as int to avoid fp-precision loss issues
backEnd.refdef.floatTime = originalTime - (double)backEnd.currentEntity->e.shaderTime;
// we have to reset the shaderTime as well otherwise image animations start
// from the wrong frame
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
// set up the transformation matrix
R_RotateForEntity( backEnd.currentEntity, &backEnd.viewParms, &backEnd.or );
// set up the dynamic lighting if needed
if ( backEnd.currentEntity->needDlights ) {
R_TransformDlights( backEnd.refdef.num_dlights, backEnd.refdef.dlights, &backEnd.or );
}
if(backEnd.currentEntity->e.renderfx & RF_DEPTHHACK)
{
// hack the depth range to prevent view model from poking into walls
depthRange = qtrue;
if(backEnd.currentEntity->e.renderfx & RF_CROSSHAIR)
isCrosshair = qtrue;
}
} else {
backEnd.currentEntity = &tr.worldEntity;
backEnd.refdef.floatTime = originalTime;
backEnd.or = backEnd.viewParms.world;
// we have to reset the shaderTime as well otherwise image animations on
// the world (like water) continue with the wrong frame
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
R_TransformDlights( backEnd.refdef.num_dlights, backEnd.refdef.dlights, &backEnd.or );
}
GL_SetModelviewMatrix( backEnd.or.modelMatrix );
//
// change depthrange. Also change projection matrix so first person weapon does not look like coming
// out of the screen.
//
if (oldDepthRange != depthRange || wasCrosshair != isCrosshair)
{
if (depthRange)
{
if(backEnd.viewParms.stereoFrame != STEREO_CENTER)
{
if(isCrosshair)
{
if(oldDepthRange)
{
// was not a crosshair but now is, change back proj matrix
GL_SetProjectionMatrix( backEnd.viewParms.projectionMatrix );
}
}
else
{
viewParms_t temp = backEnd.viewParms;
R_SetupProjection(&temp, r_znear->value, 0, qfalse);
GL_SetProjectionMatrix( temp.projectionMatrix );
}
}
if(!oldDepthRange)
qglDepthRange (0, 0.3);
}
else
{
if(!wasCrosshair && backEnd.viewParms.stereoFrame != STEREO_CENTER)
{
GL_SetProjectionMatrix( backEnd.viewParms.projectionMatrix );
}
qglDepthRange (0, 1);
}
oldDepthRange = depthRange;
wasCrosshair = isCrosshair;
}
oldEntityNum = entityNum;
}
// add the triangles for this surface
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
}
backEnd.refdef.floatTime = originalTime;
// draw the contents of the last shader batch
if (oldShader != NULL) {
RB_EndSurface();
}
if (glRefConfig.framebufferObject)
FBO_Bind(fbo);
// go back to the world modelview matrix
GL_SetModelviewMatrix( backEnd.viewParms.world.modelMatrix );
qglDepthRange (0, 1);
}
/*
============================================================================
RENDER BACK END FUNCTIONS
============================================================================
*/
/*
================
RB_SetGL2D
================
*/
void RB_SetGL2D (void) {
mat4_t matrix;
int width, height;
if (backEnd.projection2D && backEnd.last2DFBO == glState.currentFBO)
return;
backEnd.projection2D = qtrue;
backEnd.last2DFBO = glState.currentFBO;
if (glState.currentFBO)
{
width = glState.currentFBO->width;
height = glState.currentFBO->height;
}
else
{
width = glConfig.vidWidth;
height = glConfig.vidHeight;
}
// set 2D virtual screen size
qglViewport( 0, 0, width, height );
qglScissor( 0, 0, width, height );
Mat4Ortho(0, width, height, 0, 0, 1, matrix);
GL_SetProjectionMatrix(matrix);
Mat4Identity(matrix);
GL_SetModelviewMatrix(matrix);
GL_State( GLS_DEPTHTEST_DISABLE |
GLS_SRCBLEND_SRC_ALPHA |
GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA );
GL_Cull( CT_TWO_SIDED );
// set time for 2D shaders
backEnd.refdef.time = ri.Milliseconds();
backEnd.refdef.floatTime = backEnd.refdef.time * 0.001;
}
/*
=============
RE_StretchRaw
FIXME: not exactly backend
Stretches a raw 32 bit power of 2 bitmap image over the given screen rectangle.
Used for cinematics.
=============
*/
void RE_StretchRaw (int x, int y, int w, int h, int cols, int rows, const byte *data, int client, qboolean dirty) {
int i, j;
int start, end;
vec4_t quadVerts[4];
vec2_t texCoords[4];
if ( !tr.registered ) {
return;
}
R_IssuePendingRenderCommands();
if ( tess.numIndexes ) {
RB_EndSurface();
}
// we definitely want to sync every frame for the cinematics
qglFinish();
start = 0;
if ( r_speeds->integer ) {
start = ri.Milliseconds();
}
// make sure rows and cols are powers of 2
for ( i = 0 ; ( 1 << i ) < cols ; i++ ) {
}
for ( j = 0 ; ( 1 << j ) < rows ; j++ ) {
}
if ( ( 1 << i ) != cols || ( 1 << j ) != rows) {
ri.Error (ERR_DROP, "Draw_StretchRaw: size not a power of 2: %i by %i", cols, rows);
}
RE_UploadCinematic (w, h, cols, rows, data, client, dirty);
GL_BindToTMU(tr.scratchImage[client], TB_COLORMAP);
if ( r_speeds->integer ) {
end = ri.Milliseconds();
ri.Printf( PRINT_ALL, "qglTexSubImage2D %i, %i: %i msec\n", cols, rows, end - start );
}
if (glRefConfig.framebufferObject)
{
FBO_Bind(r_postProcess->integer ? NULL : tr.renderFbo);
}
RB_SetGL2D();
VectorSet4(quadVerts[0], x, y, 0.0f, 1.0f);
VectorSet4(quadVerts[1], x + w, y, 0.0f, 1.0f);
VectorSet4(quadVerts[2], x + w, y + h, 0.0f, 1.0f);
VectorSet4(quadVerts[3], x, y + h, 0.0f, 1.0f);
VectorSet2(texCoords[0], 0.5f / cols, 0.5f / rows);
VectorSet2(texCoords[1], (cols - 0.5f) / cols, 0.5f / rows);
VectorSet2(texCoords[2], (cols - 0.5f) / cols, (rows - 0.5f) / rows);
VectorSet2(texCoords[3], 0.5f / cols, (rows - 0.5f) / rows);
GLSL_BindProgram(&tr.textureColorShader);
GLSL_SetUniformMat4(&tr.textureColorShader, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
GLSL_SetUniformVec4(&tr.textureColorShader, UNIFORM_COLOR, colorWhite);
RB_InstantQuad2(quadVerts, texCoords);
}
void RE_UploadCinematic (int w, int h, int cols, int rows, const byte *data, int client, qboolean dirty) {
GLuint texture;
if (!tr.scratchImage[client])
{
ri.Printf(PRINT_WARNING, "RE_UploadCinematic: scratch images not initialized\n");
return;
}
texture = tr.scratchImage[client]->texnum;
// if the scratchImage isn't in the format we want, specify it as a new texture
if ( cols != tr.scratchImage[client]->width || rows != tr.scratchImage[client]->height ) {
tr.scratchImage[client]->width = tr.scratchImage[client]->uploadWidth = cols;
tr.scratchImage[client]->height = tr.scratchImage[client]->uploadHeight = rows;
qglTextureImage2DEXT(texture, GL_TEXTURE_2D, 0, GL_RGB8, cols, rows, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
qglTextureParameterfEXT(texture, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
qglTextureParameterfEXT(texture, GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
qglTextureParameterfEXT(texture, GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
qglTextureParameterfEXT(texture, GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
} else {
if (dirty) {
// otherwise, just subimage upload it so that drivers can tell we are going to be changing
// it and don't try and do a texture compression
qglTextureSubImage2DEXT(texture, GL_TEXTURE_2D, 0, 0, 0, cols, rows, GL_RGBA, GL_UNSIGNED_BYTE, data);
}
}
}
/*
=============
RB_SetColor
=============
*/
const void *RB_SetColor( const void *data ) {
const setColorCommand_t *cmd;
cmd = (const setColorCommand_t *)data;
backEnd.color2D[0] = cmd->color[0] * 255;
backEnd.color2D[1] = cmd->color[1] * 255;
backEnd.color2D[2] = cmd->color[2] * 255;
backEnd.color2D[3] = cmd->color[3] * 255;
return (const void *)(cmd + 1);
}
/*
=============
RB_StretchPic
=============
*/
const void *RB_StretchPic ( const void *data ) {
const stretchPicCommand_t *cmd;
shader_t *shader;
int numVerts, numIndexes;
cmd = (const stretchPicCommand_t *)data;
if (glRefConfig.framebufferObject)
FBO_Bind(r_postProcess->integer ? NULL : tr.renderFbo);
RB_SetGL2D();
shader = cmd->shader;
if ( shader != tess.shader ) {
if ( tess.numIndexes ) {
RB_EndSurface();
}
backEnd.currentEntity = &backEnd.entity2D;
RB_BeginSurface( shader, 0, 0 );
}
RB_CHECKOVERFLOW( 4, 6 );
numVerts = tess.numVertexes;
numIndexes = tess.numIndexes;
tess.numVertexes += 4;
tess.numIndexes += 6;
tess.indexes[ numIndexes ] = numVerts + 3;
tess.indexes[ numIndexes + 1 ] = numVerts + 0;
tess.indexes[ numIndexes + 2 ] = numVerts + 2;
tess.indexes[ numIndexes + 3 ] = numVerts + 2;
tess.indexes[ numIndexes + 4 ] = numVerts + 0;
tess.indexes[ numIndexes + 5 ] = numVerts + 1;
{
uint16_t color[4];
VectorScale4(backEnd.color2D, 257, color);
VectorCopy4(color, tess.color[ numVerts ]);
VectorCopy4(color, tess.color[ numVerts + 1]);
VectorCopy4(color, tess.color[ numVerts + 2]);
VectorCopy4(color, tess.color[ numVerts + 3 ]);
}
tess.xyz[ numVerts ][0] = cmd->x;
tess.xyz[ numVerts ][1] = cmd->y;
tess.xyz[ numVerts ][2] = 0;
tess.texCoords[ numVerts ][0] = cmd->s1;
tess.texCoords[ numVerts ][1] = cmd->t1;
tess.xyz[ numVerts + 1 ][0] = cmd->x + cmd->w;
tess.xyz[ numVerts + 1 ][1] = cmd->y;
tess.xyz[ numVerts + 1 ][2] = 0;
tess.texCoords[ numVerts + 1 ][0] = cmd->s2;
tess.texCoords[ numVerts + 1 ][1] = cmd->t1;
tess.xyz[ numVerts + 2 ][0] = cmd->x + cmd->w;
tess.xyz[ numVerts + 2 ][1] = cmd->y + cmd->h;
tess.xyz[ numVerts + 2 ][2] = 0;
tess.texCoords[ numVerts + 2 ][0] = cmd->s2;
tess.texCoords[ numVerts + 2 ][1] = cmd->t2;
tess.xyz[ numVerts + 3 ][0] = cmd->x;
tess.xyz[ numVerts + 3 ][1] = cmd->y + cmd->h;
tess.xyz[ numVerts + 3 ][2] = 0;
tess.texCoords[ numVerts + 3 ][0] = cmd->s1;
tess.texCoords[ numVerts + 3 ][1] = cmd->t2;
return (const void *)(cmd + 1);
}
/*
=============
RB_DrawSurfs
=============
*/
const void *RB_DrawSurfs( const void *data ) {
const drawSurfsCommand_t *cmd;
qboolean isShadowView;
// finish any 2D drawing if needed
if ( tess.numIndexes ) {
RB_EndSurface();
}
cmd = (const drawSurfsCommand_t *)data;
backEnd.refdef = cmd->refdef;
backEnd.viewParms = cmd->viewParms;
isShadowView = !!(backEnd.viewParms.flags & VPF_DEPTHSHADOW);
// clear the z buffer, set the modelview, etc
RB_BeginDrawingView ();
if (glRefConfig.framebufferObject && (backEnd.viewParms.flags & VPF_DEPTHCLAMP) && glRefConfig.depthClamp)
{
qglEnable(GL_DEPTH_CLAMP);
}
if (glRefConfig.framebufferObject && !(backEnd.refdef.rdflags & RDF_NOWORLDMODEL) && (r_depthPrepass->integer || isShadowView))
{
FBO_t *oldFbo = glState.currentFBO;
vec4_t viewInfo;
VectorSet4(viewInfo, backEnd.viewParms.zFar / r_znear->value, backEnd.viewParms.zFar, 0.0, 0.0);
backEnd.depthFill = qtrue;
qglColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
RB_RenderDrawSurfList( cmd->drawSurfs, cmd->numDrawSurfs );
qglColorMask(!backEnd.colorMask[0], !backEnd.colorMask[1], !backEnd.colorMask[2], !backEnd.colorMask[3]);
backEnd.depthFill = qfalse;
if (!isShadowView)
{
if (tr.msaaResolveFbo)
{
// If we're using multisampling, resolve the depth first
FBO_FastBlit(tr.renderFbo, NULL, tr.msaaResolveFbo, NULL, GL_DEPTH_BUFFER_BIT, GL_NEAREST);
}
else if (tr.renderFbo == NULL && tr.renderDepthImage)
{
// If we're rendering directly to the screen, copy the depth to a texture
// This is incredibly slow on Intel Graphics, so just skip it on there
if (!glRefConfig.intelGraphics)
qglCopyTextureSubImage2DEXT(tr.renderDepthImage->texnum, GL_TEXTURE_2D, 0, 0, 0, 0, 0, glConfig.vidWidth, glConfig.vidHeight);
}
if (tr.hdrDepthFbo)
{
// need the depth in a texture we can do GL_LINEAR sampling on, so copy it to an HDR image
vec4_t srcTexCoords;
VectorSet4(srcTexCoords, 0.0f, 0.0f, 1.0f, 1.0f);
FBO_BlitFromTexture(tr.renderDepthImage, srcTexCoords, NULL, tr.hdrDepthFbo, NULL, NULL, NULL, 0);
}
if (r_sunlightMode->integer && backEnd.viewParms.flags & VPF_USESUNLIGHT)
{
vec4_t quadVerts[4];
vec2_t texCoords[4];
vec4_t box;
FBO_Bind(tr.screenShadowFbo);
box[0] = backEnd.viewParms.viewportX * tr.screenShadowFbo->width / (float)glConfig.vidWidth;
box[1] = backEnd.viewParms.viewportY * tr.screenShadowFbo->height / (float)glConfig.vidHeight;
box[2] = backEnd.viewParms.viewportWidth * tr.screenShadowFbo->width / (float)glConfig.vidWidth;
box[3] = backEnd.viewParms.viewportHeight * tr.screenShadowFbo->height / (float)glConfig.vidHeight;
qglViewport(box[0], box[1], box[2], box[3]);
qglScissor(box[0], box[1], box[2], box[3]);
box[0] = backEnd.viewParms.viewportX / (float)glConfig.vidWidth;
box[1] = backEnd.viewParms.viewportY / (float)glConfig.vidHeight;
box[2] = box[0] + backEnd.viewParms.viewportWidth / (float)glConfig.vidWidth;
box[3] = box[1] + backEnd.viewParms.viewportHeight / (float)glConfig.vidHeight;
texCoords[0][0] = box[0]; texCoords[0][1] = box[3];
texCoords[1][0] = box[2]; texCoords[1][1] = box[3];
texCoords[2][0] = box[2]; texCoords[2][1] = box[1];
texCoords[3][0] = box[0]; texCoords[3][1] = box[1];
box[0] = -1.0f;
box[1] = -1.0f;
box[2] = 1.0f;
box[3] = 1.0f;
VectorSet4(quadVerts[0], box[0], box[3], 0, 1);
VectorSet4(quadVerts[1], box[2], box[3], 0, 1);
VectorSet4(quadVerts[2], box[2], box[1], 0, 1);
VectorSet4(quadVerts[3], box[0], box[1], 0, 1);
GL_State(GLS_DEPTHTEST_DISABLE);
GLSL_BindProgram(&tr.shadowmaskShader);
GL_BindToTMU(tr.renderDepthImage, TB_COLORMAP);
if (r_shadowCascadeZFar->integer != 0)
{
GL_BindToTMU(tr.sunShadowDepthImage[0], TB_SHADOWMAP);
GL_BindToTMU(tr.sunShadowDepthImage[1], TB_SHADOWMAP2);
GL_BindToTMU(tr.sunShadowDepthImage[2], TB_SHADOWMAP3);
GL_BindToTMU(tr.sunShadowDepthImage[3], TB_SHADOWMAP4);
GLSL_SetUniformMat4(&tr.shadowmaskShader, UNIFORM_SHADOWMVP, backEnd.refdef.sunShadowMvp[0]);
GLSL_SetUniformMat4(&tr.shadowmaskShader, UNIFORM_SHADOWMVP2, backEnd.refdef.sunShadowMvp[1]);
GLSL_SetUniformMat4(&tr.shadowmaskShader, UNIFORM_SHADOWMVP3, backEnd.refdef.sunShadowMvp[2]);
GLSL_SetUniformMat4(&tr.shadowmaskShader, UNIFORM_SHADOWMVP4, backEnd.refdef.sunShadowMvp[3]);
}
else
{
GL_BindToTMU(tr.sunShadowDepthImage[3], TB_SHADOWMAP);
GLSL_SetUniformMat4(&tr.shadowmaskShader, UNIFORM_SHADOWMVP, backEnd.refdef.sunShadowMvp[3]);
}
GLSL_SetUniformVec3(&tr.shadowmaskShader, UNIFORM_VIEWORIGIN, backEnd.refdef.vieworg);
{
vec3_t viewVector;
float zmax = backEnd.viewParms.zFar;
float ymax = zmax * tan(backEnd.viewParms.fovY * M_PI / 360.0f);
float xmax = zmax * tan(backEnd.viewParms.fovX * M_PI / 360.0f);
VectorScale(backEnd.refdef.viewaxis[0], zmax, viewVector);
GLSL_SetUniformVec3(&tr.shadowmaskShader, UNIFORM_VIEWFORWARD, viewVector);
VectorScale(backEnd.refdef.viewaxis[1], xmax, viewVector);
GLSL_SetUniformVec3(&tr.shadowmaskShader, UNIFORM_VIEWLEFT, viewVector);
VectorScale(backEnd.refdef.viewaxis[2], ymax, viewVector);
GLSL_SetUniformVec3(&tr.shadowmaskShader, UNIFORM_VIEWUP, viewVector);
GLSL_SetUniformVec4(&tr.shadowmaskShader, UNIFORM_VIEWINFO, viewInfo);
}
RB_InstantQuad2(quadVerts, texCoords); //, color, shaderProgram, invTexRes);
if (r_shadowBlur->integer)
{
viewInfo[2] = 1.0f / (float)(tr.screenScratchFbo->width);
viewInfo[3] = 1.0f / (float)(tr.screenScratchFbo->height);
FBO_Bind(tr.screenScratchFbo);
GLSL_BindProgram(&tr.depthBlurShader[0]);
GL_BindToTMU(tr.screenShadowImage, TB_COLORMAP);
GL_BindToTMU(tr.hdrDepthImage, TB_LIGHTMAP);
GLSL_SetUniformVec4(&tr.depthBlurShader[0], UNIFORM_VIEWINFO, viewInfo);
RB_InstantQuad2(quadVerts, texCoords);
FBO_Bind(tr.screenShadowFbo);
GLSL_BindProgram(&tr.depthBlurShader[1]);
GL_BindToTMU(tr.screenScratchImage, TB_COLORMAP);
GL_BindToTMU(tr.hdrDepthImage, TB_LIGHTMAP);
GLSL_SetUniformVec4(&tr.depthBlurShader[1], UNIFORM_VIEWINFO, viewInfo);
RB_InstantQuad2(quadVerts, texCoords);
}
}
if (r_ssao->integer)
{
vec4_t quadVerts[4];
vec2_t texCoords[4];
viewInfo[2] = 1.0f / ((float)(tr.quarterImage[0]->width) * tan(backEnd.viewParms.fovX * M_PI / 360.0f) * 2.0f);
viewInfo[3] = 1.0f / ((float)(tr.quarterImage[0]->height) * tan(backEnd.viewParms.fovY * M_PI / 360.0f) * 2.0f);
viewInfo[3] *= (float)backEnd.viewParms.viewportHeight / (float)backEnd.viewParms.viewportWidth;
FBO_Bind(tr.quarterFbo[0]);
qglViewport(0, 0, tr.quarterFbo[0]->width, tr.quarterFbo[0]->height);
qglScissor(0, 0, tr.quarterFbo[0]->width, tr.quarterFbo[0]->height);
VectorSet4(quadVerts[0], -1, 1, 0, 1);
VectorSet4(quadVerts[1], 1, 1, 0, 1);
VectorSet4(quadVerts[2], 1, -1, 0, 1);
VectorSet4(quadVerts[3], -1, -1, 0, 1);
texCoords[0][0] = 0; texCoords[0][1] = 1;
texCoords[1][0] = 1; texCoords[1][1] = 1;
texCoords[2][0] = 1; texCoords[2][1] = 0;
texCoords[3][0] = 0; texCoords[3][1] = 0;
GL_State( GLS_DEPTHTEST_DISABLE );
GLSL_BindProgram(&tr.ssaoShader);
GL_BindToTMU(tr.hdrDepthImage, TB_COLORMAP);
GLSL_SetUniformVec4(&tr.ssaoShader, UNIFORM_VIEWINFO, viewInfo);
RB_InstantQuad2(quadVerts, texCoords); //, color, shaderProgram, invTexRes);
viewInfo[2] = 1.0f / (float)(tr.quarterImage[0]->width);
viewInfo[3] = 1.0f / (float)(tr.quarterImage[0]->height);
FBO_Bind(tr.quarterFbo[1]);
qglViewport(0, 0, tr.quarterFbo[1]->width, tr.quarterFbo[1]->height);
qglScissor(0, 0, tr.quarterFbo[1]->width, tr.quarterFbo[1]->height);
GLSL_BindProgram(&tr.depthBlurShader[0]);
GL_BindToTMU(tr.quarterImage[0], TB_COLORMAP);
GL_BindToTMU(tr.hdrDepthImage, TB_LIGHTMAP);
GLSL_SetUniformVec4(&tr.depthBlurShader[0], UNIFORM_VIEWINFO, viewInfo);
RB_InstantQuad2(quadVerts, texCoords); //, color, shaderProgram, invTexRes);
FBO_Bind(tr.screenSsaoFbo);
qglViewport(0, 0, tr.screenSsaoFbo->width, tr.screenSsaoFbo->height);
qglScissor(0, 0, tr.screenSsaoFbo->width, tr.screenSsaoFbo->height);
GLSL_BindProgram(&tr.depthBlurShader[1]);
GL_BindToTMU(tr.quarterImage[1], TB_COLORMAP);
GL_BindToTMU(tr.hdrDepthImage, TB_LIGHTMAP);
GLSL_SetUniformVec4(&tr.depthBlurShader[1], UNIFORM_VIEWINFO, viewInfo);
RB_InstantQuad2(quadVerts, texCoords); //, color, shaderProgram, invTexRes);
}
}
// reset viewport and scissor
FBO_Bind(oldFbo);
SetViewportAndScissor();
}
if (glRefConfig.framebufferObject && (backEnd.viewParms.flags & VPF_DEPTHCLAMP) && glRefConfig.depthClamp)
{
qglDisable(GL_DEPTH_CLAMP);
}
if (!isShadowView)
{
RB_RenderDrawSurfList( cmd->drawSurfs, cmd->numDrawSurfs );
if (r_drawSun->integer)
{
RB_DrawSun(0.1, tr.sunShader);
}
if (glRefConfig.framebufferObject && r_drawSunRays->integer)
{
FBO_t *oldFbo = glState.currentFBO;
FBO_Bind(tr.sunRaysFbo);
qglClearColor( 0.0f, 0.0f, 0.0f, 1.0f );
qglClear( GL_COLOR_BUFFER_BIT );
if (glRefConfig.occlusionQuery)
{
tr.sunFlareQueryActive[tr.sunFlareQueryIndex] = qtrue;
qglBeginQuery(GL_SAMPLES_PASSED, tr.sunFlareQuery[tr.sunFlareQueryIndex]);
}
RB_DrawSun(0.3, tr.sunFlareShader);
if (glRefConfig.occlusionQuery)
{
qglEndQuery(GL_SAMPLES_PASSED);
}
FBO_Bind(oldFbo);
}
// darken down any stencil shadows
RB_ShadowFinish();
// add light flares on lights that aren't obscured
RB_RenderFlares();
}
if (glRefConfig.framebufferObject && tr.renderCubeFbo && backEnd.viewParms.targetFbo == tr.renderCubeFbo)
{
cubemap_t *cubemap = &tr.cubemaps[backEnd.viewParms.targetFboCubemapIndex];
FBO_Bind(NULL);
if (cubemap && cubemap->image)
qglGenerateTextureMipmapEXT(cubemap->image->texnum, GL_TEXTURE_CUBE_MAP);
}
return (const void *)(cmd + 1);
}
/*
=============
RB_DrawBuffer
=============
*/
const void *RB_DrawBuffer( const void *data ) {
const drawBufferCommand_t *cmd;
cmd = (const drawBufferCommand_t *)data;
// finish any 2D drawing if needed
if(tess.numIndexes)
RB_EndSurface();
if (glRefConfig.framebufferObject)
FBO_Bind(NULL);
qglDrawBuffer( cmd->buffer );
// clear screen for debugging
if ( r_clear->integer ) {
qglClearColor( 1, 0, 0.5, 1 );
qglClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
if (glRefConfig.framebufferObject && tr.renderFbo) {
FBO_Bind(tr.renderFbo);
qglClearColor( 1, 0, 0.5, 1 );
qglClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
}
}
return (const void *)(cmd + 1);
}
/*
===============
RB_ShowImages
Draw all the images to the screen, on top of whatever
was there. This is used to test for texture thrashing.
Also called by RE_EndRegistration
===============
*/
void RB_ShowImages( void ) {
int i;
image_t *image;
float x, y, w, h;
int start, end;
RB_SetGL2D();
qglClear( GL_COLOR_BUFFER_BIT );
qglFinish();
start = ri.Milliseconds();
for ( i=0 ; i<tr.numImages ; i++ ) {
image = tr.images[i];
w = glConfig.vidWidth / 20;
h = glConfig.vidHeight / 15;
x = i % 20 * w;
y = i / 20 * h;
// show in proportional size in mode 2
if ( r_showImages->integer == 2 ) {
w *= image->uploadWidth / 512.0f;
h *= image->uploadHeight / 512.0f;
}
{
vec4_t quadVerts[4];
GL_BindToTMU(image, TB_COLORMAP);
VectorSet4(quadVerts[0], x, y, 0, 1);
VectorSet4(quadVerts[1], x + w, y, 0, 1);
VectorSet4(quadVerts[2], x + w, y + h, 0, 1);
VectorSet4(quadVerts[3], x, y + h, 0, 1);
RB_InstantQuad(quadVerts);
}
}
qglFinish();
end = ri.Milliseconds();
ri.Printf( PRINT_ALL, "%i msec to draw all images\n", end - start );
}
/*
=============
RB_ColorMask
=============
*/
const void *RB_ColorMask(const void *data)
{
const colorMaskCommand_t *cmd = data;
// finish any 2D drawing if needed
if(tess.numIndexes)
RB_EndSurface();
if (glRefConfig.framebufferObject)
{
// reverse color mask, so 0 0 0 0 is the default
backEnd.colorMask[0] = !cmd->rgba[0];
backEnd.colorMask[1] = !cmd->rgba[1];
backEnd.colorMask[2] = !cmd->rgba[2];
backEnd.colorMask[3] = !cmd->rgba[3];
}
qglColorMask(cmd->rgba[0], cmd->rgba[1], cmd->rgba[2], cmd->rgba[3]);
return (const void *)(cmd + 1);
}
/*
=============
RB_ClearDepth
=============
*/
const void *RB_ClearDepth(const void *data)
{
const clearDepthCommand_t *cmd = data;
// finish any 2D drawing if needed
if(tess.numIndexes)
RB_EndSurface();
// texture swapping test
if (r_showImages->integer)
RB_ShowImages();
if (glRefConfig.framebufferObject)
{
FBO_Bind(tr.renderFbo);
}
qglClear(GL_DEPTH_BUFFER_BIT);
// if we're doing MSAA, clear the depth texture for the resolve buffer
if (tr.msaaResolveFbo)
{
FBO_Bind(tr.msaaResolveFbo);
qglClear(GL_DEPTH_BUFFER_BIT);
}
return (const void *)(cmd + 1);
}
/*
=============
RB_SwapBuffers
=============
*/
const void *RB_SwapBuffers( const void *data ) {
const swapBuffersCommand_t *cmd;
// finish any 2D drawing if needed
if ( tess.numIndexes ) {
RB_EndSurface();
}
// texture swapping test
if ( r_showImages->integer ) {
RB_ShowImages();
}
cmd = (const swapBuffersCommand_t *)data;
// we measure overdraw by reading back the stencil buffer and
// counting up the number of increments that have happened
if ( r_measureOverdraw->integer ) {
int i;
long sum = 0;
unsigned char *stencilReadback;
stencilReadback = ri.Hunk_AllocateTempMemory( glConfig.vidWidth * glConfig.vidHeight );
qglReadPixels( 0, 0, glConfig.vidWidth, glConfig.vidHeight, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, stencilReadback );
for ( i = 0; i < glConfig.vidWidth * glConfig.vidHeight; i++ ) {
sum += stencilReadback[i];
}
backEnd.pc.c_overDraw += sum;
ri.Hunk_FreeTempMemory( stencilReadback );
}
if (glRefConfig.framebufferObject)
{
if (!r_postProcess->integer)
{
if (tr.msaaResolveFbo && r_hdr->integer)
{
// Resolving an RGB16F MSAA FBO to the screen messes with the brightness, so resolve to an RGB16F FBO first
FBO_FastBlit(tr.renderFbo, NULL, tr.msaaResolveFbo, NULL, GL_COLOR_BUFFER_BIT, GL_NEAREST);
FBO_FastBlit(tr.msaaResolveFbo, NULL, NULL, NULL, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
else if (tr.renderFbo)
{
FBO_FastBlit(tr.renderFbo, NULL, NULL, NULL, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
}
}
if ( !glState.finishCalled ) {
qglFinish();
}
GLimp_LogComment( "***************** RB_SwapBuffers *****************\n\n\n" );
GLimp_EndFrame();
backEnd.projection2D = qfalse;
return (const void *)(cmd + 1);
}
/*
=============
RB_CapShadowMap
=============
*/
const void *RB_CapShadowMap(const void *data)
{
const capShadowmapCommand_t *cmd = data;
// finish any 2D drawing if needed
if(tess.numIndexes)
RB_EndSurface();
if (cmd->map != -1)
{
if (cmd->cubeSide != -1)
{
if (tr.shadowCubemaps[cmd->map])
{
qglCopyTextureSubImage2DEXT(tr.shadowCubemaps[cmd->map]->texnum, GL_TEXTURE_CUBE_MAP_POSITIVE_X + cmd->cubeSide, 0, 0, 0, backEnd.refdef.x, glConfig.vidHeight - ( backEnd.refdef.y + PSHADOW_MAP_SIZE ), PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE);
}
}
else
{
if (tr.pshadowMaps[cmd->map])
{
qglCopyTextureSubImage2DEXT(tr.pshadowMaps[cmd->map]->texnum, GL_TEXTURE_2D, 0, 0, 0, backEnd.refdef.x, glConfig.vidHeight - (backEnd.refdef.y + PSHADOW_MAP_SIZE), PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE);
}
}
}
return (const void *)(cmd + 1);
}
/*
=============
RB_PostProcess
=============
*/
const void *RB_PostProcess(const void *data)
{
const postProcessCommand_t *cmd = data;
FBO_t *srcFbo;
ivec4_t srcBox, dstBox;
qboolean autoExposure;
// finish any 2D drawing if needed
if(tess.numIndexes)
RB_EndSurface();
if (!glRefConfig.framebufferObject || !r_postProcess->integer)
{
// do nothing
return (const void *)(cmd + 1);
}
if (cmd)
{
backEnd.refdef = cmd->refdef;
backEnd.viewParms = cmd->viewParms;
}
srcFbo = tr.renderFbo;
if (tr.msaaResolveFbo)
{
// Resolve the MSAA before anything else
// Can't resolve just part of the MSAA FBO, so multiple views will suffer a performance hit here
FBO_FastBlit(tr.renderFbo, NULL, tr.msaaResolveFbo, NULL, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST);
srcFbo = tr.msaaResolveFbo;
}
dstBox[0] = backEnd.viewParms.viewportX;
dstBox[1] = backEnd.viewParms.viewportY;
dstBox[2] = backEnd.viewParms.viewportWidth;
dstBox[3] = backEnd.viewParms.viewportHeight;
if (r_ssao->integer)
{
srcBox[0] = backEnd.viewParms.viewportX * tr.screenSsaoImage->width / (float)glConfig.vidWidth;
srcBox[1] = backEnd.viewParms.viewportY * tr.screenSsaoImage->height / (float)glConfig.vidHeight;
srcBox[2] = backEnd.viewParms.viewportWidth * tr.screenSsaoImage->width / (float)glConfig.vidWidth;
srcBox[3] = backEnd.viewParms.viewportHeight * tr.screenSsaoImage->height / (float)glConfig.vidHeight;
FBO_Blit(tr.screenSsaoFbo, srcBox, NULL, srcFbo, dstBox, NULL, NULL, GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO);
}
srcBox[0] = backEnd.viewParms.viewportX;
srcBox[1] = backEnd.viewParms.viewportY;
srcBox[2] = backEnd.viewParms.viewportWidth;
srcBox[3] = backEnd.viewParms.viewportHeight;
if (srcFbo)
{
if (r_hdr->integer && (r_toneMap->integer || r_forceToneMap->integer))
{
autoExposure = r_autoExposure->integer || r_forceAutoExposure->integer;
RB_ToneMap(srcFbo, srcBox, NULL, dstBox, autoExposure);
}
else if (r_cameraExposure->value == 0.0f)
{
FBO_FastBlit(srcFbo, srcBox, NULL, dstBox, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
else
{
vec4_t color;
color[0] =
color[1] =
color[2] = pow(2, r_cameraExposure->value); //exp2(r_cameraExposure->value);
color[3] = 1.0f;
FBO_Blit(srcFbo, srcBox, NULL, NULL, dstBox, NULL, color, 0);
}
}
if (r_drawSunRays->integer)
RB_SunRays(NULL, srcBox, NULL, dstBox);
if (1)
RB_BokehBlur(NULL, srcBox, NULL, dstBox, backEnd.refdef.blurFactor);
else
RB_GaussianBlur(backEnd.refdef.blurFactor);
#if 0
if (0)
{
vec4_t quadVerts[4];
vec2_t texCoords[4];
ivec4_t iQtrBox;
vec4_t box;
vec4_t viewInfo;
static float scale = 5.0f;
scale -= 0.005f;
if (scale < 0.01f)
scale = 5.0f;
FBO_FastBlit(NULL, NULL, tr.quarterFbo[0], NULL, GL_COLOR_BUFFER_BIT, GL_LINEAR);
iQtrBox[0] = backEnd.viewParms.viewportX * tr.quarterImage[0]->width / (float)glConfig.vidWidth;
iQtrBox[1] = backEnd.viewParms.viewportY * tr.quarterImage[0]->height / (float)glConfig.vidHeight;
iQtrBox[2] = backEnd.viewParms.viewportWidth * tr.quarterImage[0]->width / (float)glConfig.vidWidth;
iQtrBox[3] = backEnd.viewParms.viewportHeight * tr.quarterImage[0]->height / (float)glConfig.vidHeight;
qglViewport(iQtrBox[0], iQtrBox[1], iQtrBox[2], iQtrBox[3]);
qglScissor(iQtrBox[0], iQtrBox[1], iQtrBox[2], iQtrBox[3]);
VectorSet4(box, 0.0f, 0.0f, 1.0f, 1.0f);
texCoords[0][0] = box[0]; texCoords[0][1] = box[3];
texCoords[1][0] = box[2]; texCoords[1][1] = box[3];
texCoords[2][0] = box[2]; texCoords[2][1] = box[1];
texCoords[3][0] = box[0]; texCoords[3][1] = box[1];
VectorSet4(box, -1.0f, -1.0f, 1.0f, 1.0f);
VectorSet4(quadVerts[0], box[0], box[3], 0, 1);
VectorSet4(quadVerts[1], box[2], box[3], 0, 1);
VectorSet4(quadVerts[2], box[2], box[1], 0, 1);
VectorSet4(quadVerts[3], box[0], box[1], 0, 1);
GL_State(GLS_DEPTHTEST_DISABLE);
VectorSet4(viewInfo, backEnd.viewParms.zFar / r_znear->value, backEnd.viewParms.zFar, 0.0, 0.0);
viewInfo[2] = scale / (float)(tr.quarterImage[0]->width);
viewInfo[3] = scale / (float)(tr.quarterImage[0]->height);
FBO_Bind(tr.quarterFbo[1]);
GLSL_BindProgram(&tr.depthBlurShader[2]);
GL_BindToTMU(tr.quarterImage[0], TB_COLORMAP);
GLSL_SetUniformVec4(&tr.depthBlurShader[2], UNIFORM_VIEWINFO, viewInfo);
RB_InstantQuad2(quadVerts, texCoords);
FBO_Bind(tr.quarterFbo[0]);
GLSL_BindProgram(&tr.depthBlurShader[3]);
GL_BindToTMU(tr.quarterImage[1], TB_COLORMAP);
GLSL_SetUniformVec4(&tr.depthBlurShader[3], UNIFORM_VIEWINFO, viewInfo);
RB_InstantQuad2(quadVerts, texCoords);
SetViewportAndScissor();
FBO_FastBlit(tr.quarterFbo[1], NULL, NULL, NULL, GL_COLOR_BUFFER_BIT, GL_LINEAR);
FBO_Bind(NULL);
}
#endif
if (0 && r_sunlightMode->integer)
{
ivec4_t dstBox;
VectorSet4(dstBox, 0, glConfig.vidHeight - 128, 128, 128);
FBO_BlitFromTexture(tr.sunShadowDepthImage[0], NULL, NULL, NULL, dstBox, NULL, NULL, 0);
VectorSet4(dstBox, 128, glConfig.vidHeight - 128, 128, 128);
FBO_BlitFromTexture(tr.sunShadowDepthImage[1], NULL, NULL, NULL, dstBox, NULL, NULL, 0);
VectorSet4(dstBox, 256, glConfig.vidHeight - 128, 128, 128);
FBO_BlitFromTexture(tr.sunShadowDepthImage[2], NULL, NULL, NULL, dstBox, NULL, NULL, 0);
VectorSet4(dstBox, 384, glConfig.vidHeight - 128, 128, 128);
FBO_BlitFromTexture(tr.sunShadowDepthImage[3], NULL, NULL, NULL, dstBox, NULL, NULL, 0);
}
if (0 && r_shadows->integer == 4)
{
ivec4_t dstBox;
VectorSet4(dstBox, 512 + 0, glConfig.vidHeight - 128, 128, 128);
FBO_BlitFromTexture(tr.pshadowMaps[0], NULL, NULL, NULL, dstBox, NULL, NULL, 0);
VectorSet4(dstBox, 512 + 128, glConfig.vidHeight - 128, 128, 128);
FBO_BlitFromTexture(tr.pshadowMaps[1], NULL, NULL, NULL, dstBox, NULL, NULL, 0);
VectorSet4(dstBox, 512 + 256, glConfig.vidHeight - 128, 128, 128);
FBO_BlitFromTexture(tr.pshadowMaps[2], NULL, NULL, NULL, dstBox, NULL, NULL, 0);
VectorSet4(dstBox, 512 + 384, glConfig.vidHeight - 128, 128, 128);
FBO_BlitFromTexture(tr.pshadowMaps[3], NULL, NULL, NULL, dstBox, NULL, NULL, 0);
}
if (0)
{
ivec4_t dstBox;
VectorSet4(dstBox, 256, glConfig.vidHeight - 256, 256, 256);
FBO_BlitFromTexture(tr.renderDepthImage, NULL, NULL, NULL, dstBox, NULL, NULL, 0);
VectorSet4(dstBox, 512, glConfig.vidHeight - 256, 256, 256);
FBO_BlitFromTexture(tr.screenShadowImage, NULL, NULL, NULL, dstBox, NULL, NULL, 0);
}
if (0)
{
ivec4_t dstBox;
VectorSet4(dstBox, 256, glConfig.vidHeight - 256, 256, 256);
FBO_BlitFromTexture(tr.sunRaysImage, NULL, NULL, NULL, dstBox, NULL, NULL, 0);
}
#if 0
if (r_cubeMapping->integer && tr.numCubemaps)
{
ivec4_t dstBox;
int cubemapIndex = R_CubemapForPoint( backEnd.viewParms.or.origin );
if (cubemapIndex)
{
VectorSet4(dstBox, 0, glConfig.vidHeight - 256, 256, 256);
//FBO_BlitFromTexture(tr.renderCubeImage, NULL, NULL, NULL, dstBox, &tr.testcubeShader, NULL, 0);
FBO_BlitFromTexture(tr.cubemaps[cubemapIndex - 1].image, NULL, NULL, NULL, dstBox, &tr.testcubeShader, NULL, 0);
}
}
#endif
return (const void *)(cmd + 1);
}
// FIXME: put this function declaration elsewhere
void R_SaveDDS(const char *filename, byte *pic, int width, int height, int depth);
/*
=============
RB_ExportCubemaps
=============
*/
const void *RB_ExportCubemaps(const void *data)
{
const exportCubemapsCommand_t *cmd = data;
// finish any 2D drawing if needed
if (tess.numIndexes)
RB_EndSurface();
if (!glRefConfig.framebufferObject || !tr.world || tr.numCubemaps == 0)
{
// do nothing
ri.Printf(PRINT_ALL, "Nothing to export!\n");
return (const void *)(cmd + 1);
}
if (cmd)
{
FBO_t *oldFbo = glState.currentFBO;
int sideSize = r_cubemapSize->integer * r_cubemapSize->integer * 4;
byte *cubemapPixels = ri.Malloc(sideSize * 6);
int i, j;
FBO_Bind(tr.renderCubeFbo);
for (i = 0; i < tr.numCubemaps; i++)
{
char filename[MAX_QPATH];
cubemap_t *cubemap = &tr.cubemaps[i];
byte *p = cubemapPixels;
for (j = 0; j < 6; j++)
{
FBO_AttachImage(tr.renderCubeFbo, cubemap->image, GL_COLOR_ATTACHMENT0_EXT, j);
qglReadPixels(0, 0, r_cubemapSize->integer, r_cubemapSize->integer, GL_RGBA, GL_UNSIGNED_BYTE, p);
p += sideSize;
}
if (cubemap->name[0])
{
COM_StripExtension(cubemap->name, filename, MAX_QPATH);
Q_strcat(filename, MAX_QPATH, ".dds");
}
else
{
Com_sprintf(filename, MAX_QPATH, "cubemaps/%s/%03d.dds", tr.world->baseName, i);
}
R_SaveDDS(filename, cubemapPixels, r_cubemapSize->integer, r_cubemapSize->integer, 6);
ri.Printf(PRINT_ALL, "Saved cubemap %d as %s\n", i, filename);
}
FBO_Bind(oldFbo);
ri.Free(cubemapPixels);
}
return (const void *)(cmd + 1);
}
/*
====================
RB_ExecuteRenderCommands
====================
*/
void RB_ExecuteRenderCommands( const void *data ) {
int t1, t2;
t1 = ri.Milliseconds ();
while ( 1 ) {
data = PADP(data, sizeof(void *));
switch ( *(const int *)data ) {
case RC_SET_COLOR:
data = RB_SetColor( data );
break;
case RC_STRETCH_PIC:
data = RB_StretchPic( data );
break;
case RC_DRAW_SURFS:
data = RB_DrawSurfs( data );
break;
case RC_DRAW_BUFFER:
data = RB_DrawBuffer( data );
break;
case RC_SWAP_BUFFERS:
data = RB_SwapBuffers( data );
break;
case RC_SCREENSHOT:
data = RB_TakeScreenshotCmd( data );
break;
case RC_VIDEOFRAME:
data = RB_TakeVideoFrameCmd( data );
break;
case RC_COLORMASK:
data = RB_ColorMask(data);
break;
case RC_CLEARDEPTH:
data = RB_ClearDepth(data);
break;
case RC_CAPSHADOWMAP:
data = RB_CapShadowMap(data);
break;
case RC_POSTPROCESS:
data = RB_PostProcess(data);
break;
case RC_EXPORT_CUBEMAPS:
data = RB_ExportCubemaps(data);
break;
case RC_END_OF_LIST:
default:
// finish any 2D drawing if needed
if(tess.numIndexes)
RB_EndSurface();
// stop rendering
t2 = ri.Milliseconds ();
backEnd.pc.msec = t2 - t1;
return;
}
}
}