- Add Inter-Quake Model (IQM) Format support, patch by gimhael with minor modifications by myself (#4965)

- Changed model_t::md4 to model_t::modelData
- Fix R_ModelBounds for MD4, MDR and IQM models (#4966)
- Support Model format fallback similar to image formats in tr_image.c, patch by Zack Middleton (#4967)
This commit is contained in:
Thilo Schulz 2011-05-02 15:50:19 +00:00
parent d34c6b7e0b
commit c5e2654b54
8 changed files with 1299 additions and 140 deletions

View file

@ -1423,6 +1423,7 @@ Q3OBJ = \
$(B)/client/tr_image_tga.o \
$(B)/client/tr_image_pcx.o \
$(B)/client/tr_init.o \
$(B)/client/tr_model_iqm.o \
$(B)/client/tr_light.o \
$(B)/client/tr_main.o \
$(B)/client/tr_marks.o \

107
code/renderer/iqm.h Normal file
View file

@ -0,0 +1,107 @@
#ifndef __IQM_H__
#define __IQM_H__
#define IQM_MAGIC "INTERQUAKEMODEL"
#define IQM_VERSION 1
typedef struct iqmheader
{
char magic[16];
unsigned int version;
unsigned int filesize;
unsigned int flags;
unsigned int num_text, ofs_text;
unsigned int num_meshes, ofs_meshes;
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
unsigned int num_joints, ofs_joints;
unsigned int num_poses, ofs_poses;
unsigned int num_anims, ofs_anims;
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
unsigned int num_comment, ofs_comment;
unsigned int num_extensions, ofs_extensions;
} iqmHeader_t;
typedef struct iqmmesh
{
unsigned int name;
unsigned int material;
unsigned int first_vertex, num_vertexes;
unsigned int first_triangle, num_triangles;
} iqmMesh_t;
enum
{
IQM_POSITION = 0,
IQM_TEXCOORD = 1,
IQM_NORMAL = 2,
IQM_TANGENT = 3,
IQM_BLENDINDEXES = 4,
IQM_BLENDWEIGHTS = 5,
IQM_COLOR = 6,
IQM_CUSTOM = 0x10
};
enum
{
IQM_BYTE = 0,
IQM_UBYTE = 1,
IQM_SHORT = 2,
IQM_USHORT = 3,
IQM_INT = 4,
IQM_UINT = 5,
IQM_HALF = 6,
IQM_FLOAT = 7,
IQM_DOUBLE = 8,
};
typedef struct iqmtriangle
{
unsigned int vertex[3];
} iqmTriangle_t;
typedef struct iqmjoint
{
unsigned int name;
int parent;
float translate[3], rotate[3], scale[3];
} iqmJoint_t;
typedef struct iqmpose
{
int parent;
unsigned int mask;
float channeloffset[9];
float channelscale[9];
} iqmPose_t;
typedef struct iqmanim
{
unsigned int name;
unsigned int first_frame, num_frames;
float framerate;
unsigned int flags;
} iqmAnim_t;
enum
{
IQM_LOOP = 1<<0
};
typedef struct iqmvertexarray
{
unsigned int type;
unsigned int flags;
unsigned int format;
unsigned int size;
unsigned int offset;
} iqmVertexArray_t;
typedef struct iqmbounds
{
float bbmin[3], bbmax[3];
float xyradius, radius;
} iqmBounds_t;
#endif

View file

@ -45,7 +45,7 @@ void R_AddAnimSurfaces( trRefEntity_t *ent ) {
shader_t *shader;
int i;
header = (md4Header_t *) tr.currentModel->md4;
header = (md4Header_t *) tr.currentModel->modelData;
lod = (md4LOD_t *)( (byte *)header + header->ofsLODs );
surface = (md4Surface_t *)( (byte *)lod + lod->ofsSurfaces );

View file

@ -29,6 +29,7 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#include "../qcommon/qcommon.h"
#include "tr_public.h"
#include "qgl.h"
#include "iqm.h"
#define GL_INDEX_TYPE GL_UNSIGNED_INT
typedef unsigned int glIndex_t;
@ -533,6 +534,7 @@ typedef enum {
#ifdef RAVENMD4
SF_MDR,
#endif
SF_IQM,
SF_FLARE,
SF_ENTITY, // beams, rails, lightning, etc that can be determined by entity
SF_DISPLAY_LIST,
@ -639,6 +641,39 @@ typedef struct {
drawVert_t *verts;
} srfTriangles_t;
// inter-quake-model
typedef struct {
int num_vertexes;
int num_triangles;
int num_frames;
int num_surfaces;
int num_joints;
struct srfIQModel_s *surfaces;
float *positions;
float *texcoords;
float *normals;
float *tangents;
byte *blendIndexes;
byte *blendWeights;
byte *colors;
int *triangles;
int *jointParents;
float *poseMats;
float *bounds;
char *names;
} iqmData_t;
// inter-quake-model surface
typedef struct srfIQModel_s {
surfaceType_t surfaceType;
shader_t *shader;
iqmData_t *data;
int first_vertex, num_vertexes;
int first_triangle, num_triangles;
} srfIQModel_t;
extern void (*rb_surfaceTable[SF_NUM_SURFACE_TYPES])(void *);
@ -747,19 +782,20 @@ typedef enum {
MOD_MESH,
MOD_MD4,
#ifdef RAVENMD4
MOD_MDR
MOD_MDR,
#endif
MOD_IQM
} modtype_t;
typedef struct model_s {
char name[MAX_QPATH];
modtype_t type;
int index; // model = tr.models[model->index]
int index; // model = tr.models[model->index]
int dataSize; // just for listing purposes
bmodel_t *bmodel; // only if type == MOD_BRUSH
int dataSize; // just for listing purposes
bmodel_t *bmodel; // only if type == MOD_BRUSH
md3Header_t *md3[MD3_MAX_LODS]; // only if type == MOD_MESH
void *md4; // only if type == (MOD_MD4 | MOD_MDR)
void *modelData; // only if type == (MOD_MD4 | MOD_MDR | MOD_IQM)
int numLods;
} model_t;
@ -1491,6 +1527,12 @@ void RB_SurfaceAnim( md4Surface_t *surfType );
void R_MDRAddAnimSurfaces( trRefEntity_t *ent );
void RB_MDRSurfaceAnim( md4Surface_t *surface );
#endif
qboolean R_LoadIQM (model_t *mod, void *buffer, int filesize, const char *name );
void R_AddIQMSurfaces( trRefEntity_t *ent );
void RB_IQMSurfaceAnim( surfaceType_t *surface );
int R_IQMLerpTag( orientation_t *tag, iqmData_t *data,
int startFrame, int endFrame,
float frac, const char *tagName );
/*
=============================================================

View file

@ -1259,6 +1259,9 @@ void R_AddEntitySurfaces (void) {
R_MDRAddAnimSurfaces( ent );
break;
#endif
case MOD_IQM:
R_AddIQMSurfaces( ent );
break;
case MOD_BRUSH:
R_AddBrushModelSurfaces( ent );
break;

View file

@ -25,13 +25,194 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#define LL(x) x=LittleLong(x)
static qboolean R_LoadMD3 (model_t *mod, int lod, void *buffer, const char *name );
static qboolean R_LoadMD4 (model_t *mod, void *buffer, const char *name );
static qboolean R_LoadMD3(model_t *mod, int lod, void *buffer, const char *name );
static qboolean R_LoadMD4(model_t *mod, void *buffer, const char *name );
#ifdef RAVENMD4
static qboolean R_LoadMDR (model_t *mod, void *buffer, int filesize, const char *name );
static qboolean R_LoadMDR(model_t *mod, void *buffer, int filesize, const char *name );
#endif
model_t *loadmodel;
/*
====================
R_RegisterMD3
====================
*/
qhandle_t R_RegisterMD3(const char *name, model_t *mod)
{
union {
unsigned *u;
void *v;
} buf;
int lod;
int ident;
qboolean loaded = qfalse;
int numLoaded;
char filename[MAX_QPATH], namebuf[MAX_QPATH+20];
char *fext, defex[] = "md3";
numLoaded = 0;
strcpy(filename, name);
fext = strchr(filename, '.');
if(!fext)
fext = defex;
else
{
*fext = '\0';
fext++;
}
for (lod = MD3_MAX_LODS - 1 ; lod >= 0 ; lod--)
{
if(lod)
Com_sprintf(namebuf, sizeof(namebuf), "%s_%d.%s", filename, lod, fext);
else
Com_sprintf(namebuf, sizeof(namebuf), "%s.%s", filename, fext);
ri.FS_ReadFile( namebuf, &buf.v );
if(!buf.u)
continue;
ident = LittleLong(* (unsigned *) buf.u);
if (ident == MD4_IDENT)
loaded = R_LoadMD4(mod, buf.u, name);
else
{
if (ident == MD3_IDENT)
loaded = R_LoadMD3(mod, lod, buf.u, name);
else
ri.Printf(PRINT_WARNING,"RE_RegisterMD3: unknown fileid for %s\n", name);
}
ri.FS_FreeFile(buf.v);
if(loaded)
{
mod->numLods++;
numLoaded++;
}
else
break;
}
if(numLoaded)
{
// duplicate into higher lod spots that weren't
// loaded, in case the user changes r_lodbias on the fly
for(lod--; lod >= 0; lod--)
{
mod->numLods++;
mod->md3[lod] = mod->md3[lod + 1];
}
return mod->index;
}
#ifdef _DEBUG
ri.Printf(PRINT_WARNING,"RE_RegisterMD3: couldn't load %s\n", name);
#endif
mod->type = MOD_BAD;
return 0;
}
#ifdef RAVENMD4
/*
====================
R_RegisterMDR
====================
*/
qhandle_t R_RegisterMDR(const char *name, model_t *mod)
{
union {
unsigned *u;
void *v;
} buf;
int ident;
qboolean loaded = qfalse;
int filesize;
filesize = ri.FS_ReadFile(name, (void **) &buf.v);
if(!buf.u)
{
mod->type = MOD_BAD;
return 0;
}
ident = LittleLong(*(unsigned *)buf.u);
if(ident == MDR_IDENT)
loaded = R_LoadMDR(mod, buf.u, filesize, name);
ri.FS_FreeFile (buf.v);
if(!loaded)
{
ri.Printf(PRINT_WARNING,"RE_RegisterMDR: couldn't load mdr file %s\n", name);
mod->type = MOD_BAD;
return 0;
}
return mod->index;
}
#endif
/*
====================
R_RegisterIQM
====================
*/
qhandle_t R_RegisterIQM(const char *name, model_t *mod)
{
union {
unsigned *u;
void *v;
} buf;
qboolean loaded = qfalse;
int filesize;
filesize = ri.FS_ReadFile(name, (void **) &buf.v);
if(!buf.u)
{
mod->type = MOD_BAD;
return 0;
}
loaded = R_LoadIQM(mod, buf.u, filesize, name);
ri.FS_FreeFile (buf.v);
if(!loaded)
{
ri.Printf(PRINT_WARNING,"RE_RegisterIQM: couldn't load mdr file %s\n", name);
mod->type = MOD_BAD;
return 0;
}
return mod->index;
}
typedef struct
{
char *ext;
qhandle_t (*ModelLoader)( const char *, model_t * );
} modelExtToLoaderMap_t;
// Note that the ordering indicates the order of preference used
// when there are multiple models of different formats available
static modelExtToLoaderMap_t modelLoaders[ ] =
{
#ifdef RAVENMD4
{ "mdr", R_RegisterMDR },
#endif
{ "md4", R_RegisterMD3 },
{ "md3", R_RegisterMD3 },
{ "iqm", R_RegisterIQM }
};
static int numModelLoaders = ARRAY_LEN(modelLoaders);
//===============================================================================
/*
** R_GetModelByHandle
@ -83,16 +264,13 @@ asked for again.
*/
qhandle_t RE_RegisterModel( const char *name ) {
model_t *mod;
union {
unsigned *u;
void *v;
} buf;
int lod;
int ident;
qboolean loaded = qfalse;
qhandle_t hModel;
int numLoaded;
char *fext, defex[] = "md3", filename[MAX_QPATH], namebuf[MAX_QPATH+20];
qboolean orgNameFailed = qfalse;
int orgLoader = -1;
int i;
char localName[ MAX_QPATH ];
const char *ext;
char *altName;
if ( !name || !name[0] ) {
ri.Printf( PRINT_ALL, "RE_RegisterModel: NULL name\n" );
@ -131,125 +309,75 @@ qhandle_t RE_RegisterModel( const char *name ) {
// make sure the render thread is stopped
R_SyncRenderThread();
mod->type = MOD_BAD;
mod->numLods = 0;
//
// load the files
//
numLoaded = 0;
Q_strncpyz( localName, name, MAX_QPATH );
strcpy(filename, name);
ext = COM_GetExtension( localName );
fext = strchr(filename, '.');
if(!fext)
fext = defex;
else
if( *ext )
{
*fext = '\0';
fext++;
}
#ifdef RAVENMD4
if(!Q_stricmp(fext, "mdr"))
{
int filesize;
filesize = ri.FS_ReadFile(name, (void **) &buf.v);
if(!buf.u)
// Look for the correct loader and use it
for( i = 0; i < numModelLoaders; i++ )
{
ri.Printf (PRINT_WARNING,"RE_RegisterModel: couldn't load %s\n", name);
mod->type = MOD_BAD;
return 0;
}
ident = LittleLong(*(unsigned *)buf.u);
if(ident == MDR_IDENT)
loaded = R_LoadMDR(mod, buf.u, filesize, name);
ri.FS_FreeFile (buf.v);
if(!loaded)
{
ri.Printf(PRINT_WARNING,"RE_RegisterModel: couldn't load mdr file %s\n", name);
mod->type = MOD_BAD;
return 0;
}
return mod->index;
}
#endif
fext = defex;
for ( lod = MD3_MAX_LODS - 1 ; lod >= 0 ; lod-- ) {
if ( lod )
Com_sprintf(namebuf, sizeof(namebuf), "%s_%d.%s", filename, lod, fext);
else
Com_sprintf(namebuf, sizeof(namebuf), "%s.%s", filename, fext);
ri.FS_ReadFile( namebuf, &buf.v );
if ( !buf.u ) {
continue;
}
loadmodel = mod;
ident = LittleLong(*(unsigned *)buf.u);
if ( ident == MD4_IDENT ) {
loaded = R_LoadMD4( mod, buf.u, name );
} else {
if ( ident != MD3_IDENT ) {
ri.Printf (PRINT_WARNING,"RE_RegisterModel: unknown fileid for %s\n", name);
goto fail;
}
loaded = R_LoadMD3( mod, lod, buf.u, name );
}
ri.FS_FreeFile (buf.v);
if ( !loaded ) {
if ( lod == 0 ) {
goto fail;
} else {
if( !Q_stricmp( ext, modelLoaders[ i ].ext ) )
{
// Load
hModel = modelLoaders[ i ].ModelLoader( localName, mod );
break;
}
} else {
mod->numLods++;
numLoaded++;
// if we have a valid model and are biased
// so that we won't see any higher detail ones,
// stop loading them
// if ( lod <= r_lodbias->integer ) {
// break;
// }
}
// A loader was found
if( i < numModelLoaders )
{
if( !hModel )
{
// Loader failed, most likely because the file isn't there;
// try again without the extension
orgNameFailed = qtrue;
orgLoader = i;
COM_StripExtension( name, localName, MAX_QPATH );
}
else
{
// Something loaded
return mod->index;
}
}
}
if ( numLoaded ) {
// duplicate into higher lod spots that weren't
// loaded, in case the user changes r_lodbias on the fly
for ( lod-- ; lod >= 0 ; lod-- ) {
mod->numLods++;
mod->md3[lod] = mod->md3[lod+1];
// Try and find a suitable match using all
// the model formats supported
for( i = 0; i < numModelLoaders; i++ )
{
if (i == orgLoader)
continue;
altName = va( "%s.%s", localName, modelLoaders[ i ].ext );
// Load
hModel = modelLoaders[ i ].ModelLoader( altName, mod );
if( hModel )
{
if( orgNameFailed )
{
ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n",
name, altName );
}
break;
}
return mod->index;
}
#ifdef _DEBUG
else {
ri.Printf (PRINT_WARNING,"RE_RegisterModel: couldn't load %s\n", name);
}
#endif
fail:
// we still keep the model_t around, so if the model name is asked for
// again, we won't bother scanning the filesystem
mod->type = MOD_BAD;
return 0;
return hModel;
}
/*
=================
R_LoadMD3
@ -779,7 +907,7 @@ static qboolean R_LoadMD4( model_t *mod, void *buffer, const char *mod_name ) {
mod->type = MOD_MD4;
size = LittleLong(pinmodel->ofsEnd);
mod->dataSize += size;
md4 = mod->md4 = ri.Hunk_Alloc( size, h_low );
mod->modelData = md4 = ri.Hunk_Alloc( size, h_low );
Com_Memcpy(md4, buffer, size);
@ -1070,16 +1198,20 @@ int R_LerpTag( orientation_t *tag, qhandle_t handle, int startFrame, int endFram
if ( !model->md3[0] )
{
#ifdef RAVENMD4
if(model->md4)
if(model->type == MOD_MDR)
{
start = &start_space;
end = &end_space;
R_GetAnimTag((mdrHeader_t *) model->md4, startFrame, tagName, start);
R_GetAnimTag((mdrHeader_t *) model->md4, endFrame, tagName, end);
R_GetAnimTag((mdrHeader_t *) model->modelData, startFrame, tagName, start);
R_GetAnimTag((mdrHeader_t *) model->modelData, endFrame, tagName, end);
}
else
#endif
{
if( model->type == MOD_IQM ) {
return R_IQMLerpTag( tag, model->modelData,
startFrame, endFrame,
frac, tagName );
} else {
AxisClear( tag->axis );
VectorClear( tag->origin );
@ -1121,28 +1253,62 @@ R_ModelBounds
*/
void R_ModelBounds( qhandle_t handle, vec3_t mins, vec3_t maxs ) {
model_t *model;
md3Header_t *header;
md3Frame_t *frame;
model = R_GetModelByHandle( handle );
if ( model->bmodel ) {
if(model->type == MOD_BRUSH) {
VectorCopy( model->bmodel->bounds[0], mins );
VectorCopy( model->bmodel->bounds[1], maxs );
return;
} else if (model->type == MOD_MESH) {
md3Header_t *header;
md3Frame_t *frame;
header = model->md3[0];
frame = (md3Frame_t *) ((byte *)header + header->ofsFrames);
VectorCopy( frame->bounds[0], mins );
VectorCopy( frame->bounds[1], maxs );
return;
} else if (model->type == MOD_MD4) {
md4Header_t *header;
md4Frame_t *frame;
header = (md4Header_t *)model->modelData;
frame = (md4Frame_t *) ((byte *)header + header->ofsFrames);
VectorCopy( frame->bounds[0], mins );
VectorCopy( frame->bounds[1], maxs );
return;
#ifdef RAVENMD4
} else if (model->type == MOD_MDR) {
mdrHeader_t *header;
mdrFrame_t *frame;
header = (mdrHeader_t *)model->modelData;
frame = (mdrFrame_t *) ((byte *)header + header->ofsFrames);
VectorCopy( frame->bounds[0], mins );
VectorCopy( frame->bounds[1], maxs );
return;
#endif
} else if(model->type == MOD_IQM) {
iqmData_t *iqmData;
iqmData = model->modelData;
if(iqmData->bounds)
{
VectorCopy(iqmData->bounds, mins);
VectorCopy(iqmData->bounds + 3, maxs);
return;
}
}
if ( !model->md3[0] ) {
VectorClear( mins );
VectorClear( maxs );
return;
}
header = model->md3[0];
frame = (md3Frame_t *)( (byte *)header + header->ofsFrames );
VectorCopy( frame->bounds[0], mins );
VectorCopy( frame->bounds[1], maxs );
VectorClear( mins );
VectorClear( maxs );
}

View file

@ -0,0 +1,839 @@
/* copyright */
#include "tr_local.h"
#define LL(x) x=LittleLong(x)
static qboolean IQM_CheckRange( iqmHeader_t *header, int offset,
int count,int size ) {
// return true if the range specified by offset, count and size
// doesn't fit into the file
return ( count <= 0 ||
offset < 0 ||
offset > header->filesize ||
offset + count * size < 0 ||
offset + count * size > header->filesize );
}
// "multiply" 3x4 matrices, these are assumed to be the top 3 rows
// of a 4x4 matrix with the last row = (0 0 0 1)
static void Matrix34Multiply( float *a, float *b, float *out ) {
out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8];
out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9];
out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10];
out[ 3] = a[0] * b[3] + a[1] * b[7] + a[ 2] * b[11] + a[ 3];
out[ 4] = a[4] * b[0] + a[5] * b[4] + a[ 6] * b[ 8];
out[ 5] = a[4] * b[1] + a[5] * b[5] + a[ 6] * b[ 9];
out[ 6] = a[4] * b[2] + a[5] * b[6] + a[ 6] * b[10];
out[ 7] = a[4] * b[3] + a[5] * b[7] + a[ 6] * b[11] + a[ 7];
out[ 8] = a[8] * b[0] + a[9] * b[4] + a[10] * b[ 8];
out[ 9] = a[8] * b[1] + a[9] * b[5] + a[10] * b[ 9];
out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10];
out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11];
}
static void InterpolateMatrix( float *a, float *b, float lerp, float *mat ) {
float unLerp = 1.0f - lerp;
mat[ 0] = a[ 0] * unLerp + b[ 0] * lerp;
mat[ 1] = a[ 1] * unLerp + b[ 1] * lerp;
mat[ 2] = a[ 2] * unLerp + b[ 2] * lerp;
mat[ 3] = a[ 3] * unLerp + b[ 3] * lerp;
mat[ 4] = a[ 4] * unLerp + b[ 4] * lerp;
mat[ 5] = a[ 5] * unLerp + b[ 5] * lerp;
mat[ 6] = a[ 6] * unLerp + b[ 6] * lerp;
mat[ 7] = a[ 7] * unLerp + b[ 7] * lerp;
mat[ 8] = a[ 8] * unLerp + b[ 8] * lerp;
mat[ 9] = a[ 9] * unLerp + b[ 9] * lerp;
mat[10] = a[10] * unLerp + b[10] * lerp;
mat[11] = a[11] * unLerp + b[11] * lerp;
}
/*
=================
R_LoadIQM
=================
Load an IQM model and compute the joint matrices for every frame.
*/
qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_name ) {
iqmHeader_t *header;
iqmVertexArray_t *vertexarray;
iqmTriangle_t *triangle;
iqmMesh_t *mesh;
iqmJoint_t *joint;
iqmPose_t *pose;
iqmBounds_t *bounds;
unsigned short *framedata;
char *str;
int i, j;
float *jointMats, *mat;
size_t size, joint_names;
iqmData_t *iqmData;
srfIQModel_t *surface;
if( filesize < sizeof(iqmHeader_t) ) {
return qfalse;
}
header = (iqmHeader_t *)buffer;
if( Q_strncmp( header->magic, IQM_MAGIC, sizeof(header->magic) ) ) {
return qfalse;
}
LL( header->version );
if( header->version != IQM_VERSION ) {
return qfalse;
}
LL( header->filesize );
if( header->filesize > filesize || header->filesize > 16<<20 ) {
return qfalse;
}
LL( header->flags );
LL( header->num_text );
LL( header->ofs_text );
LL( header->num_meshes );
LL( header->ofs_meshes );
LL( header->num_vertexarrays );
LL( header->num_vertexes );
LL( header->ofs_vertexarrays );
LL( header->num_triangles );
LL( header->ofs_triangles );
LL( header->ofs_adjacency );
LL( header->num_joints );
LL( header->ofs_joints );
LL( header->num_poses );
LL( header->ofs_poses );
LL( header->num_anims );
LL( header->ofs_anims );
LL( header->num_frames );
LL( header->num_framechannels );
LL( header->ofs_frames );
LL( header->ofs_bounds );
LL( header->num_comment );
LL( header->ofs_comment );
LL( header->num_extensions );
LL( header->ofs_extensions );
// check and swap vertex arrays
if( IQM_CheckRange( header, header->ofs_vertexarrays,
header->num_vertexarrays,
sizeof(iqmVertexArray_t) ) ) {
return qfalse;
}
vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays);
for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) {
int j, n, *intPtr;
if( vertexarray->size <= 0 || vertexarray->size > 4 ) {
return qfalse;
}
// total number of values
n = header->num_vertexes * vertexarray->size;
switch( vertexarray->format ) {
case IQM_BYTE:
case IQM_UBYTE:
// 1 byte, no swapping necessary
if( IQM_CheckRange( header, vertexarray->offset,
n, sizeof(byte) ) ) {
return qfalse;
}
break;
case IQM_INT:
case IQM_UINT:
case IQM_FLOAT:
// 4-byte swap
if( IQM_CheckRange( header, vertexarray->offset,
n, sizeof(float) ) ) {
return qfalse;
}
intPtr = (int *)((byte *)header + vertexarray->offset);
for( j = 0; j < n; j++, intPtr++ ) {
LL( *intPtr );
}
break;
default:
// not supported
return qfalse;
break;
}
switch( vertexarray->type ) {
case IQM_POSITION:
case IQM_NORMAL:
if( vertexarray->format != IQM_FLOAT ||
vertexarray->size != 3 ) {
return qfalse;
}
break;
case IQM_TANGENT:
if( vertexarray->format != IQM_FLOAT ||
vertexarray->size != 4 ) {
return qfalse;
}
break;
case IQM_TEXCOORD:
if( vertexarray->format != IQM_FLOAT ||
vertexarray->size != 2 ) {
return qfalse;
}
break;
case IQM_BLENDINDEXES:
case IQM_BLENDWEIGHTS:
if( vertexarray->format != IQM_UBYTE ||
vertexarray->size != 4 ) {
return qfalse;
}
break;
case IQM_COLOR:
if( vertexarray->format != IQM_UBYTE ||
vertexarray->size != 4 ) {
return qfalse;
}
break;
}
}
// check and swap triangles
if( IQM_CheckRange( header, header->ofs_triangles,
header->num_triangles, sizeof(iqmTriangle_t) ) ) {
return qfalse;
}
triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles);
for( i = 0; i < header->num_triangles; i++, triangle++ ) {
LL( triangle->vertex[0] );
LL( triangle->vertex[1] );
LL( triangle->vertex[2] );
if( triangle->vertex[0] < 0 || triangle->vertex[0] > header->num_vertexes ||
triangle->vertex[1] < 0 || triangle->vertex[1] > header->num_vertexes ||
triangle->vertex[2] < 0 || triangle->vertex[2] > header->num_vertexes ) {
return qfalse;
}
}
// check and swap meshes
if( IQM_CheckRange( header, header->ofs_meshes,
header->num_meshes, sizeof(iqmMesh_t) ) ) {
return qfalse;
}
mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes);
for( i = 0; i < header->num_meshes; i++, mesh++) {
LL( mesh->name );
LL( mesh->material );
LL( mesh->first_vertex );
LL( mesh->num_vertexes );
LL( mesh->first_triangle );
LL( mesh->num_triangles );
if( mesh->first_vertex >= header->num_vertexes ||
mesh->first_vertex + mesh->num_vertexes > header->num_vertexes ||
mesh->first_triangle >= header->num_triangles ||
mesh->first_triangle + mesh->num_triangles > header->num_triangles ||
mesh->name < 0 ||
mesh->name >= header->num_text ||
mesh->material < 0 ||
mesh->material >= header->num_text ) {
return qfalse;
}
}
// check and swap joints
if( IQM_CheckRange( header, header->ofs_joints,
header->num_joints, sizeof(iqmJoint_t) ) ) {
return qfalse;
}
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
joint_names = 0;
for( i = 0; i < header->num_joints; i++, joint++ ) {
LL( joint->name );
LL( joint->parent );
LL( joint->translate[0] );
LL( joint->translate[1] );
LL( joint->translate[2] );
LL( joint->rotate[0] );
LL( joint->rotate[1] );
LL( joint->rotate[2] );
LL( joint->scale[0] );
LL( joint->scale[1] );
LL( joint->scale[2] );
if( joint->parent < -1 ||
joint->parent >= (int)header->num_joints ||
joint->name < 0 ||
joint->name >= (int)header->num_text ) {
return qfalse;
}
joint_names += strlen( (char *)header + header->ofs_text +
joint->name ) + 1;
}
// check and swap poses
if( header->num_poses != header->num_joints ) {
return qfalse;
}
if( IQM_CheckRange( header, header->ofs_poses,
header->num_poses, sizeof(iqmPose_t) ) ) {
return qfalse;
}
pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
for( i = 0; i < header->num_poses; i++, pose++ ) {
LL( pose->parent );
LL( pose->mask );
LL( pose->channeloffset[0] );
LL( pose->channeloffset[1] );
LL( pose->channeloffset[2] );
LL( pose->channeloffset[3] );
LL( pose->channeloffset[4] );
LL( pose->channeloffset[5] );
LL( pose->channeloffset[6] );
LL( pose->channeloffset[7] );
LL( pose->channeloffset[8] );
LL( pose->channelscale[0] );
LL( pose->channelscale[1] );
LL( pose->channelscale[2] );
LL( pose->channelscale[3] );
LL( pose->channelscale[4] );
LL( pose->channelscale[5] );
LL( pose->channelscale[6] );
LL( pose->channelscale[7] );
LL( pose->channelscale[8] );
}
// check and swap model bounds
if(IQM_CheckRange(header, header->ofs_bounds,
header->num_frames, sizeof(*bounds)))
{
return qfalse;
}
bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds);
for(i = 0; i < header->num_poses; i++)
{
LL(bounds->bbmin[0]);
LL(bounds->bbmin[1]);
LL(bounds->bbmin[2]);
LL(bounds->bbmax[0]);
LL(bounds->bbmax[1]);
LL(bounds->bbmax[2]);
bounds++;
}
// allocate the model and copy the data
size = sizeof(iqmData_t);
size += header->num_meshes * sizeof( srfIQModel_t );
size += header->num_joints * header->num_frames * 12 * sizeof( float );
if(header->ofs_bounds)
size += header->num_frames * 6 * sizeof(float); // model bounds
size += header->num_vertexes * 3 * sizeof(float); // positions
size += header->num_vertexes * 2 * sizeof(float); // texcoords
size += header->num_vertexes * 3 * sizeof(float); // normals
size += header->num_vertexes * 4 * sizeof(float); // tangents
size += header->num_vertexes * 4 * sizeof(byte); // blendIndexes
size += header->num_vertexes * 4 * sizeof(byte); // blendWeights
size += header->num_vertexes * 4 * sizeof(byte); // colors
size += header->num_joints * sizeof(int); // parents
size += header->num_triangles * 3 * sizeof(int); // triangles
size += joint_names; // joint names
mod->type = MOD_IQM;
iqmData = (iqmData_t *)ri.Hunk_Alloc( size, h_low );
mod->modelData = iqmData;
// fill header
iqmData->num_vertexes = header->num_vertexes;
iqmData->num_triangles = header->num_triangles;
iqmData->num_frames = header->num_frames;
iqmData->num_surfaces = header->num_meshes;
iqmData->num_joints = header->num_joints;
iqmData->surfaces = (srfIQModel_t *)(iqmData + 1);
iqmData->poseMats = (float *) (iqmData->surfaces + iqmData->num_surfaces);
if(header->ofs_bounds)
{
iqmData->bounds = iqmData->poseMats + 12 * header->num_joints * header->num_frames;
iqmData->positions = iqmData->bounds + 6 * header->num_frames;
}
else
iqmData->positions = iqmData->poseMats + 12 * header->num_joints * header->num_frames;
iqmData->texcoords = iqmData->positions + 3 * header->num_vertexes;
iqmData->normals = iqmData->texcoords + 2 * header->num_vertexes;
iqmData->tangents = iqmData->normals + 3 * header->num_vertexes;
iqmData->blendIndexes = (byte *)(iqmData->tangents + 4 * header->num_vertexes);
iqmData->blendWeights = iqmData->blendIndexes + 4 * header->num_vertexes;
iqmData->colors = iqmData->blendWeights + 4 * header->num_vertexes;
iqmData->jointParents = (int *)(iqmData->colors + 4 * header->num_vertexes);
iqmData->triangles = iqmData->jointParents + header->num_joints;
iqmData->names = (char *)(iqmData->triangles + 3 * header->num_triangles);
// calculate joint matrices and their inverses
// they are needed only until the pose matrices are calculated
jointMats = (float *)ri.Hunk_AllocateTempMemory( header->num_joints * 2 * 3 * 4 * sizeof(float) );
mat = jointMats;
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) {
float tmpMat[12];
float rotW = DotProduct(joint->rotate, joint->rotate);
rotW = -SQRTFAST(1.0f - rotW);
float xx = 2.0f * joint->rotate[0] * joint->rotate[0];
float yy = 2.0f * joint->rotate[1] * joint->rotate[1];
float zz = 2.0f * joint->rotate[2] * joint->rotate[2];
float xy = 2.0f * joint->rotate[0] * joint->rotate[1];
float xz = 2.0f * joint->rotate[0] * joint->rotate[2];
float yz = 2.0f * joint->rotate[1] * joint->rotate[2];
float wx = 2.0f * rotW * joint->rotate[0];
float wy = 2.0f * rotW * joint->rotate[1];
float wz = 2.0f * rotW * joint->rotate[2];
tmpMat[ 0] = joint->scale[0] * (1.0f - (yy + zz));
tmpMat[ 1] = joint->scale[0] * (xy - wz);
tmpMat[ 2] = joint->scale[0] * (xz + wy);
tmpMat[ 3] = joint->translate[0];
tmpMat[ 4] = joint->scale[1] * (xy + wz);
tmpMat[ 5] = joint->scale[1] * (1.0f - (xx + zz));
tmpMat[ 6] = joint->scale[1] * (yz - wx);
tmpMat[ 7] = joint->translate[1];
tmpMat[ 8] = joint->scale[2] * (xz - wy);
tmpMat[ 9] = joint->scale[2] * (yz + wx);
tmpMat[10] = joint->scale[2] * (1.0f - (xx + yy));
tmpMat[11] = joint->translate[2];
if( joint->parent >= 0 ) {
// premultiply with parent-matrix
Matrix34Multiply( jointMats + 2 * 12 * joint->parent,
tmpMat, mat);
} else {
Com_Memcpy( mat, tmpMat, sizeof(tmpMat) );
}
mat += 12;
// compute the inverse matrix by combining the
// inverse scale, rotation and translation
tmpMat[ 0] = joint->scale[0] * (1.0f - (yy + zz));
tmpMat[ 1] = joint->scale[1] * (xy + wz);
tmpMat[ 2] = joint->scale[2] * (xz - wy);
tmpMat[ 3] = -DotProduct((tmpMat + 0), joint->translate);
tmpMat[ 4] = joint->scale[0] * (xy - wz);
tmpMat[ 5] = joint->scale[1] * (1.0f - (xx + zz));
tmpMat[ 6] = joint->scale[2] * (yz + wx);
tmpMat[ 7] = -DotProduct((tmpMat + 4), joint->translate);
tmpMat[ 8] = joint->scale[0] * (xz + wy);
tmpMat[ 9] = joint->scale[1] * (yz - wx);
tmpMat[10] = joint->scale[2] * (1.0f - (xx + yy));
tmpMat[11] = -DotProduct((tmpMat + 8), joint->translate);
if( joint->parent >= 0 ) {
// premultiply with inverse parent-matrix
Matrix34Multiply( tmpMat,
jointMats + 2 * 12 * joint->parent + 12,
mat);
} else {
Com_Memcpy( mat, tmpMat, sizeof(tmpMat) );
}
mat += 12;
}
// calculate pose matrices
framedata = (unsigned short *)((byte *)header + header->ofs_frames);
mat = iqmData->poseMats;
for( i = 0; i < header->num_frames; i++ ) {
pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
for( j = 0; j < header->num_poses; j++, pose++ ) {
vec3_t translate, rotate, scale;
float mat1[12], mat2[12];
translate[0] = pose->channeloffset[0];
if( pose->mask & 0x001)
translate[0] += *framedata++ * pose->channelscale[0];
translate[1] = pose->channeloffset[1];
if( pose->mask & 0x002)
translate[1] += *framedata++ * pose->channelscale[1];
translate[2] = pose->channeloffset[2];
if( pose->mask & 0x004)
translate[2] += *framedata++ * pose->channelscale[2];
rotate[0] = pose->channeloffset[3];
if( pose->mask & 0x008)
rotate[0] += *framedata++ * pose->channelscale[3];
rotate[1] = pose->channeloffset[4];
if( pose->mask & 0x010)
rotate[1] += *framedata++ * pose->channelscale[4];
rotate[2] = pose->channeloffset[5];
if( pose->mask & 0x020)
rotate[2] += *framedata++ * pose->channelscale[5];
scale[0] = pose->channeloffset[6];
if( pose->mask & 0x040)
scale[0] += *framedata++ * pose->channelscale[6];
scale[1] = pose->channeloffset[7];
if( pose->mask & 0x080)
scale[1] += *framedata++ * pose->channelscale[7];
scale[2] = pose->channeloffset[8];
if( pose->mask & 0x100)
scale[2] += *framedata++ * pose->channelscale[8];
// construct transformation matrix
float rotW = DotProduct(rotate, rotate);
rotW = -SQRTFAST(1.0f - rotW);
float xx = 2.0f * rotate[0] * rotate[0];
float yy = 2.0f * rotate[1] * rotate[1];
float zz = 2.0f * rotate[2] * rotate[2];
float xy = 2.0f * rotate[0] * rotate[1];
float xz = 2.0f * rotate[0] * rotate[2];
float yz = 2.0f * rotate[1] * rotate[2];
float wx = 2.0f * rotW * rotate[0];
float wy = 2.0f * rotW * rotate[1];
float wz = 2.0f * rotW * rotate[2];
mat1[ 0] = scale[0] * (1.0f - (yy + zz));
mat1[ 1] = scale[0] * (xy - wz);
mat1[ 2] = scale[0] * (xz + wy);
mat1[ 3] = translate[0];
mat1[ 4] = scale[1] * (xy + wz);
mat1[ 5] = scale[1] * (1.0f - (xx + zz));
mat1[ 6] = scale[1] * (yz - wx);
mat1[ 7] = translate[1];
mat1[ 8] = scale[2] * (xz - wy);
mat1[ 9] = scale[2] * (yz + wx);
mat1[10] = scale[2] * (1.0f - (xx + yy));
mat1[11] = translate[2];
if( pose->parent >= 0 ) {
Matrix34Multiply( jointMats + 12 * 2 * pose->parent,
mat1, mat2 );
} else {
Com_Memcpy( mat2, mat1, sizeof(mat1) );
}
Matrix34Multiply( mat2, jointMats + 12 * (2 * j + 1), mat );
mat += 12;
}
}
ri.Hunk_FreeTempMemory( jointMats );
// register shaders
// overwrite the material offset with the shader index
mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes);
surface = iqmData->surfaces;
str = (char *)header + header->ofs_text;
for( i = 0; i < header->num_meshes; i++, mesh++, surface++ ) {
surface->surfaceType = SF_IQM;
surface->shader = R_FindShader( str + mesh->material, LIGHTMAP_NONE, qtrue );
if( surface->shader->defaultShader )
surface->shader = tr.defaultShader;
surface->data = iqmData;
surface->first_vertex = mesh->first_vertex;
surface->num_vertexes = mesh->num_vertexes;
surface->first_triangle = mesh->first_triangle;
surface->num_triangles = mesh->num_triangles;
}
// copy vertexarrays and indexes
vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays);
for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) {
int n;
// total number of values
n = header->num_vertexes * vertexarray->size;
switch( vertexarray->type ) {
case IQM_POSITION:
Com_Memcpy( iqmData->positions,
(byte *)header + vertexarray->offset,
n * sizeof(float) );
break;
case IQM_NORMAL:
Com_Memcpy( iqmData->normals,
(byte *)header + vertexarray->offset,
n * sizeof(float) );
break;
case IQM_TANGENT:
Com_Memcpy( iqmData->tangents,
(byte *)header + vertexarray->offset,
n * sizeof(float) );
break;
case IQM_TEXCOORD:
Com_Memcpy( iqmData->texcoords,
(byte *)header + vertexarray->offset,
n * sizeof(float) );
break;
case IQM_BLENDINDEXES:
Com_Memcpy( iqmData->blendIndexes,
(byte *)header + vertexarray->offset,
n * sizeof(byte) );
break;
case IQM_BLENDWEIGHTS:
Com_Memcpy( iqmData->blendWeights,
(byte *)header + vertexarray->offset,
n * sizeof(byte) );
break;
case IQM_COLOR:
Com_Memcpy( iqmData->colors,
(byte *)header + vertexarray->offset,
n * sizeof(byte) );
break;
}
}
// copy joint parents
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) {
iqmData->jointParents[i] = joint->parent;
}
// copy triangles
triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles);
for( i = 0; i < header->num_triangles; i++, triangle++ ) {
iqmData->triangles[3*i+0] = triangle->vertex[0];
iqmData->triangles[3*i+1] = triangle->vertex[1];
iqmData->triangles[3*i+2] = triangle->vertex[2];
}
// copy joint names
str = iqmData->names;
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) {
char *name = (char *)header + header->ofs_text +
joint->name;
int len = strlen( name ) + 1;
Com_Memcpy( str, name, len );
str += len;
}
// copy model bounds
if(header->ofs_bounds)
{
mat = iqmData->bounds;
bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds);
for(i = 0; i < header->num_frames; i++)
{
mat[0] = bounds->bbmin[0];
mat[1] = bounds->bbmin[1];
mat[2] = bounds->bbmin[2];
mat[3] = bounds->bbmax[0];
mat[4] = bounds->bbmax[1];
mat[5] = bounds->bbmax[2];
mat += 6;
bounds++;
}
}
return qtrue;
}
/*
=================
R_AddIQMSurfaces
=================
Add all surfaces of this model
*/
void R_AddIQMSurfaces( trRefEntity_t *ent ) {
iqmData_t *data;
srfIQModel_t *surface;
int i;
data = tr.currentModel->modelData;
surface = data->surfaces;
R_SetupEntityLighting( &tr.refdef, ent );
for ( i = 0 ; i < data->num_surfaces ; i++ ) {
R_AddDrawSurf( &surface->surfaceType,
surface->shader, 0 /*fogNum*/, 0 );
surface++;
}
}
static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
float backlerp, float *mat ) {
float *mat1, *mat2;
int *joint = data->jointParents;
int i;
if ( oldframe == frame ) {
mat1 = mat2 = data->poseMats + 12 * data->num_joints * frame;
for( i = 0; i < data->num_joints; i++, joint++ ) {
if( *joint >= 0 ) {
Matrix34Multiply( mat + 12 * *joint,
mat1 + 12*i, mat + 12*i );
} else {
Com_Memcpy( mat + 12*i, mat1 + 12*i, 12 * sizeof(float) );
}
}
} else {
mat1 = data->poseMats + 12 * data->num_joints * frame;
mat2 = data->poseMats + 12 * data->num_joints * oldframe;
for( i = 0; i < 12 * data->num_joints; i++, joint++ ) {
if( *joint >= 0 ) {
float tmpMat[12];
InterpolateMatrix( mat1 + 12*i, mat2 + 12*i,
backlerp, tmpMat );
Matrix34Multiply( mat + 12 * *joint,
tmpMat, mat + 12*i );
} else {
InterpolateMatrix( mat1 + 12*i, mat2 + 12*i,
backlerp, mat );
}
}
}
}
/*
=================
RB_AddIQMSurfaces
=================
Compute vertices for this model surface
*/
void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
srfIQModel_t *surf = (srfIQModel_t *)surface;
iqmData_t *data = surf->data;
int i;
vec4_t *outXYZ = &tess.xyz[tess.numVertexes];
vec4_t *outNormal = &tess.normal[tess.numVertexes];
vec2_t (*outTexCoord)[2] = &tess.texCoords[tess.numVertexes];
color4ub_t *outColor = &tess.vertexColors[tess.numVertexes];
float mat[data->num_joints * 12];
int frame = backEnd.currentEntity->e.frame % data->num_frames;
int oldframe = backEnd.currentEntity->e.oldframe % data->num_frames;
float backlerp = backEnd.currentEntity->e.backlerp;
RB_CHECKOVERFLOW( surf->num_vertexes, surf->num_triangles * 3 );
// compute interpolated joint matrices
ComputeJointMats( data, frame, oldframe, backlerp, mat );
// transform vertexes and fill other data
for( i = 0; i < surf->num_vertexes;
i++, outXYZ++, outNormal++, outTexCoord++, outColor++ ) {
int j, k;
float vtxMat[12];
float nrmMat[9];
int vtx = i + surf->first_vertex;
// compute the vertex matrix by blending the up to
// four blend weights
for( k = 0; k < 12; k++ )
vtxMat[k] = data->blendWeights[4*vtx]
* mat[12*data->blendIndexes[4*vtx] + k];
for( j = 1; j < 4; j++ ) {
if( data->blendWeights[4*vtx + j] <= 0 )
break;
for( k = 0; k < 12; k++ )
vtxMat[k] += data->blendWeights[4*vtx + j]
* mat[12*data->blendIndexes[4*vtx + j] + k];
}
for( k = 0; k < 12; k++ )
vtxMat[k] *= 1.0f / 255.0f;
// compute the normal matrix as transpose of the adjoint
// of the vertex matrix
nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9];
nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10];
nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8];
nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10];
nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8];
nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9];
nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5];
nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6];
nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4];
(*outTexCoord)[0][0] = data->texcoords[2*vtx + 0];
(*outTexCoord)[0][1] = data->texcoords[2*vtx + 1];
(*outTexCoord)[1][0] = (*outTexCoord)[0][0];
(*outTexCoord)[1][1] = (*outTexCoord)[0][1];
(*outXYZ)[0] =
vtxMat[ 0] * data->positions[3*vtx+0] +
vtxMat[ 1] * data->positions[3*vtx+1] +
vtxMat[ 2] * data->positions[3*vtx+2] +
vtxMat[ 3];
(*outXYZ)[1] =
vtxMat[ 4] * data->positions[3*vtx+0] +
vtxMat[ 5] * data->positions[3*vtx+1] +
vtxMat[ 6] * data->positions[3*vtx+2] +
vtxMat[ 7];
(*outXYZ)[2] =
vtxMat[ 8] * data->positions[3*vtx+0] +
vtxMat[ 9] * data->positions[3*vtx+1] +
vtxMat[10] * data->positions[3*vtx+2] +
vtxMat[11];
(*outXYZ)[3] = 1.0f;
(*outNormal)[0] =
nrmMat[ 0] * data->normals[3*vtx+0] +
nrmMat[ 1] * data->normals[3*vtx+1] +
nrmMat[ 2] * data->normals[3*vtx+2];
(*outNormal)[1] =
nrmMat[ 3] * data->normals[3*vtx+0] +
nrmMat[ 4] * data->normals[3*vtx+1] +
nrmMat[ 5] * data->normals[3*vtx+2];
(*outNormal)[2] =
nrmMat[ 6] * data->normals[3*vtx+0] +
nrmMat[ 7] * data->normals[3*vtx+1] +
nrmMat[ 8] * data->normals[3*vtx+2];
(*outNormal)[3] = 0.0f;
(*outColor)[0] = data->colors[4*vtx+0];
(*outColor)[1] = data->colors[4*vtx+1];
(*outColor)[2] = data->colors[4*vtx+2];
(*outColor)[3] = data->colors[4*vtx+3];
}
int *tri = data->triangles;
tri += 3 * surf->first_triangle;
glIndex_t *ptr = &tess.indexes[tess.numIndexes];
glIndex_t base = tess.numVertexes;
for( i = 0; i < surf->num_triangles; i++ ) {
*ptr++ = base + (*tri++ - surf->first_vertex);
*ptr++ = base + (*tri++ - surf->first_vertex);
*ptr++ = base + (*tri++ - surf->first_vertex);
}
tess.numIndexes += 3 * surf->num_triangles;
tess.numVertexes += surf->num_vertexes;
}
int R_IQMLerpTag( orientation_t *tag, iqmData_t *data,
int startFrame, int endFrame,
float frac, const char *tagName ) {
int joint;
char *names = data->names;
float mat[data->num_joints * 12];
// get joint number by reading the joint names
for( joint = 0; joint < data->num_joints; joint++ ) {
if( !strcmp( tagName, names ) )
break;
names += strlen( names ) + 1;
}
if( joint >= data->num_joints )
return qfalse;
ComputeJointMats( data, startFrame, endFrame, frac, mat );
tag->axis[0][0] = mat[12 * joint + 0];
tag->axis[1][0] = mat[12 * joint + 1];
tag->axis[2][0] = mat[12 * joint + 2];
tag->origin[0] = mat[12 * joint + 3];
tag->axis[0][1] = mat[12 * joint + 4];
tag->axis[1][1] = mat[12 * joint + 5];
tag->axis[2][1] = mat[12 * joint + 6];
tag->origin[1] = mat[12 * joint + 7];
tag->axis[0][2] = mat[12 * joint + 8];
tag->axis[1][2] = mat[12 * joint + 9];
tag->axis[2][2] = mat[12 * joint + 10];
tag->origin[0] = mat[12 * joint + 11];
return qfalse;
}

View file

@ -1242,6 +1242,7 @@ void (*rb_surfaceTable[SF_NUM_SURFACE_TYPES])( void *) = {
#ifdef RAVENMD4
(void(*)(void*))RB_MDRSurfaceAnim, // SF_MDR,
#endif
(void(*)(void*))RB_IQMSurfaceAnim, // SF_IQM,
(void(*)(void*))RB_SurfaceFlare, // SF_FLARE,
(void(*)(void*))RB_SurfaceEntity, // SF_ENTITY
(void(*)(void*))RB_SurfaceDisplayList // SF_DISPLAY_LIST