OpenGL2: Clean up texmod calculations, and improve vertex animation handling.

This commit is contained in:
SmileTheory 2013-10-14 01:55:54 -07:00
parent f8355ba2fb
commit 08fcecc829
7 changed files with 92 additions and 604 deletions

View file

@ -1696,7 +1696,7 @@ void GLSL_VertexAttribPointers(uint32_t attribBits)
// position/normal/tangent/bitangent are always set in case of animation // position/normal/tangent/bitangent are always set in case of animation
oldFrame = glState.vertexAttribsOldFrame; oldFrame = glState.vertexAttribsOldFrame;
newFrame = glState.vertexAttribsNewFrame; newFrame = glState.vertexAttribsNewFrame;
animated = (oldFrame != newFrame) && (glState.vertexAttribsInterpolation > 0.0f); animated = glState.vertexAnimation;
if((attribBits & ATTR_POSITION) && (!(glState.vertexAttribPointersSet & ATTR_POSITION) || animated)) if((attribBits & ATTR_POSITION) && (!(glState.vertexAttribPointersSet & ATTR_POSITION) || animated))
{ {
@ -1845,7 +1845,7 @@ shaderProgram_t *GLSL_GetGenericShaderProgram(int stage)
shaderAttribs |= GENERICDEF_USE_DEFORM_VERTEXES; shaderAttribs |= GENERICDEF_USE_DEFORM_VERTEXES;
} }
if (glState.vertexAttribsInterpolation > 0.0f && backEnd.currentEntity && backEnd.currentEntity != &tr.worldEntity) if (glState.vertexAnimation)
{ {
shaderAttribs |= GENERICDEF_USE_VERTEX_ANIMATION; shaderAttribs |= GENERICDEF_USE_VERTEX_ANIMATION;
} }

View file

@ -1566,6 +1566,7 @@ typedef struct {
uint32_t vertexAttribsNewFrame; uint32_t vertexAttribsNewFrame;
uint32_t vertexAttribsOldFrame; uint32_t vertexAttribsOldFrame;
float vertexAttribsInterpolation; float vertexAttribsInterpolation;
qboolean vertexAnimation;
shaderProgram_t *currentProgram; shaderProgram_t *currentProgram;
FBO_t *currentFBO; FBO_t *currentFBO;
VBO_t *currentVBO; VBO_t *currentVBO;
@ -2514,7 +2515,7 @@ void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *dstTexCoords );
void RB_CalcScaleTexMatrix( const float scale[2], float *matrix ); void RB_CalcScaleTexMatrix( const float scale[2], float *matrix );
void RB_CalcScrollTexMatrix( const float scrollSpeed[2], float *matrix ); void RB_CalcScrollTexMatrix( const float scrollSpeed[2], float *matrix );
void RB_CalcRotateTexMatrix( float degsPerSecond, float *matrix ); void RB_CalcRotateTexMatrix( float degsPerSecond, float *matrix );
void RB_CalcTurbulentTexMatrix( const waveForm_t *wf, matrix_t matrix ); void RB_CalcTurbulentFactors( const waveForm_t *wf, float *amplitude, float *now );
void RB_CalcTransformTexMatrix( const texModInfo_t *tmi, float *matrix ); void RB_CalcTransformTexMatrix( const texModInfo_t *tmi, float *matrix );
void RB_CalcStretchTexMatrix( const waveForm_t *wf, float *matrix ); void RB_CalcStretchTexMatrix( const waveForm_t *wf, float *matrix );

View file

@ -221,14 +221,22 @@ extern float EvalWaveForm( const waveForm_t *wf );
extern float EvalWaveFormClamped( const waveForm_t *wf ); extern float EvalWaveFormClamped( const waveForm_t *wf );
static void ComputeTexMatrix( shaderStage_t *pStage, int bundleNum, float *outmatrix) static void ComputeTexMods( shaderStage_t *pStage, int bundleNum, float *outMatrix, float *outOffTurb)
{ {
int tm; int tm;
float matrix[16], currentmatrix[16]; float matrix[6], currentmatrix[6];
textureBundle_t *bundle = &pStage->bundle[bundleNum]; textureBundle_t *bundle = &pStage->bundle[bundleNum];
Matrix16Identity(outmatrix); matrix[0] = 1.0f; matrix[2] = 0.0f; matrix[4] = 0.0f;
Matrix16Identity(currentmatrix); matrix[1] = 0.0f; matrix[3] = 1.0f; matrix[5] = 0.0f;
currentmatrix[0] = 1.0f; currentmatrix[2] = 0.0f; currentmatrix[4] = 0.0f;
currentmatrix[1] = 0.0f; currentmatrix[3] = 1.0f; currentmatrix[5] = 0.0f;
outMatrix[0] = 1.0f; outMatrix[2] = 0.0f;
outMatrix[1] = 0.0f; outMatrix[3] = 1.0f;
outOffTurb[0] = 0.0f; outOffTurb[1] = 0.0f; outOffTurb[2] = 0.0f; outOffTurb[3] = 0.0f;
for ( tm = 0; tm < bundle->numTexMods ; tm++ ) { for ( tm = 0; tm < bundle->numTexMods ; tm++ ) {
switch ( bundle->texMods[tm].type ) switch ( bundle->texMods[tm].type )
@ -239,59 +247,73 @@ static void ComputeTexMatrix( shaderStage_t *pStage, int bundleNum, float *outma
break; break;
case TMOD_TURBULENT: case TMOD_TURBULENT:
RB_CalcTurbulentTexMatrix( &bundle->texMods[tm].wave, RB_CalcTurbulentFactors(&bundle->texMods[tm].wave, &outOffTurb[2], &outOffTurb[3]);
matrix );
outmatrix[12] = matrix[12];
outmatrix[13] = matrix[13];
Matrix16Copy(outmatrix, currentmatrix);
break; break;
case TMOD_ENTITY_TRANSLATE: case TMOD_ENTITY_TRANSLATE:
RB_CalcScrollTexMatrix( backEnd.currentEntity->e.shaderTexCoord, RB_CalcScrollTexMatrix( backEnd.currentEntity->e.shaderTexCoord, matrix );
matrix );
Matrix16Multiply(matrix, currentmatrix, outmatrix);
Matrix16Copy(outmatrix, currentmatrix);
break; break;
case TMOD_SCROLL: case TMOD_SCROLL:
RB_CalcScrollTexMatrix( bundle->texMods[tm].scroll, RB_CalcScrollTexMatrix( bundle->texMods[tm].scroll,
matrix ); matrix );
Matrix16Multiply(matrix, currentmatrix, outmatrix);
Matrix16Copy(outmatrix, currentmatrix);
break; break;
case TMOD_SCALE: case TMOD_SCALE:
RB_CalcScaleTexMatrix( bundle->texMods[tm].scale, RB_CalcScaleTexMatrix( bundle->texMods[tm].scale,
matrix ); matrix );
Matrix16Multiply(matrix, currentmatrix, outmatrix);
Matrix16Copy(outmatrix, currentmatrix);
break; break;
case TMOD_STRETCH: case TMOD_STRETCH:
RB_CalcStretchTexMatrix( &bundle->texMods[tm].wave, RB_CalcStretchTexMatrix( &bundle->texMods[tm].wave,
matrix ); matrix );
Matrix16Multiply(matrix, currentmatrix, outmatrix);
Matrix16Copy(outmatrix, currentmatrix);
break; break;
case TMOD_TRANSFORM: case TMOD_TRANSFORM:
RB_CalcTransformTexMatrix( &bundle->texMods[tm], RB_CalcTransformTexMatrix( &bundle->texMods[tm],
matrix ); matrix );
Matrix16Multiply(matrix, currentmatrix, outmatrix);
Matrix16Copy(outmatrix, currentmatrix);
break; break;
case TMOD_ROTATE: case TMOD_ROTATE:
RB_CalcRotateTexMatrix( bundle->texMods[tm].rotateSpeed, RB_CalcRotateTexMatrix( bundle->texMods[tm].rotateSpeed,
matrix ); matrix );
Matrix16Multiply(matrix, currentmatrix, outmatrix);
Matrix16Copy(outmatrix, currentmatrix);
break; break;
default: default:
ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'", bundle->texMods[tm].type, tess.shader->name ); ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'", bundle->texMods[tm].type, tess.shader->name );
break; break;
} }
switch ( bundle->texMods[tm].type )
{
case TMOD_NONE:
case TMOD_TURBULENT:
default:
break;
case TMOD_ENTITY_TRANSLATE:
case TMOD_SCROLL:
case TMOD_SCALE:
case TMOD_STRETCH:
case TMOD_TRANSFORM:
case TMOD_ROTATE:
outMatrix[0] = matrix[0] * currentmatrix[0] + matrix[2] * currentmatrix[1];
outMatrix[1] = matrix[1] * currentmatrix[0] + matrix[3] * currentmatrix[1];
outMatrix[2] = matrix[0] * currentmatrix[2] + matrix[2] * currentmatrix[3];
outMatrix[3] = matrix[1] * currentmatrix[2] + matrix[3] * currentmatrix[3];
outOffTurb[0] = matrix[0] * currentmatrix[4] + matrix[2] * currentmatrix[5] + matrix[4];
outOffTurb[1] = matrix[1] * currentmatrix[4] + matrix[3] * currentmatrix[5] + matrix[5];
currentmatrix[0] = outMatrix[0];
currentmatrix[1] = outMatrix[1];
currentmatrix[2] = outMatrix[2];
currentmatrix[3] = outMatrix[3];
currentmatrix[4] = outOffTurb[0];
currentmatrix[5] = outOffTurb[1];
break;
}
} }
} }
@ -692,7 +714,8 @@ static void ForwardDlight( void ) {
dlight_t *dl; dlight_t *dl;
shaderProgram_t *sp; shaderProgram_t *sp;
vec4_t vector; vec4_t vector;
matrix_t matrix; vec4_t texMatrix;
vec4_t texOffTurb;
if ( !( tess.dlightBits & ( 1 << l ) ) ) { if ( !( tess.dlightBits & ( 1 << l ) ) ) {
continue; // this surface definately doesn't have any of this light continue; // this surface definately doesn't have any of this light
@ -795,13 +818,9 @@ static void ForwardDlight( void ) {
GL_SelectTexture(0); GL_SelectTexture(0);
} }
ComputeTexMatrix( pStage, TB_DIFFUSEMAP, matrix ); ComputeTexMods( pStage, TB_DIFFUSEMAP, texMatrix, texOffTurb );
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, texMatrix);
VectorSet4(vector, matrix[0], matrix[1], matrix[4], matrix[5]); GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, texOffTurb);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, vector);
VectorSet4(vector, matrix[8], matrix[9], matrix[12], matrix[13]);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, vector);
GLSL_SetUniformInt(sp, UNIFORM_TCGEN0, pStage->bundle[0].tcGen); GLSL_SetUniformInt(sp, UNIFORM_TCGEN0, pStage->bundle[0].tcGen);
@ -926,7 +945,7 @@ static void RB_FogPass( void ) {
if (deformGen != DGEN_NONE) if (deformGen != DGEN_NONE)
index |= FOGDEF_USE_DEFORM_VERTEXES; index |= FOGDEF_USE_DEFORM_VERTEXES;
if (glState.vertexAttribsInterpolation) if (glState.vertexAnimation)
index |= FOGDEF_USE_VERTEX_ANIMATION; index |= FOGDEF_USE_VERTEX_ANIMATION;
sp = &tr.fogShader[index]; sp = &tr.fogShader[index];
@ -983,7 +1002,7 @@ static unsigned int RB_CalcShaderVertexAttribs( shaderCommands_t *input )
{ {
unsigned int vertexAttribs = input->shader->vertexAttribs; unsigned int vertexAttribs = input->shader->vertexAttribs;
if(glState.vertexAttribsInterpolation > 0.0f) if(glState.vertexAnimation)
{ {
vertexAttribs |= ATTR_POSITION2; vertexAttribs |= ATTR_POSITION2;
if (vertexAttribs & ATTR_NORMAL) if (vertexAttribs & ATTR_NORMAL)
@ -1002,7 +1021,6 @@ static unsigned int RB_CalcShaderVertexAttribs( shaderCommands_t *input )
static void RB_IterateStagesGeneric( shaderCommands_t *input ) static void RB_IterateStagesGeneric( shaderCommands_t *input )
{ {
int stage; int stage;
matrix_t matrix;
vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0}; vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0};
float eyeT = 0; float eyeT = 0;
@ -1018,6 +1036,8 @@ static void RB_IterateStagesGeneric( shaderCommands_t *input )
{ {
shaderStage_t *pStage = input->xstages[stage]; shaderStage_t *pStage = input->xstages[stage];
shaderProgram_t *sp; shaderProgram_t *sp;
vec4_t texMatrix;
vec4_t texOffTurb;
if ( !pStage ) if ( !pStage )
{ {
@ -1051,7 +1071,7 @@ static void RB_IterateStagesGeneric( shaderCommands_t *input )
shaderAttribs |= GENERICDEF_USE_DEFORM_VERTEXES; shaderAttribs |= GENERICDEF_USE_DEFORM_VERTEXES;
} }
if (glState.vertexAttribsInterpolation > 0.0f && backEnd.currentEntity && backEnd.currentEntity != &tr.worldEntity) if (glState.vertexAnimation)
{ {
shaderAttribs |= GENERICDEF_USE_VERTEX_ANIMATION; shaderAttribs |= GENERICDEF_USE_VERTEX_ANIMATION;
} }
@ -1174,16 +1194,9 @@ static void RB_IterateStagesGeneric( shaderCommands_t *input )
GLSL_SetUniformVec4(sp, UNIFORM_FOGCOLORMASK, fogColorMask); GLSL_SetUniformVec4(sp, UNIFORM_FOGCOLORMASK, fogColorMask);
} }
ComputeTexMatrix( pStage, TB_DIFFUSEMAP, matrix ); ComputeTexMods( pStage, TB_DIFFUSEMAP, texMatrix, texOffTurb );
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, texMatrix);
{ GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, texOffTurb);
vec4_t vector;
VectorSet4(vector, matrix[0], matrix[1], matrix[4], matrix[5]);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, vector);
VectorSet4(vector, matrix[8], matrix[9], matrix[12], matrix[13]);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, vector);
}
GLSL_SetUniformInt(sp, UNIFORM_TCGEN0, pStage->bundle[0].tcGen); GLSL_SetUniformInt(sp, UNIFORM_TCGEN0, pStage->bundle[0].tcGen);
if (pStage->bundle[0].tcGen == TCGEN_VECTOR) if (pStage->bundle[0].tcGen == TCGEN_VECTOR)
@ -1228,8 +1241,6 @@ static void RB_IterateStagesGeneric( shaderCommands_t *input )
{ {
for (i = 0; i < NUM_TEXTURE_BUNDLES; i++) for (i = 0; i < NUM_TEXTURE_BUNDLES; i++)
{ {
image_t *img;
if (pStage->bundle[i].image[0]) if (pStage->bundle[i].image[0])
{ {
switch(i) switch(i)
@ -1258,8 +1269,6 @@ static void RB_IterateStagesGeneric( shaderCommands_t *input )
{ {
for (i = 0; i < NUM_TEXTURE_BUNDLES; i++) for (i = 0; i < NUM_TEXTURE_BUNDLES; i++)
{ {
image_t *img;
if (pStage->bundle[i].image[0]) if (pStage->bundle[i].image[0])
{ {
switch(i) switch(i)

View file

@ -84,42 +84,16 @@ static float EvalWaveFormClamped( const waveForm_t *wf )
} }
/* /*
** RB_CalcStretchTexCoords ** RB_CalcStretchTexMatrix
*/ */
void RB_CalcStretchTexCoords( const waveForm_t *wf, float *st )
{
float p;
texModInfo_t tmi;
p = 1.0f / EvalWaveForm( wf );
tmi.matrix[0][0] = p;
tmi.matrix[1][0] = 0;
tmi.translate[0] = 0.5f - 0.5f * p;
tmi.matrix[0][1] = 0;
tmi.matrix[1][1] = p;
tmi.translate[1] = 0.5f - 0.5f * p;
RB_CalcTransformTexCoords( &tmi, st );
}
void RB_CalcStretchTexMatrix( const waveForm_t *wf, float *matrix ) void RB_CalcStretchTexMatrix( const waveForm_t *wf, float *matrix )
{ {
float p; float p;
texModInfo_t tmi;
p = 1.0f / EvalWaveForm( wf ); p = 1.0f / EvalWaveForm( wf );
tmi.matrix[0][0] = p; matrix[0] = p; matrix[2] = 0; matrix[4] = 0.5f - 0.5f * p;
tmi.matrix[1][0] = 0; matrix[1] = 0; matrix[3] = p; matrix[5] = 0.5f - 0.5f * p;
tmi.translate[0] = 0.5f - 0.5f * p;
tmi.matrix[0][1] = 0;
tmi.matrix[1][1] = p;
tmi.translate[1] = 0.5f - 0.5f * p;
RB_CalcTransformTexMatrix( &tmi, matrix );
} }
/* /*
@ -618,88 +592,6 @@ COLORS
*/ */
/*
** RB_CalcColorFromEntity
*/
void RB_CalcColorFromEntity( unsigned char *dstColors )
{
int i;
int *pColors = ( int * ) dstColors;
int c;
if ( !backEnd.currentEntity )
return;
c = * ( int * ) backEnd.currentEntity->e.shaderRGBA;
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
{
*pColors = c;
}
}
/*
** RB_CalcColorFromOneMinusEntity
*/
void RB_CalcColorFromOneMinusEntity( unsigned char *dstColors )
{
int i;
int *pColors = ( int * ) dstColors;
unsigned char invModulate[4];
int c;
if ( !backEnd.currentEntity )
return;
invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0];
invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1];
invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2];
invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3]; // this trashes alpha, but the AGEN block fixes it
c = * ( int * ) invModulate;
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
{
*pColors = c;
}
}
/*
** RB_CalcAlphaFromEntity
*/
void RB_CalcAlphaFromEntity( unsigned char *dstColors )
{
int i;
if ( !backEnd.currentEntity )
return;
dstColors += 3;
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
{
*dstColors = backEnd.currentEntity->e.shaderRGBA[3];
}
}
/*
** RB_CalcAlphaFromOneMinusEntity
*/
void RB_CalcAlphaFromOneMinusEntity( unsigned char *dstColors )
{
int i;
if ( !backEnd.currentEntity )
return;
dstColors += 3;
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
{
*dstColors = 0xff - backEnd.currentEntity->e.shaderRGBA[3];
}
}
/* /*
** RB_CalcWaveColorSingle ** RB_CalcWaveColorSingle
*/ */
@ -723,29 +615,6 @@ float RB_CalcWaveColorSingle( const waveForm_t *wf )
return glow; return glow;
} }
/*
** RB_CalcWaveColor
*/
void RB_CalcWaveColor( const waveForm_t *wf, unsigned char *dstColors )
{
int i;
int v;
float glow;
int *colors = ( int * ) dstColors;
byte color[4];
glow = RB_CalcWaveColorSingle( wf );
v = ri.ftol(255 * glow);
color[0] = color[1] = color[2] = v;
color[3] = 255;
v = *(int *)color;
for ( i = 0; i < tess.numVertexes; i++, colors++ ) {
*colors = v;
}
}
/* /*
** RB_CalcWaveAlphaSingle ** RB_CalcWaveAlphaSingle
*/ */
@ -754,25 +623,6 @@ float RB_CalcWaveAlphaSingle( const waveForm_t *wf )
return EvalWaveFormClamped( wf ); return EvalWaveFormClamped( wf );
} }
/*
** RB_CalcWaveAlpha
*/
void RB_CalcWaveAlpha( const waveForm_t *wf, unsigned char *dstColors )
{
int i;
int v;
float glow;
glow = EvalWaveFormClamped( wf );
v = 255 * glow;
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
{
dstColors[3] = v;
}
}
/* /*
** RB_CalcModulateColorsByFog ** RB_CalcModulateColorsByFog
*/ */
@ -793,45 +643,6 @@ void RB_CalcModulateColorsByFog( unsigned char *colors ) {
} }
} }
/*
** RB_CalcModulateAlphasByFog
*/
void RB_CalcModulateAlphasByFog( unsigned char *colors ) {
int i;
float texCoords[SHADER_MAX_VERTEXES][2];
// calculate texcoords so we can derive density
// this is not wasted, because it would only have
// been previously called if the surface was opaque
RB_CalcFogTexCoords( texCoords[0] );
for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
colors[3] *= f;
}
}
/*
** RB_CalcModulateRGBAsByFog
*/
void RB_CalcModulateRGBAsByFog( unsigned char *colors ) {
int i;
float texCoords[SHADER_MAX_VERTEXES][2];
// calculate texcoords so we can derive density
// this is not wasted, because it would only have
// been previously called if the surface was opaque
RB_CalcFogTexCoords( texCoords[0] );
for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
colors[0] *= f;
colors[1] *= f;
colors[2] *= f;
colors[3] *= f;
}
}
/* /*
==================================================================== ====================================================================
@ -928,118 +739,27 @@ void RB_CalcFogTexCoords( float *st ) {
} }
} }
/* /*
** RB_CalcEnvironmentTexCoords ** RB_CalcTurbulentFactors
*/ */
void RB_CalcEnvironmentTexCoords( float *st ) void RB_CalcTurbulentFactors( const waveForm_t *wf, float *amplitude, float *now )
{ {
int i; *now = wf->phase + tess.shaderTime * wf->frequency;
float *v, *normal; *amplitude = wf->amplitude;
vec3_t viewer, reflected;
float d;
v = tess.xyz[0];
normal = tess.normal[0];
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
{
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
} }
/* /*
** RB_CalcTurbulentTexCoords ** RB_CalcScaleTexMatrix
*/ */
void RB_CalcTurbulentTexCoords( const waveForm_t *wf, float *st )
{
int i;
float now;
now = ( wf->phase + tess.shaderTime * wf->frequency );
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
float s = st[0];
float t = st[1];
st[0] = s + tr.sinTable[ ( ( int ) ( ( ( tess.xyz[i][0] + tess.xyz[i][2] )* 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
st[1] = t + tr.sinTable[ ( ( int ) ( ( tess.xyz[i][1] * 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
}
}
void RB_CalcTurbulentTexMatrix( const waveForm_t *wf, matrix_t matrix )
{
float now;
now = ( wf->phase + tess.shaderTime * wf->frequency );
// bit of a hack here, hide amplitude and now in the matrix
// the vertex program will extract them and perform a turbulent pass last if it's nonzero
matrix[ 0] = 1.0f; matrix[ 4] = 0.0f; matrix[ 8] = 0.0f; matrix[12] = wf->amplitude;
matrix[ 1] = 0.0f; matrix[ 5] = 1.0f; matrix[ 9] = 0.0f; matrix[13] = now;
matrix[ 2] = 0.0f; matrix[ 6] = 0.0f; matrix[10] = 1.0f; matrix[14] = 0.0f;
matrix[ 3] = 0.0f; matrix[ 7] = 0.0f; matrix[11] = 0.0f; matrix[15] = 1.0f;
}
/*
** RB_CalcScaleTexCoords
*/
void RB_CalcScaleTexCoords( const float scale[2], float *st )
{
int i;
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
st[0] *= scale[0];
st[1] *= scale[1];
}
}
void RB_CalcScaleTexMatrix( const float scale[2], float *matrix ) void RB_CalcScaleTexMatrix( const float scale[2], float *matrix )
{ {
matrix[ 0] = scale[0]; matrix[ 4] = 0.0f; matrix[ 8] = 0.0f; matrix[12] = 0.0f; matrix[0] = scale[0]; matrix[2] = 0.0f; matrix[4] = 0.0f;
matrix[ 1] = 0.0f; matrix[ 5] = scale[1]; matrix[ 9] = 0.0f; matrix[13] = 0.0f; matrix[1] = 0.0f; matrix[3] = scale[1]; matrix[5] = 0.0f;
matrix[ 2] = 0.0f; matrix[ 6] = 0.0f; matrix[10] = 1.0f; matrix[14] = 0.0f;
matrix[ 3] = 0.0f; matrix[ 7] = 0.0f; matrix[11] = 0.0f; matrix[15] = 1.0f;
} }
/* /*
** RB_CalcScrollTexCoords ** RB_CalcScrollTexMatrix
*/ */
void RB_CalcScrollTexCoords( const float scrollSpeed[2], float *st )
{
int i;
float timeScale = tess.shaderTime;
float adjustedScrollS, adjustedScrollT;
adjustedScrollS = scrollSpeed[0] * timeScale;
adjustedScrollT = scrollSpeed[1] * timeScale;
// clamp so coordinates don't continuously get larger, causing problems
// with hardware limits
adjustedScrollS = adjustedScrollS - floor( adjustedScrollS );
adjustedScrollT = adjustedScrollT - floor( adjustedScrollT );
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
st[0] += adjustedScrollS;
st[1] += adjustedScrollT;
}
}
void RB_CalcScrollTexMatrix( const float scrollSpeed[2], float *matrix ) void RB_CalcScrollTexMatrix( const float scrollSpeed[2], float *matrix )
{ {
float timeScale = tess.shaderTime; float timeScale = tess.shaderTime;
@ -1053,73 +773,28 @@ void RB_CalcScrollTexMatrix( const float scrollSpeed[2], float *matrix )
adjustedScrollS = adjustedScrollS - floor( adjustedScrollS ); adjustedScrollS = adjustedScrollS - floor( adjustedScrollS );
adjustedScrollT = adjustedScrollT - floor( adjustedScrollT ); adjustedScrollT = adjustedScrollT - floor( adjustedScrollT );
matrix[0] = 1.0f; matrix[2] = 0.0f; matrix[4] = adjustedScrollS;
matrix[ 0] = 1.0f; matrix[ 4] = 0.0f; matrix[ 8] = adjustedScrollS; matrix[12] = 0.0f; matrix[1] = 0.0f; matrix[3] = 1.0f; matrix[5] = adjustedScrollT;
matrix[ 1] = 0.0f; matrix[ 5] = 1.0f; matrix[ 9] = adjustedScrollT; matrix[13] = 0.0f;
matrix[ 2] = 0.0f; matrix[ 6] = 0.0f; matrix[10] = 1.0f; matrix[14] = 0.0f;
matrix[ 3] = 0.0f; matrix[ 7] = 0.0f; matrix[11] = 0.0f; matrix[15] = 1.0f;
} }
/* /*
** RB_CalcTransformTexCoords ** RB_CalcTransformTexMatrix
*/ */
void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *st )
{
int i;
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
float s = st[0];
float t = st[1];
st[0] = s * tmi->matrix[0][0] + t * tmi->matrix[1][0] + tmi->translate[0];
st[1] = s * tmi->matrix[0][1] + t * tmi->matrix[1][1] + tmi->translate[1];
}
}
void RB_CalcTransformTexMatrix( const texModInfo_t *tmi, float *matrix ) void RB_CalcTransformTexMatrix( const texModInfo_t *tmi, float *matrix )
{ {
matrix[ 0] = tmi->matrix[0][0]; matrix[ 4] = tmi->matrix[1][0]; matrix[ 8] = tmi->translate[0]; matrix[12] = 0.0f; matrix[0] = tmi->matrix[0][0]; matrix[2] = tmi->matrix[1][0]; matrix[4] = tmi->translate[0];
matrix[ 1] = tmi->matrix[0][1]; matrix[ 5] = tmi->matrix[1][1]; matrix[ 9] = tmi->translate[1]; matrix[13] = 0.0f; matrix[1] = tmi->matrix[0][1]; matrix[3] = tmi->matrix[1][1]; matrix[5] = tmi->translate[1];
matrix[ 2] = 0.0f; matrix[ 6] = 0.0f; matrix[10] = 1.0f; matrix[14] = 0.0f;
matrix[ 3] = 0.0f; matrix[ 7] = 0.0f; matrix[11] = 0.0f; matrix[15] = 1.0f;
} }
/* /*
** RB_CalcRotateTexCoords ** RB_CalcRotateTexMatrix
*/ */
void RB_CalcRotateTexCoords( float degsPerSecond, float *st )
{
float timeScale = tess.shaderTime;
float degs;
int index;
float sinValue, cosValue;
texModInfo_t tmi;
degs = -degsPerSecond * timeScale;
index = degs * ( FUNCTABLE_SIZE / 360.0f );
sinValue = tr.sinTable[ index & FUNCTABLE_MASK ];
cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ];
tmi.matrix[0][0] = cosValue;
tmi.matrix[1][0] = -sinValue;
tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
tmi.matrix[0][1] = sinValue;
tmi.matrix[1][1] = cosValue;
tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
RB_CalcTransformTexCoords( &tmi, st );
}
void RB_CalcRotateTexMatrix( float degsPerSecond, float *matrix ) void RB_CalcRotateTexMatrix( float degsPerSecond, float *matrix )
{ {
float timeScale = tess.shaderTime; float timeScale = tess.shaderTime;
float degs; float degs;
int index; int index;
float sinValue, cosValue; float sinValue, cosValue;
texModInfo_t tmi;
degs = -degsPerSecond * timeScale; degs = -degsPerSecond * timeScale;
index = degs * ( FUNCTABLE_SIZE / 360.0f ); index = degs * ( FUNCTABLE_SIZE / 360.0f );
@ -1127,213 +802,6 @@ void RB_CalcRotateTexMatrix( float degsPerSecond, float *matrix )
sinValue = tr.sinTable[ index & FUNCTABLE_MASK ]; sinValue = tr.sinTable[ index & FUNCTABLE_MASK ];
cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ]; cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ];
tmi.matrix[0][0] = cosValue; matrix[0] = cosValue; matrix[2] = -sinValue; matrix[4] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
tmi.matrix[1][0] = -sinValue; matrix[1] = sinValue; matrix[3] = cosValue; matrix[5] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
tmi.matrix[0][1] = sinValue;
tmi.matrix[1][1] = cosValue;
tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
RB_CalcTransformTexMatrix( &tmi, matrix );
} }
/*
** RB_CalcSpecularAlpha
**
** Calculates specular coefficient and places it in the alpha channel
*/
vec3_t lightOrigin = { -960, 1980, 96 }; // FIXME: track dynamically
void RB_CalcSpecularAlpha( unsigned char *alphas ) {
int i;
float *v, *normal;
vec3_t viewer, reflected;
float l, d;
int b;
vec3_t lightDir;
int numVertexes;
v = tess.xyz[0];
normal = tess.normal[0];
alphas += 3;
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) {
float ilength;
VectorSubtract( lightOrigin, v, lightDir );
// ilength = Q_rsqrt( DotProduct( lightDir, lightDir ) );
VectorNormalizeFast( lightDir );
// calculate the specular color
d = DotProduct (normal, lightDir);
// d *= ilength;
// we don't optimize for the d < 0 case since this tends to
// cause visual artifacts such as faceted "snapping"
reflected[0] = normal[0]*2*d - lightDir[0];
reflected[1] = normal[1]*2*d - lightDir[1];
reflected[2] = normal[2]*2*d - lightDir[2];
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
l = DotProduct (reflected, viewer);
l *= ilength;
if (l < 0) {
b = 0;
} else {
l = l*l;
l = l*l;
b = l * 255;
if (b > 255) {
b = 255;
}
}
*alphas = b;
}
}
/*
** RB_CalcDiffuseColor
**
** The basic vertex lighting calc
*/
#if idppc_altivec
static void RB_CalcDiffuseColor_altivec( unsigned char *colors )
{
int i;
float *v, *normal;
trRefEntity_t *ent;
int ambientLightInt;
vec3_t lightDir;
int numVertexes;
vector unsigned char vSel = VECCONST_UINT8(0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff);
vector float ambientLightVec;
vector float directedLightVec;
vector float lightDirVec;
vector float normalVec0, normalVec1;
vector float incomingVec0, incomingVec1, incomingVec2;
vector float zero, jVec;
vector signed int jVecInt;
vector signed short jVecShort;
vector unsigned char jVecChar, normalPerm;
ent = backEnd.currentEntity;
ambientLightInt = ent->ambientLightInt;
// A lot of this could be simplified if we made sure
// entities light info was 16-byte aligned.
jVecChar = vec_lvsl(0, ent->ambientLight);
ambientLightVec = vec_ld(0, (vector float *)ent->ambientLight);
jVec = vec_ld(11, (vector float *)ent->ambientLight);
ambientLightVec = vec_perm(ambientLightVec,jVec,jVecChar);
jVecChar = vec_lvsl(0, ent->directedLight);
directedLightVec = vec_ld(0,(vector float *)ent->directedLight);
jVec = vec_ld(11,(vector float *)ent->directedLight);
directedLightVec = vec_perm(directedLightVec,jVec,jVecChar);
jVecChar = vec_lvsl(0, ent->lightDir);
lightDirVec = vec_ld(0,(vector float *)ent->lightDir);
jVec = vec_ld(11,(vector float *)ent->lightDir);
lightDirVec = vec_perm(lightDirVec,jVec,jVecChar);
zero = (vector float)vec_splat_s8(0);
VectorCopy( ent->lightDir, lightDir );
v = tess.xyz[0];
normal = tess.normal[0];
normalPerm = vec_lvsl(0,normal);
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
normalVec0 = vec_ld(0,(vector float *)normal);
normalVec1 = vec_ld(11,(vector float *)normal);
normalVec0 = vec_perm(normalVec0,normalVec1,normalPerm);
incomingVec0 = vec_madd(normalVec0, lightDirVec, zero);
incomingVec1 = vec_sld(incomingVec0,incomingVec0,4);
incomingVec2 = vec_add(incomingVec0,incomingVec1);
incomingVec1 = vec_sld(incomingVec1,incomingVec1,4);
incomingVec2 = vec_add(incomingVec2,incomingVec1);
incomingVec0 = vec_splat(incomingVec2,0);
incomingVec0 = vec_max(incomingVec0,zero);
normalPerm = vec_lvsl(12,normal);
jVec = vec_madd(incomingVec0, directedLightVec, ambientLightVec);
jVecInt = vec_cts(jVec,0); // RGBx
jVecShort = vec_pack(jVecInt,jVecInt); // RGBxRGBx
jVecChar = vec_packsu(jVecShort,jVecShort); // RGBxRGBxRGBxRGBx
jVecChar = vec_sel(jVecChar,vSel,vSel); // RGBARGBARGBARGBA replace alpha with 255
vec_ste((vector unsigned int)jVecChar,0,(unsigned int *)&colors[i*4]); // store color
}
}
#endif
static void RB_CalcDiffuseColor_scalar( unsigned char *colors )
{
int i, j;
float *v, *normal;
float incoming;
trRefEntity_t *ent;
int ambientLightInt;
vec3_t ambientLight;
vec3_t lightDir;
vec3_t directedLight;
int numVertexes;
ent = backEnd.currentEntity;
ambientLightInt = ent->ambientLightInt;
VectorCopy( ent->ambientLight, ambientLight );
VectorCopy( ent->directedLight, directedLight );
VectorCopy( ent->lightDir, lightDir );
v = tess.xyz[0];
normal = tess.normal[0];
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
incoming = DotProduct (normal, lightDir);
if ( incoming <= 0 ) {
*(int *)&colors[i*4] = ambientLightInt;
continue;
}
j = ri.ftol(ambientLight[0] + incoming * directedLight[0]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+0] = j;
j = ri.ftol(ambientLight[1] + incoming * directedLight[1]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+1] = j;
j = ri.ftol(ambientLight[2] + incoming * directedLight[2]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+2] = j;
colors[i*4+3] = 255;
}
}
void RB_CalcDiffuseColor( unsigned char *colors )
{
#if idppc_altivec
if (com_altivec->integer) {
// must be in a seperate function or G3 systems will crash.
RB_CalcDiffuseColor_altivec( colors );
return;
}
#endif
RB_CalcDiffuseColor_scalar( colors );
}

View file

@ -2336,6 +2336,7 @@ static qboolean CollapseStagesToGLSL(void)
case TCGEN_TEXTURE: case TCGEN_TEXTURE:
case TCGEN_LIGHTMAP: case TCGEN_LIGHTMAP:
case TCGEN_ENVIRONMENT_MAPPED: case TCGEN_ENVIRONMENT_MAPPED:
case TCGEN_VECTOR:
break; break;
default: default:
skip = qtrue; skip = qtrue;
@ -2529,6 +2530,7 @@ static qboolean CollapseStagesToGLSL(void)
pStage->bundle[TB_LIGHTMAP] = pStage->bundle[TB_DIFFUSEMAP]; pStage->bundle[TB_LIGHTMAP] = pStage->bundle[TB_DIFFUSEMAP];
pStage->bundle[TB_DIFFUSEMAP].image[0] = tr.whiteImage; pStage->bundle[TB_DIFFUSEMAP].image[0] = tr.whiteImage;
pStage->bundle[TB_DIFFUSEMAP].isLightmap = qfalse; pStage->bundle[TB_DIFFUSEMAP].isLightmap = qfalse;
pStage->bundle[TB_DIFFUSEMAP].tcGen = TCGEN_TEXTURE;
} }
} }
} }

View file

@ -1621,11 +1621,12 @@ void RB_SurfaceVBOMDVMesh(srfVBOMDVMesh_t * surface)
glState.vertexAttribsOldFrame = refEnt->oldframe; glState.vertexAttribsOldFrame = refEnt->oldframe;
glState.vertexAttribsNewFrame = refEnt->frame; glState.vertexAttribsNewFrame = refEnt->frame;
glState.vertexAnimation = qtrue;
RB_EndSurface(); RB_EndSurface();
// So we don't lerp surfaces that shouldn't be lerped // So we don't lerp surfaces that shouldn't be lerped
glState.vertexAttribsInterpolation = 0; glState.vertexAnimation = qfalse;
} }
static void RB_SurfaceDisplayList( srfDisplayList_t *surf ) { static void RB_SurfaceDisplayList( srfDisplayList_t *surf ) {

View file

@ -608,6 +608,7 @@ void R_BindVBO(VBO_t * vbo)
glState.vertexAttribsInterpolation = 0; glState.vertexAttribsInterpolation = 0;
glState.vertexAttribsOldFrame = 0; glState.vertexAttribsOldFrame = 0;
glState.vertexAttribsNewFrame = 0; glState.vertexAttribsNewFrame = 0;
glState.vertexAnimation = qfalse;
qglBindBufferARB(GL_ARRAY_BUFFER_ARB, vbo->vertexesVBO); qglBindBufferARB(GL_ARRAY_BUFFER_ARB, vbo->vertexesVBO);
@ -856,6 +857,9 @@ void RB_UpdateVBOs(unsigned int attribBits)
{ {
R_BindVBO(tess.vbo); R_BindVBO(tess.vbo);
// orphan old buffer so we don't stall on it
qglBufferDataARB(GL_ARRAY_BUFFER_ARB, tess.vbo->vertexesSize, NULL, GL_DYNAMIC_DRAW_ARB);
if(attribBits & ATTR_BITS) if(attribBits & ATTR_BITS)
{ {
if(attribBits & ATTR_POSITION) if(attribBits & ATTR_POSITION)
@ -923,6 +927,9 @@ void RB_UpdateVBOs(unsigned int attribBits)
{ {
R_BindIBO(tess.ibo); R_BindIBO(tess.ibo);
// orphan old buffer so we don't stall on it
qglBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, tess.ibo->indexesSize, NULL, GL_DYNAMIC_DRAW_ARB);
qglBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, tess.numIndexes * sizeof(tess.indexes[0]), tess.indexes); qglBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, tess.numIndexes * sizeof(tess.indexes[0]), tess.indexes);
} }
} }