2005-08-26 17:39:27 +00:00
|
|
|
/*
|
|
|
|
===========================================================================
|
|
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
|
|
or (at your option) any later version.
|
|
|
|
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with Foobar; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
===========================================================================
|
|
|
|
*/
|
|
|
|
// mathlib.c -- math primitives
|
|
|
|
|
|
|
|
#include "l_cmd.h"
|
|
|
|
#include "l_math.h"
|
|
|
|
|
|
|
|
vec3_t vec3_origin = {0,0,0};
|
|
|
|
|
|
|
|
void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
|
|
|
{
|
|
|
|
float angle;
|
|
|
|
static float sr, sp, sy, cr, cp, cy;
|
|
|
|
// static to help MS compiler fp bugs
|
|
|
|
|
|
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
|
|
sy = sin(angle);
|
|
|
|
cy = cos(angle);
|
|
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
|
|
sp = sin(angle);
|
|
|
|
cp = cos(angle);
|
|
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
|
|
sr = sin(angle);
|
|
|
|
cr = cos(angle);
|
|
|
|
|
|
|
|
if (forward)
|
|
|
|
{
|
|
|
|
forward[0] = cp*cy;
|
|
|
|
forward[1] = cp*sy;
|
|
|
|
forward[2] = -sp;
|
|
|
|
}
|
|
|
|
if (right)
|
|
|
|
{
|
|
|
|
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
|
|
|
|
right[1] = (-1*sr*sp*sy+-1*cr*cy);
|
|
|
|
right[2] = -1*sr*cp;
|
|
|
|
}
|
|
|
|
if (up)
|
|
|
|
{
|
|
|
|
up[0] = (cr*sp*cy+-sr*-sy);
|
|
|
|
up[1] = (cr*sp*sy+-sr*cy);
|
|
|
|
up[2] = cr*cp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
=================
|
|
|
|
RadiusFromBounds
|
|
|
|
=================
|
|
|
|
*/
|
|
|
|
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
|
|
|
|
int i;
|
|
|
|
vec3_t corner;
|
|
|
|
float a, b;
|
|
|
|
|
|
|
|
for (i=0 ; i<3 ; i++) {
|
|
|
|
a = fabs( mins[i] );
|
|
|
|
b = fabs( maxs[i] );
|
|
|
|
corner[i] = a > b ? a : b;
|
|
|
|
}
|
|
|
|
|
|
|
|
return VectorLength (corner);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
================
|
|
|
|
R_ConcatRotations
|
|
|
|
================
|
|
|
|
*/
|
|
|
|
void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3])
|
|
|
|
{
|
|
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
|
|
in1[0][2] * in2[2][0];
|
|
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
|
|
in1[0][2] * in2[2][1];
|
|
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
|
|
in1[0][2] * in2[2][2];
|
|
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
|
|
in1[1][2] * in2[2][0];
|
|
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
|
|
in1[1][2] * in2[2][1];
|
|
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
|
|
in1[1][2] * in2[2][2];
|
|
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
|
|
in1[2][2] * in2[2][0];
|
|
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
|
|
in1[2][2] * in2[2][1];
|
|
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
|
|
in1[2][2] * in2[2][2];
|
|
|
|
}
|
|
|
|
|
|
|
|
void AxisClear( vec3_t axis[3] ) {
|
|
|
|
axis[0][0] = 1;
|
|
|
|
axis[0][1] = 0;
|
|
|
|
axis[0][2] = 0;
|
|
|
|
axis[1][0] = 0;
|
|
|
|
axis[1][1] = 1;
|
|
|
|
axis[1][2] = 0;
|
|
|
|
axis[2][0] = 0;
|
|
|
|
axis[2][1] = 0;
|
|
|
|
axis[2][2] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
float VectorLengthSquared(vec3_t v) {
|
|
|
|
return DotProduct(v, v);
|
|
|
|
}
|
|
|
|
|
|
|
|
double VectorLength(vec3_t v)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
double length;
|
|
|
|
|
|
|
|
length = 0;
|
|
|
|
for (i=0 ; i< 3 ; i++)
|
|
|
|
length += v[i]*v[i];
|
|
|
|
length = sqrt (length); // FIXME
|
|
|
|
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
|
|
|
|
qboolean VectorCompare (vec3_t v1, vec3_t v2)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
|
|
if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
vec_t Q_rint (vec_t in)
|
|
|
|
{
|
|
|
|
return floor(in + 0.5);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross)
|
|
|
|
{
|
|
|
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
|
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
|
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
void _VectorMA (vec3_t va, double scale, vec3_t vb, vec3_t vc)
|
|
|
|
{
|
|
|
|
vc[0] = va[0] + scale*vb[0];
|
|
|
|
vc[1] = va[1] + scale*vb[1];
|
|
|
|
vc[2] = va[2] + scale*vb[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
vec_t _DotProduct (vec3_t v1, vec3_t v2)
|
|
|
|
{
|
|
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
|
|
|
|
{
|
|
|
|
out[0] = va[0]-vb[0];
|
|
|
|
out[1] = va[1]-vb[1];
|
|
|
|
out[2] = va[2]-vb[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
|
|
|
|
{
|
|
|
|
out[0] = va[0]+vb[0];
|
|
|
|
out[1] = va[1]+vb[1];
|
|
|
|
out[2] = va[2]+vb[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
void _VectorCopy (vec3_t in, vec3_t out)
|
|
|
|
{
|
|
|
|
out[0] = in[0];
|
|
|
|
out[1] = in[1];
|
|
|
|
out[2] = in[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
void _VectorScale (vec3_t v, vec_t scale, vec3_t out)
|
|
|
|
{
|
|
|
|
out[0] = v[0] * scale;
|
|
|
|
out[1] = v[1] * scale;
|
|
|
|
out[2] = v[2] * scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
vec_t VectorNormalize(vec3_t inout)
|
|
|
|
{
|
|
|
|
vec_t length, ilength;
|
|
|
|
|
|
|
|
length = sqrt (inout[0]*inout[0] + inout[1]*inout[1] + inout[2]*inout[2]);
|
|
|
|
if (length == 0)
|
|
|
|
{
|
|
|
|
VectorClear (inout);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
ilength = 1.0/length;
|
|
|
|
inout[0] = inout[0]*ilength;
|
|
|
|
inout[1] = inout[1]*ilength;
|
|
|
|
inout[2] = inout[2]*ilength;
|
|
|
|
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
|
|
|
|
vec_t VectorNormalize2(const vec3_t in, vec3_t out)
|
|
|
|
{
|
|
|
|
vec_t length, ilength;
|
|
|
|
|
|
|
|
length = sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
|
|
|
|
if (length == 0)
|
|
|
|
{
|
|
|
|
VectorClear (out);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
ilength = 1.0/length;
|
|
|
|
out[0] = in[0]*ilength;
|
|
|
|
out[1] = in[1]*ilength;
|
|
|
|
out[2] = in[2]*ilength;
|
|
|
|
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
|
|
|
|
vec_t ColorNormalize (vec3_t in, vec3_t out)
|
|
|
|
{
|
|
|
|
float max, scale;
|
|
|
|
|
|
|
|
max = in[0];
|
|
|
|
if (in[1] > max)
|
|
|
|
max = in[1];
|
|
|
|
if (in[2] > max)
|
|
|
|
max = in[2];
|
|
|
|
|
|
|
|
if (max == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
scale = 1.0 / max;
|
|
|
|
|
|
|
|
VectorScale (in, scale, out);
|
|
|
|
|
|
|
|
return max;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void VectorInverse (vec3_t v)
|
|
|
|
{
|
|
|
|
v[0] = -v[0];
|
|
|
|
v[1] = -v[1];
|
|
|
|
v[2] = -v[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
void ClearBounds(vec3_t mins, vec3_t maxs)
|
|
|
|
{
|
|
|
|
mins[0] = mins[1] = mins[2] = 99999;
|
|
|
|
maxs[0] = maxs[1] = maxs[2] = -99999;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddPointToBounds(const vec3_t v, vec3_t mins, vec3_t maxs)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
vec_t val;
|
|
|
|
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
|
|
{
|
|
|
|
val = v[i];
|
|
|
|
if (val < mins[i])
|
|
|
|
mins[i] = val;
|
|
|
|
if (val > maxs[i])
|
|
|
|
maxs[i] = val;
|
|
|
|
}
|
|
|
|
}
|