gtkradiant/tools/urt/libs/math/plane.h

133 lines
4 KiB
C++

#if !defined(INCLUDED_MATH_PLANE_H)
#define INCLUDED_MATH_PLANE_H
/// \file
/// \brief Plane data types and related operations.
#include "math/matrix.h"
/// \brief A plane equation stored in double-precision floating-point.
class Plane3
{
public:
double a, b, c, d;
Plane3()
{
}
Plane3(double _a, double _b, double _c, double _d)
: a(_a), b(_b), c(_c), d(_d)
{
}
template<typename Element>
Plane3(const BasicVector3<Element>& normal, double dist)
: a(normal.x()), b(normal.y()), c(normal.z()), d(dist)
{
}
BasicVector3<double>& normal()
{
return reinterpret_cast<BasicVector3<double>&>(*this);
}
const BasicVector3<double>& normal() const
{
return reinterpret_cast<const BasicVector3<double>&>(*this);
}
double& dist()
{
return d;
}
const double& dist() const
{
return d;
}
};
inline Plane3 plane3_normalised(const Plane3& plane)
{
double rmagnitude = 1.0 / sqrt(plane.a * plane.a + plane.b * plane.b + plane.c * plane.c);
return Plane3(
plane.a * rmagnitude,
plane.b * rmagnitude,
plane.c * rmagnitude,
plane.d * rmagnitude
);
}
inline Plane3 plane3_translated(const Plane3& plane, const Vector3& translation)
{
Plane3 transformed;
transformed.a = plane.a;
transformed.b = plane.b;
transformed.c = plane.c;
transformed.d = -((-plane.d * transformed.a + translation.x()) * transformed.a +
(-plane.d * transformed.b + translation.y()) * transformed.b +
(-plane.d * transformed.c + translation.z()) * transformed.c);
return transformed;
}
inline Plane3 plane3_transformed(const Plane3& plane, const Matrix4& transform)
{
Plane3 transformed;
transformed.a = transform[0] * plane.a + transform[4] * plane.b + transform[8] * plane.c;
transformed.b = transform[1] * plane.a + transform[5] * plane.b + transform[9] * plane.c;
transformed.c = transform[2] * plane.a + transform[6] * plane.b + transform[10] * plane.c;
transformed.d = -((-plane.d * transformed.a + transform[12]) * transformed.a +
(-plane.d * transformed.b + transform[13]) * transformed.b +
(-plane.d * transformed.c + transform[14]) * transformed.c);
return transformed;
}
inline Plane3 plane3_inverse_transformed(const Plane3& plane, const Matrix4& transform)
{
return Plane3
(
transform[ 0] * plane.a + transform[ 1] * plane.b + transform[ 2] * plane.c + transform[ 3] * plane.d,
transform[ 4] * plane.a + transform[ 5] * plane.b + transform[ 6] * plane.c + transform[ 7] * plane.d,
transform[ 8] * plane.a + transform[ 9] * plane.b + transform[10] * plane.c + transform[11] * plane.d,
transform[12] * plane.a + transform[13] * plane.b + transform[14] * plane.c + transform[15] * plane.d
);
}
inline Plane3 plane3_flipped(const Plane3& plane)
{
return Plane3(vector3_negated(plane.normal()), -plane.dist());
}
const double c_PLANE_NORMAL_EPSILON = 0.0001f;
const double c_PLANE_DIST_EPSILON = 0.02;
inline bool plane3_equal(const Plane3& self, const Plane3& other)
{
return vector3_equal_epsilon(self.normal(), other.normal(), c_PLANE_NORMAL_EPSILON)
&& float_equal_epsilon(self.dist(), other.dist(), c_PLANE_DIST_EPSILON);
}
inline bool plane3_opposing(const Plane3& self, const Plane3& other)
{
return plane3_equal(self, plane3_flipped(other));
}
inline bool plane3_valid(const Plane3& self)
{
return float_equal_epsilon(vector3_dot(self.normal(), self.normal()), 1.0, 0.01);
}
template<typename Element>
inline Plane3 plane3_for_points(const BasicVector3<Element>& p0, const BasicVector3<Element>& p1, const BasicVector3<Element>& p2)
{
Plane3 self;
self.normal() = vector3_normalised(vector3_cross(vector3_subtracted(p1, p0), vector3_subtracted(p2, p0)));
self.dist() = vector3_dot(p0, self.normal());
return self;
}
template<typename Element>
inline Plane3 plane3_for_points(const BasicVector3<Element> planepts[3])
{
return plane3_for_points(planepts[2], planepts[1], planepts[0]);
}
#endif