mirror of
https://github.com/TTimo/GtkRadiant.git
synced 2025-01-10 20:10:56 +00:00
837 lines
18 KiB
C++
837 lines
18 KiB
C++
/*
|
|
Copyright (C) 1999-2007 id Software, Inc. and contributors.
|
|
For a list of contributors, see the accompanying CONTRIBUTORS file.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
|
|
|
|
#include "stdafx.h"
|
|
#include <assert.h>
|
|
#include "winding.h"
|
|
|
|
#define BOGUS_RANGE ( g_MaxWorldCoord + 1 )
|
|
|
|
/*
|
|
=============
|
|
Plane_Equal
|
|
=============
|
|
*/
|
|
#define NORMAL_EPSILON 0.0001
|
|
#define DIST_EPSILON 0.02
|
|
|
|
int Plane_Equal( plane_t *a, plane_t *b, int flip ){
|
|
vec3_t normal;
|
|
float dist;
|
|
|
|
if ( flip ) {
|
|
normal[0] = -b->normal[0];
|
|
normal[1] = -b->normal[1];
|
|
normal[2] = -b->normal[2];
|
|
dist = -b->dist;
|
|
}
|
|
else {
|
|
normal[0] = b->normal[0];
|
|
normal[1] = b->normal[1];
|
|
normal[2] = b->normal[2];
|
|
dist = b->dist;
|
|
}
|
|
if (
|
|
fabs( a->normal[0] - normal[0] ) < NORMAL_EPSILON
|
|
&& fabs( a->normal[1] - normal[1] ) < NORMAL_EPSILON
|
|
&& fabs( a->normal[2] - normal[2] ) < NORMAL_EPSILON
|
|
&& fabs( a->dist - dist ) < DIST_EPSILON ) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
============
|
|
Plane_FromPoints
|
|
============
|
|
*/
|
|
int Plane_FromPoints( vec3_t p1, vec3_t p2, vec3_t p3, plane_t *plane ){
|
|
vec3_t v1, v2;
|
|
|
|
VectorSubtract( p2, p1, v1 );
|
|
VectorSubtract( p3, p1, v2 );
|
|
//CrossProduct(v2, v1, plane->normal);
|
|
CrossProduct( v1, v2, plane->normal );
|
|
if ( VectorNormalize( plane->normal, plane->normal ) < 0.1 ) {
|
|
return false;
|
|
}
|
|
plane->dist = DotProduct( p1, plane->normal );
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
Point_Equal
|
|
=================
|
|
*/
|
|
int Point_Equal( vec3_t p1, vec3_t p2, float epsilon ){
|
|
int i;
|
|
|
|
for ( i = 0; i < 3; i++ )
|
|
{
|
|
if ( fabs( p1[i] - p2[i] ) > epsilon ) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
Winding_BaseForPlane
|
|
=================
|
|
*/
|
|
//#define DBG_WNDG
|
|
winding_t *Winding_BaseForPlane( plane_t *p ){
|
|
int i, x;
|
|
vec_t max, v;
|
|
vec3_t org, vright, vup;
|
|
winding_t *w;
|
|
|
|
// find the major axis
|
|
#ifdef DBG_WNDG
|
|
Sys_Printf( "Winding_BaseForPlane %p\n",p );
|
|
#endif
|
|
|
|
max = -BOGUS_RANGE;
|
|
x = -1;
|
|
for ( i = 0 ; i < 3; i++ )
|
|
{
|
|
v = fabs( p->normal[i] );
|
|
if ( v > max ) {
|
|
x = i;
|
|
max = v;
|
|
}
|
|
}
|
|
if ( x == -1 ) {
|
|
Error( "Winding_BaseForPlane: no axis found" );
|
|
}
|
|
|
|
VectorCopy( vec3_origin, vup );
|
|
switch ( x )
|
|
{
|
|
case 0:
|
|
case 1:
|
|
vup[2] = 1;
|
|
break;
|
|
case 2:
|
|
vup[0] = 1;
|
|
break;
|
|
}
|
|
|
|
|
|
v = DotProduct( vup, p->normal );
|
|
VectorMA( vup, -v, p->normal, vup );
|
|
VectorNormalize( vup, vup );
|
|
|
|
VectorScale( p->normal, p->dist, org );
|
|
|
|
CrossProduct( vup, p->normal, vright );
|
|
|
|
VectorScale( vup, BOGUS_RANGE, vup );
|
|
VectorScale( vright, BOGUS_RANGE, vright );
|
|
|
|
// project a really big axis aligned box onto the plane
|
|
w = Winding_Alloc( 4 );
|
|
|
|
VectorSubtract( org, vright, w->points[0] );
|
|
VectorAdd( w->points[0], vup, w->points[0] );
|
|
|
|
VectorAdd( org, vright, w->points[1] );
|
|
VectorAdd( w->points[1], vup, w->points[1] );
|
|
|
|
VectorAdd( org, vright, w->points[2] );
|
|
VectorSubtract( w->points[2], vup, w->points[2] );
|
|
|
|
VectorSubtract( org, vright, w->points[3] );
|
|
VectorSubtract( w->points[3], vup, w->points[3] );
|
|
|
|
w->numpoints = 4;
|
|
|
|
return w;
|
|
}
|
|
|
|
// macro to compute winding size
|
|
#define WINDING_SIZE( pt ) ( sizeof( int )*2 + sizeof( float )*5*( pt ) )
|
|
|
|
/*
|
|
==================
|
|
Winding_Alloc
|
|
==================
|
|
*/
|
|
winding_t *Winding_Alloc( int points ){
|
|
winding_t *w;
|
|
int size;
|
|
|
|
if ( points > MAX_POINTS_ON_WINDING ) {
|
|
Error( "Winding_Alloc: %i points", points );
|
|
}
|
|
|
|
// size = (int)((winding_t *)0)->points[points];
|
|
size = WINDING_SIZE( points );
|
|
w = (winding_t*) malloc( size );
|
|
memset( w, 0, size );
|
|
w->maxpoints = points;
|
|
|
|
return w;
|
|
}
|
|
|
|
void Winding_Free( winding_t *w ){
|
|
free( w );
|
|
}
|
|
|
|
/*
|
|
==================
|
|
Winding_Clone
|
|
==================
|
|
*/
|
|
winding_t *Winding_Clone( winding_t *w ){
|
|
int size;
|
|
winding_t *c;
|
|
|
|
// size = (int)((winding_t *)0)->points[w->numpoints];
|
|
size = WINDING_SIZE( w->numpoints );
|
|
c = (winding_t*)qmalloc( size );
|
|
memcpy( c, w, size );
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
ReverseWinding
|
|
==================
|
|
*/
|
|
winding_t *Winding_Reverse( winding_t *w ){
|
|
int i;
|
|
winding_t *c;
|
|
|
|
c = Winding_Alloc( w->numpoints );
|
|
for ( i = 0; i < w->numpoints; i++ )
|
|
{
|
|
VectorCopy( w->points[w->numpoints - 1 - i], c->points[i] );
|
|
}
|
|
c->numpoints = w->numpoints;
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
==============
|
|
Winding_RemovePoint
|
|
==============
|
|
*/
|
|
void Winding_RemovePoint( winding_t *w, int point ){
|
|
if ( point < 0 || point >= w->numpoints ) {
|
|
Error( "Winding_RemovePoint: point out of range" );
|
|
}
|
|
|
|
if ( point < w->numpoints - 1 ) {
|
|
memmove( &w->points[point], &w->points[point + 1], (size_t)( (winding_t *)0 )->points[w->numpoints - point - 1] );
|
|
}
|
|
w->numpoints--;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_InsertPoint
|
|
=============
|
|
*/
|
|
winding_t *Winding_InsertPoint( winding_t *w, vec3_t point, int spot ){
|
|
int i, j;
|
|
winding_t *neww;
|
|
|
|
if ( spot > w->numpoints ) {
|
|
Error( "Winding_InsertPoint: spot > w->numpoints" );
|
|
} //end if
|
|
if ( spot < 0 ) {
|
|
Error( "Winding_InsertPoint: spot < 0" );
|
|
} //end if
|
|
neww = Winding_Alloc( w->numpoints + 1 );
|
|
neww->numpoints = w->numpoints + 1;
|
|
for ( i = 0, j = 0; i < neww->numpoints; i++ )
|
|
{
|
|
if ( i == spot ) {
|
|
VectorCopy( point, neww->points[i] );
|
|
}
|
|
else
|
|
{
|
|
VectorCopy( w->points[j], neww->points[i] );
|
|
j++;
|
|
}
|
|
}
|
|
return neww;
|
|
}
|
|
|
|
/*
|
|
==============
|
|
Winding_IsTiny
|
|
==============
|
|
*/
|
|
#define EDGE_LENGTH 0.2
|
|
|
|
int Winding_IsTiny( winding_t *w ){
|
|
int i, j;
|
|
vec_t len;
|
|
vec3_t delta;
|
|
int edges;
|
|
|
|
edges = 0;
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
{
|
|
j = i == w->numpoints - 1 ? 0 : i + 1;
|
|
VectorSubtract( w->points[j], w->points[i], delta );
|
|
len = VectorLength( delta );
|
|
if ( len > EDGE_LENGTH ) {
|
|
if ( ++edges == 3 ) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
==============
|
|
Winding_IsHuge
|
|
==============
|
|
*/
|
|
int Winding_IsHuge( winding_t *w ){
|
|
int i, j;
|
|
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
{
|
|
for ( j = 0 ; j < 3 ; j++ )
|
|
if ( w->points[i][j] < -BOGUS_RANGE + 1 || w->points[i][j] > BOGUS_RANGE - 1 ) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_PlanesConcave
|
|
=============
|
|
*/
|
|
#define WCONVEX_EPSILON 0.2
|
|
|
|
int Winding_PlanesConcave( winding_t *w1, winding_t *w2,
|
|
vec3_t normal1, vec3_t normal2,
|
|
float dist1, float dist2 ){
|
|
int i;
|
|
|
|
if ( !w1 || !w2 ) {
|
|
return false;
|
|
}
|
|
|
|
// check if one of the points of winding 1 is at the back of the plane of winding 2
|
|
for ( i = 0; i < w1->numpoints; i++ )
|
|
{
|
|
if ( DotProduct( normal2, w1->points[i] ) - dist2 > WCONVEX_EPSILON ) {
|
|
return true;
|
|
}
|
|
}
|
|
// check if one of the points of winding 2 is at the back of the plane of winding 1
|
|
for ( i = 0; i < w2->numpoints; i++ )
|
|
{
|
|
if ( DotProduct( normal1, w2->points[i] ) - dist1 > WCONVEX_EPSILON ) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
Winding_Clip
|
|
|
|
Clips the winding to the plane, returning the new winding on the positive side
|
|
Frees the input winding.
|
|
If keepon is true, an exactly on-plane winding will be saved, otherwise
|
|
it will be clipped away.
|
|
==================
|
|
*/
|
|
winding_t *Winding_Clip( winding_t *in, plane_t *split, qboolean keepon ){
|
|
vec_t dists[MAX_POINTS_ON_WINDING];
|
|
int sides[MAX_POINTS_ON_WINDING];
|
|
int counts[3];
|
|
vec_t dot;
|
|
int i, j;
|
|
vec_t *p1, *p2;
|
|
vec3_t mid;
|
|
winding_t *neww;
|
|
int maxpts;
|
|
|
|
counts[0] = counts[1] = counts[2] = 0;
|
|
|
|
// determine sides for each point
|
|
for ( i = 0 ; i < in->numpoints ; i++ )
|
|
{
|
|
dot = DotProduct( in->points[i], split->normal );
|
|
dot -= split->dist;
|
|
dists[i] = dot;
|
|
if ( dot > ON_EPSILON ) {
|
|
sides[i] = SIDE_FRONT;
|
|
}
|
|
else if ( dot < -ON_EPSILON ) {
|
|
sides[i] = SIDE_BACK;
|
|
}
|
|
else
|
|
{
|
|
sides[i] = SIDE_ON;
|
|
}
|
|
counts[sides[i]]++;
|
|
}
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
|
|
if ( keepon && !counts[0] && !counts[1] ) {
|
|
return in;
|
|
}
|
|
|
|
if ( !counts[0] ) {
|
|
Winding_Free( in );
|
|
return NULL;
|
|
}
|
|
if ( !counts[1] ) {
|
|
return in;
|
|
}
|
|
|
|
maxpts = in->numpoints + 4; // can't use counts[0]+2 because
|
|
// of fp grouping errors
|
|
neww = Winding_Alloc( maxpts );
|
|
|
|
for ( i = 0 ; i < in->numpoints ; i++ )
|
|
{
|
|
p1 = in->points[i];
|
|
|
|
if ( sides[i] == SIDE_ON ) {
|
|
VectorCopy( p1, neww->points[neww->numpoints] );
|
|
neww->numpoints++;
|
|
continue;
|
|
}
|
|
|
|
if ( sides[i] == SIDE_FRONT ) {
|
|
VectorCopy( p1, neww->points[neww->numpoints] );
|
|
neww->numpoints++;
|
|
}
|
|
|
|
if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
|
|
continue;
|
|
}
|
|
|
|
// generate a split point
|
|
p2 = in->points[( i + 1 ) % in->numpoints];
|
|
|
|
dot = dists[i] / ( dists[i] - dists[i + 1] );
|
|
for ( j = 0 ; j < 3 ; j++ )
|
|
{ // avoid round off error when possible
|
|
if ( split->normal[j] == 1 ) {
|
|
mid[j] = split->dist;
|
|
}
|
|
else if ( split->normal[j] == -1 ) {
|
|
mid[j] = -split->dist;
|
|
}
|
|
else{
|
|
mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
|
|
}
|
|
}
|
|
|
|
VectorCopy( mid, neww->points[neww->numpoints] );
|
|
neww->numpoints++;
|
|
}
|
|
|
|
if ( neww->numpoints > maxpts ) {
|
|
Error( "Winding_Clip: points exceeded estimate" );
|
|
}
|
|
|
|
// free the original winding
|
|
Winding_Free( in );
|
|
|
|
return neww;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_SplitEpsilon
|
|
|
|
split the input winding with the plane
|
|
the input winding stays untouched
|
|
=============
|
|
*/
|
|
void Winding_SplitEpsilon( winding_t *in, vec3_t normal, double dist,
|
|
vec_t epsilon, winding_t **front, winding_t **back ){
|
|
vec_t dists[MAX_POINTS_ON_WINDING + 4];
|
|
int sides[MAX_POINTS_ON_WINDING + 4];
|
|
int counts[3];
|
|
vec_t dot;
|
|
int i, j;
|
|
vec_t *p1, *p2;
|
|
vec3_t mid;
|
|
winding_t *f, *b;
|
|
int maxpts;
|
|
|
|
counts[0] = counts[1] = counts[2] = 0;
|
|
|
|
// determine sides for each point
|
|
for ( i = 0; i < in->numpoints; i++ )
|
|
{
|
|
dot = DotProduct( in->points[i], normal );
|
|
dot -= dist;
|
|
dists[i] = dot;
|
|
if ( dot > epsilon ) {
|
|
sides[i] = SIDE_FRONT;
|
|
}
|
|
else if ( dot < -epsilon ) {
|
|
sides[i] = SIDE_BACK;
|
|
}
|
|
else
|
|
{
|
|
sides[i] = SIDE_ON;
|
|
}
|
|
counts[sides[i]]++;
|
|
}
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
|
|
*front = *back = NULL;
|
|
|
|
if ( !counts[0] ) {
|
|
*back = Winding_Clone( in );
|
|
return;
|
|
}
|
|
if ( !counts[1] ) {
|
|
*front = Winding_Clone( in );
|
|
return;
|
|
}
|
|
|
|
maxpts = in->numpoints + 4; // cant use counts[0]+2 because
|
|
// of fp grouping errors
|
|
|
|
*front = f = Winding_Alloc( maxpts );
|
|
*back = b = Winding_Alloc( maxpts );
|
|
|
|
for ( i = 0; i < in->numpoints; i++ )
|
|
{
|
|
p1 = in->points[i];
|
|
|
|
if ( sides[i] == SIDE_ON ) {
|
|
VectorCopy( p1, f->points[f->numpoints] );
|
|
f->numpoints++;
|
|
VectorCopy( p1, b->points[b->numpoints] );
|
|
b->numpoints++;
|
|
continue;
|
|
}
|
|
|
|
if ( sides[i] == SIDE_FRONT ) {
|
|
VectorCopy( p1, f->points[f->numpoints] );
|
|
f->numpoints++;
|
|
}
|
|
if ( sides[i] == SIDE_BACK ) {
|
|
VectorCopy( p1, b->points[b->numpoints] );
|
|
b->numpoints++;
|
|
}
|
|
|
|
if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
|
|
continue;
|
|
}
|
|
|
|
// generate a split point
|
|
p2 = in->points[( i + 1 ) % in->numpoints];
|
|
|
|
dot = dists[i] / ( dists[i] - dists[i + 1] );
|
|
for ( j = 0; j < 3; j++ )
|
|
{
|
|
// avoid round off error when possible
|
|
if ( normal[j] == 1 ) {
|
|
mid[j] = dist;
|
|
}
|
|
else if ( normal[j] == -1 ) {
|
|
mid[j] = -dist;
|
|
}
|
|
else{
|
|
mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
|
|
}
|
|
}
|
|
|
|
VectorCopy( mid, f->points[f->numpoints] );
|
|
f->numpoints++;
|
|
VectorCopy( mid, b->points[b->numpoints] );
|
|
b->numpoints++;
|
|
}
|
|
|
|
if ( f->numpoints > maxpts || b->numpoints > maxpts ) {
|
|
Error( "Winding_Clip: points exceeded estimate" );
|
|
}
|
|
if ( f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING ) {
|
|
Error( "Winding_Clip: MAX_POINTS_ON_WINDING" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_TryMerge
|
|
|
|
If two windings share a common edge and the edges that meet at the
|
|
common points are both inside the other polygons, merge them
|
|
|
|
Returns NULL if the windings couldn't be merged, or the new winding.
|
|
The originals will NOT be freed.
|
|
|
|
if keep is true no points are ever removed
|
|
=============
|
|
*/
|
|
#define CONTINUOUS_EPSILON 0.005
|
|
|
|
winding_t *Winding_TryMerge( winding_t *f1, winding_t *f2, vec3_t planenormal, int keep ){
|
|
vec_t *p1, *p2, *p3, *p4, *back;
|
|
winding_t *newf;
|
|
int i, j, k, l;
|
|
vec3_t normal, delta;
|
|
vec_t dot;
|
|
qboolean keep1, keep2;
|
|
|
|
|
|
//
|
|
// find a common edge
|
|
//
|
|
p1 = p2 = NULL; // stop compiler warning
|
|
j = 0; //
|
|
|
|
for ( i = 0; i < f1->numpoints; i++ )
|
|
{
|
|
p1 = f1->points[i];
|
|
p2 = f1->points[( i + 1 ) % f1->numpoints];
|
|
for ( j = 0; j < f2->numpoints; j++ )
|
|
{
|
|
p3 = f2->points[j];
|
|
p4 = f2->points[( j + 1 ) % f2->numpoints];
|
|
for ( k = 0; k < 3; k++ )
|
|
{
|
|
if ( fabs( p1[k] - p4[k] ) > 0.1 ) { //EQUAL_EPSILON) //ME
|
|
break;
|
|
}
|
|
if ( fabs( p2[k] - p3[k] ) > 0.1 ) { //EQUAL_EPSILON) //ME
|
|
break;
|
|
}
|
|
} //end for
|
|
if ( k == 3 ) {
|
|
break;
|
|
}
|
|
} //end for
|
|
if ( j < f2->numpoints ) {
|
|
break;
|
|
}
|
|
} //end for
|
|
|
|
if ( i == f1->numpoints ) {
|
|
return NULL; // no matching edges
|
|
|
|
}
|
|
//
|
|
// check slope of connected lines
|
|
// if the slopes are colinear, the point can be removed
|
|
//
|
|
back = f1->points[( i + f1->numpoints - 1 ) % f1->numpoints];
|
|
VectorSubtract( p1, back, delta );
|
|
CrossProduct( planenormal, delta, normal );
|
|
VectorNormalize( normal, normal );
|
|
|
|
back = f2->points[( j + 2 ) % f2->numpoints];
|
|
VectorSubtract( back, p1, delta );
|
|
dot = DotProduct( delta, normal );
|
|
if ( dot > CONTINUOUS_EPSILON ) {
|
|
return NULL; // not a convex polygon
|
|
}
|
|
keep1 = (qboolean)( dot < -CONTINUOUS_EPSILON );
|
|
|
|
back = f1->points[( i + 2 ) % f1->numpoints];
|
|
VectorSubtract( back, p2, delta );
|
|
CrossProduct( planenormal, delta, normal );
|
|
VectorNormalize( normal, normal );
|
|
|
|
back = f2->points[( j + f2->numpoints - 1 ) % f2->numpoints];
|
|
VectorSubtract( back, p2, delta );
|
|
dot = DotProduct( delta, normal );
|
|
if ( dot > CONTINUOUS_EPSILON ) {
|
|
return NULL; // not a convex polygon
|
|
}
|
|
keep2 = (qboolean)( dot < -CONTINUOUS_EPSILON );
|
|
|
|
//
|
|
// build the new polygon
|
|
//
|
|
newf = Winding_Alloc( f1->numpoints + f2->numpoints );
|
|
|
|
// copy first polygon
|
|
for ( k = ( i + 1 ) % f1->numpoints ; k != i ; k = ( k + 1 ) % f1->numpoints )
|
|
{
|
|
if ( !keep && k == ( i + 1 ) % f1->numpoints && !keep2 ) {
|
|
continue;
|
|
}
|
|
|
|
VectorCopy( f1->points[k], newf->points[newf->numpoints] );
|
|
newf->numpoints++;
|
|
}
|
|
|
|
// copy second polygon
|
|
for ( l = ( j + 1 ) % f2->numpoints ; l != j ; l = ( l + 1 ) % f2->numpoints )
|
|
{
|
|
if ( !keep && l == ( j + 1 ) % f2->numpoints && !keep1 ) {
|
|
continue;
|
|
}
|
|
VectorCopy( f2->points[l], newf->points[newf->numpoints] );
|
|
newf->numpoints++;
|
|
}
|
|
|
|
return newf;
|
|
}
|
|
|
|
/*
|
|
============
|
|
Winding_Plane
|
|
============
|
|
*/
|
|
void Winding_Plane( winding_t *w, vec3_t normal, double *dist ){
|
|
vec3_t v1, v2;
|
|
int i;
|
|
|
|
//find two vectors each longer than 0.5 units
|
|
for ( i = 0; i < w->numpoints; i++ )
|
|
{
|
|
VectorSubtract( w->points[( i + 1 ) % w->numpoints], w->points[i], v1 );
|
|
VectorSubtract( w->points[( i + 2 ) % w->numpoints], w->points[i], v2 );
|
|
if ( VectorLength( v1 ) > 0.5 && VectorLength( v2 ) > 0.5 ) {
|
|
break;
|
|
}
|
|
}
|
|
CrossProduct( v2, v1, normal );
|
|
VectorNormalize( normal, normal );
|
|
*dist = DotProduct( w->points[0], normal );
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_Area
|
|
=============
|
|
*/
|
|
float Winding_Area( winding_t *w ){
|
|
int i;
|
|
vec3_t d1, d2, cross;
|
|
float total;
|
|
|
|
total = 0;
|
|
for ( i = 2 ; i < w->numpoints ; i++ )
|
|
{
|
|
VectorSubtract( w->points[i - 1], w->points[0], d1 );
|
|
VectorSubtract( w->points[i], w->points[0], d2 );
|
|
CrossProduct( d1, d2, cross );
|
|
total += 0.5 * VectorLength( cross );
|
|
}
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_Bounds
|
|
=============
|
|
*/
|
|
void Winding_Bounds( winding_t *w, vec3_t mins, vec3_t maxs ){
|
|
vec_t v;
|
|
int i,j;
|
|
|
|
mins[0] = mins[1] = mins[2] = 99999;
|
|
maxs[0] = maxs[1] = maxs[2] = -99999;
|
|
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
{
|
|
for ( j = 0 ; j < 3 ; j++ )
|
|
{
|
|
v = w->points[i][j];
|
|
if ( v < mins[j] ) {
|
|
mins[j] = v;
|
|
}
|
|
if ( v > maxs[j] ) {
|
|
maxs[j] = v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
Winding_PointInside
|
|
=================
|
|
*/
|
|
int Winding_PointInside( winding_t *w, plane_t *plane, vec3_t point, float epsilon ){
|
|
int i;
|
|
vec3_t dir, normal, pointvec;
|
|
|
|
for ( i = 0; i < w->numpoints; i++ )
|
|
{
|
|
VectorSubtract( w->points[( i + 1 ) % w->numpoints], w->points[i], dir );
|
|
VectorSubtract( point, w->points[i], pointvec );
|
|
//
|
|
CrossProduct( dir, plane->normal, normal );
|
|
//
|
|
if ( DotProduct( pointvec, normal ) < -epsilon ) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
Winding_VectorIntersect
|
|
=================
|
|
*/
|
|
int Winding_VectorIntersect( winding_t *w, plane_t *plane, vec3_t p1, vec3_t p2, float epsilon ){
|
|
float front, back, frac;
|
|
vec3_t mid;
|
|
|
|
front = DotProduct( p1, plane->normal ) - plane->dist;
|
|
back = DotProduct( p2, plane->normal ) - plane->dist;
|
|
//if both points at the same side of the plane
|
|
if ( front < -epsilon && back < -epsilon ) {
|
|
return false;
|
|
}
|
|
if ( front > epsilon && back > epsilon ) {
|
|
return false;
|
|
}
|
|
//get point of intersection with winding plane
|
|
if ( fabs( front - back ) < 0.001 ) {
|
|
VectorCopy( p2, mid );
|
|
}
|
|
else
|
|
{
|
|
frac = front / ( front - back );
|
|
mid[0] = p1[0] + ( p2[0] - p1[0] ) * frac;
|
|
mid[1] = p1[1] + ( p2[1] - p1[1] ) * frac;
|
|
mid[2] = p1[2] + ( p2[2] - p1[2] ) * frac;
|
|
}
|
|
return Winding_PointInside( w, plane, mid, epsilon );
|
|
}
|