gtkradiant/radiant/winding.h
TTimo 12b372f89c ok
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant@1 8a3a26a2-13c4-0310-b231-cf6edde360e5
2006-02-10 22:01:20 +00:00

322 lines
7.4 KiB
C++

/*
Copyright (C) 1999-2006 Id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if !defined(INCLUDED_WINDING_H)
#define INCLUDED_WINDING_H
#include "debugging/debugging.h"
#include <vector>
#include "math/vector.h"
#include "container/array.h"
enum ProjectionAxis
{
eProjectionAxisX = 0,
eProjectionAxisY = 1,
eProjectionAxisZ = 2,
};
const float ProjectionAxisEpsilon = static_cast<float>(0.0001);
inline bool projectionaxis_better(float axis, float other)
{
return fabs(axis) > fabs(other) + ProjectionAxisEpsilon;
}
/// \brief Texture axis precedence: Z > X > Y
inline ProjectionAxis projectionaxis_for_normal(const Vector3& normal)
{
return (projectionaxis_better(normal[eProjectionAxisY], normal[eProjectionAxisX]))
? (projectionaxis_better(normal[eProjectionAxisY], normal[eProjectionAxisZ]))
? eProjectionAxisY
: eProjectionAxisZ
: (projectionaxis_better(normal[eProjectionAxisX], normal[eProjectionAxisZ]))
? eProjectionAxisX
: eProjectionAxisZ;
}
struct indexremap_t
{
indexremap_t(std::size_t _x, std::size_t _y, std::size_t _z)
: x(_x), y(_y), z(_z)
{
}
std::size_t x, y, z;
};
inline indexremap_t indexremap_for_projectionaxis(const ProjectionAxis axis)
{
switch(axis)
{
case eProjectionAxisX: return indexremap_t(1, 2, 0);
case eProjectionAxisY: return indexremap_t(2, 0, 1);
default: return indexremap_t(0, 1, 2);
}
}
enum PlaneClassification
{
ePlaneFront = 0,
ePlaneBack = 1,
ePlaneOn = 2,
};
#define MAX_POINTS_ON_WINDING 64
const std::size_t c_brush_maxFaces = 1024;
class WindingVertex
{
public:
Vector3 vertex;
Vector2 texcoord;
Vector3 tangent;
Vector3 bitangent;
std::size_t adjacent;
};
struct Winding
{
typedef Array<WindingVertex> container_type;
std::size_t numpoints;
container_type points;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
Winding() : numpoints(0)
{
}
Winding(std::size_t size) : numpoints(0), points(size)
{
}
void resize(std::size_t size)
{
points.resize(size);
numpoints = 0;
}
iterator begin()
{
return points.begin();
}
const_iterator begin() const
{
return points.begin();
}
iterator end()
{
return points.begin() + numpoints;
}
const_iterator end() const
{
return points.begin() + numpoints;
}
WindingVertex& operator[](std::size_t index)
{
ASSERT_MESSAGE(index < points.size(), "winding: index out of bounds");
return points[index];
}
const WindingVertex& operator[](std::size_t index) const
{
ASSERT_MESSAGE(index < points.size(), "winding: index out of bounds");
return points[index];
}
void push_back(const WindingVertex& point)
{
points[numpoints] = point;
++numpoints;
}
void erase(iterator point)
{
for(iterator i = point + 1; i != end(); point = i, ++i)
{
*point = *i;
}
--numpoints;
}
};
typedef BasicVector3<double> DoubleVector3;
class DoubleLine
{
public:
DoubleVector3 origin;
DoubleVector3 direction;
};
class FixedWindingVertex
{
public:
DoubleVector3 vertex;
DoubleLine edge;
std::size_t adjacent;
FixedWindingVertex(const DoubleVector3& vertex_, const DoubleLine& edge_, std::size_t adjacent_)
: vertex(vertex_), edge(edge_), adjacent(adjacent_)
{
}
};
struct FixedWinding
{
typedef std::vector<FixedWindingVertex> Points;
Points points;
FixedWinding()
{
points.reserve(MAX_POINTS_ON_WINDING);
}
FixedWindingVertex& front()
{
return points.front();
}
const FixedWindingVertex& front() const
{
return points.front();
}
FixedWindingVertex& back()
{
return points.back();
}
const FixedWindingVertex& back() const
{
return points.back();
}
void clear()
{
points.clear();
}
void push_back(const FixedWindingVertex& point)
{
points.push_back(point);
}
std::size_t size() const
{
return points.size();
}
FixedWindingVertex& operator[](std::size_t index)
{
//ASSERT_MESSAGE(index < MAX_POINTS_ON_WINDING, "winding: index out of bounds");
return points[index];
}
const FixedWindingVertex& operator[](std::size_t index) const
{
//ASSERT_MESSAGE(index < MAX_POINTS_ON_WINDING, "winding: index out of bounds");
return points[index];
}
};
inline void Winding_forFixedWinding(Winding& winding, const FixedWinding& fixed)
{
winding.resize(fixed.size());
winding.numpoints = fixed.size();
for(std::size_t i = 0; i < fixed.size(); ++i)
{
winding[i].vertex[0] = static_cast<float>(fixed[i].vertex[0]);
winding[i].vertex[1] = static_cast<float>(fixed[i].vertex[1]);
winding[i].vertex[2] = static_cast<float>(fixed[i].vertex[2]);
winding[i].adjacent = fixed[i].adjacent;
}
}
inline std::size_t Winding_wrap(const Winding& winding, std::size_t i)
{
ASSERT_MESSAGE(winding.numpoints != 0, "Winding_wrap: empty winding");
return i % winding.numpoints;
}
inline std::size_t Winding_next(const Winding& winding, std::size_t i)
{
return Winding_wrap(winding, ++i);
}
class Plane3;
void Winding_createInfinite(FixedWinding& w, const Plane3& plane, double infinity);
const double ON_EPSILON = 1.0 / (1 << 8);
/// \brief Returns true if edge (\p x, \p y) is smaller than the epsilon used to classify winding points against a plane.
inline bool Edge_isDegenerate(const Vector3& x, const Vector3& y)
{
return vector3_length_squared(y - x) < (ON_EPSILON * ON_EPSILON);
}
void Winding_Clip(const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped);
struct brushsplit_t
{
brushsplit_t()
{
counts[0] = 0;
counts[1] = 0;
counts[2] = 0;
}
brushsplit_t& operator+=(const brushsplit_t& other)
{
counts[0] += other.counts[0];
counts[1] += other.counts[1];
counts[2] += other.counts[2];
return *this;
}
std::size_t counts[3];
};
brushsplit_t Winding_ClassifyPlane(const Winding& w, const Plane3& plane);
bool Winding_PlanesConcave(const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2);
bool Winding_TestPlane(const Winding& w, const Plane3& plane, bool flipped);
std::size_t Winding_FindAdjacent(const Winding& w, std::size_t face);
std::size_t Winding_Opposite(const Winding& w, const std::size_t index, const std::size_t other);
std::size_t Winding_Opposite(const Winding& w, std::size_t index);
void Winding_Centroid(const Winding& w, const Plane3& plane, Vector3& centroid);
inline void Winding_printConnectivity(Winding& winding)
{
for(Winding::iterator i = winding.begin(); i != winding.end(); ++i)
{
std::size_t vertexIndex = std::distance(winding.begin(), i);
globalOutputStream() << "vertex: " << Unsigned(vertexIndex) << " adjacent: " << Unsigned((*i).adjacent) << "\n";
}
}
#endif