mirror of
https://github.com/TTimo/GtkRadiant.git
synced 2024-11-10 15:21:59 +00:00
33efc90892
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/branches/ZeroRadiant@185 8a3a26a2-13c4-0310-b231-cf6edde360e5
822 lines
17 KiB
C++
822 lines
17 KiB
C++
/*
|
|
Copyright (C) 1999-2007 id Software, Inc. and contributors.
|
|
For a list of contributors, see the accompanying CONTRIBUTORS file.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
|
|
|
|
#include "stdafx.h"
|
|
#include <assert.h>
|
|
#include "winding.h"
|
|
|
|
#define BOGUS_RANGE (g_MaxWorldCoord+1)
|
|
|
|
/*
|
|
=============
|
|
Plane_Equal
|
|
=============
|
|
*/
|
|
#define NORMAL_EPSILON 0.0001
|
|
#define DIST_EPSILON 0.02
|
|
|
|
int Plane_Equal(plane_t *a, plane_t *b, int flip)
|
|
{
|
|
vec3_t normal;
|
|
float dist;
|
|
|
|
if (flip) {
|
|
normal[0] = - b->normal[0];
|
|
normal[1] = - b->normal[1];
|
|
normal[2] = - b->normal[2];
|
|
dist = - b->dist;
|
|
}
|
|
else {
|
|
normal[0] = b->normal[0];
|
|
normal[1] = b->normal[1];
|
|
normal[2] = b->normal[2];
|
|
dist = b->dist;
|
|
}
|
|
if (
|
|
fabs(a->normal[0] - normal[0]) < NORMAL_EPSILON
|
|
&& fabs(a->normal[1] - normal[1]) < NORMAL_EPSILON
|
|
&& fabs(a->normal[2] - normal[2]) < NORMAL_EPSILON
|
|
&& fabs(a->dist - dist) < DIST_EPSILON )
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
============
|
|
Plane_FromPoints
|
|
============
|
|
*/
|
|
int Plane_FromPoints(vec3_t p1, vec3_t p2, vec3_t p3, plane_t *plane)
|
|
{
|
|
vec3_t v1, v2;
|
|
|
|
VectorSubtract(p2, p1, v1);
|
|
VectorSubtract(p3, p1, v2);
|
|
//CrossProduct(v2, v1, plane->normal);
|
|
CrossProduct(v1, v2, plane->normal);
|
|
if (VectorNormalize(plane->normal, plane->normal) < 0.1) return false;
|
|
plane->dist = DotProduct(p1, plane->normal);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
Point_Equal
|
|
=================
|
|
*/
|
|
int Point_Equal(vec3_t p1, vec3_t p2, float epsilon)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (fabs(p1[i] - p2[i]) > epsilon) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
Winding_BaseForPlane
|
|
=================
|
|
*/
|
|
//#define DBG_WNDG
|
|
winding_t *Winding_BaseForPlane (plane_t *p)
|
|
{
|
|
int i, x;
|
|
vec_t max, v;
|
|
vec3_t org, vright, vup;
|
|
winding_t *w;
|
|
|
|
// find the major axis
|
|
#ifdef DBG_WNDG
|
|
Sys_Printf("Winding_BaseForPlane %p\n",p);
|
|
#endif
|
|
|
|
max = -BOGUS_RANGE;
|
|
x = -1;
|
|
for (i=0 ; i<3; i++)
|
|
{
|
|
v = fabs(p->normal[i]);
|
|
if (v > max)
|
|
{
|
|
x = i;
|
|
max = v;
|
|
}
|
|
}
|
|
if (x==-1)
|
|
Error ("Winding_BaseForPlane: no axis found");
|
|
|
|
VectorCopy (vec3_origin, vup);
|
|
switch (x)
|
|
{
|
|
case 0:
|
|
case 1:
|
|
vup[2] = 1;
|
|
break;
|
|
case 2:
|
|
vup[0] = 1;
|
|
break;
|
|
}
|
|
|
|
|
|
v = DotProduct (vup, p->normal);
|
|
VectorMA (vup, -v, p->normal, vup);
|
|
VectorNormalize (vup, vup);
|
|
|
|
VectorScale (p->normal, p->dist, org);
|
|
|
|
CrossProduct (vup, p->normal, vright);
|
|
|
|
VectorScale (vup, BOGUS_RANGE, vup);
|
|
VectorScale (vright, BOGUS_RANGE, vright);
|
|
|
|
// project a really big axis aligned box onto the plane
|
|
w = Winding_Alloc (4);
|
|
|
|
VectorSubtract (org, vright, w->points[0]);
|
|
VectorAdd (w->points[0], vup, w->points[0]);
|
|
|
|
VectorAdd (org, vright, w->points[1]);
|
|
VectorAdd (w->points[1], vup, w->points[1]);
|
|
|
|
VectorAdd (org, vright, w->points[2]);
|
|
VectorSubtract (w->points[2], vup, w->points[2]);
|
|
|
|
VectorSubtract (org, vright, w->points[3]);
|
|
VectorSubtract (w->points[3], vup, w->points[3]);
|
|
|
|
w->numpoints = 4;
|
|
|
|
return w;
|
|
}
|
|
|
|
// macro to compute winding size
|
|
#define WINDING_SIZE(pt) (sizeof(int)*2+sizeof(float)*5*(pt))
|
|
|
|
/*
|
|
==================
|
|
Winding_Alloc
|
|
==================
|
|
*/
|
|
winding_t *Winding_Alloc (int points)
|
|
{
|
|
winding_t *w;
|
|
int size;
|
|
|
|
if (points > MAX_POINTS_ON_WINDING)
|
|
Error ("Winding_Alloc: %i points", points);
|
|
|
|
// size = (int)((winding_t *)0)->points[points];
|
|
size = WINDING_SIZE(points);
|
|
w = (winding_t*) malloc (size);
|
|
memset (w, 0, size);
|
|
w->maxpoints = points;
|
|
|
|
return w;
|
|
}
|
|
|
|
void Winding_Free (winding_t *w)
|
|
{
|
|
free(w);
|
|
}
|
|
|
|
/*
|
|
==================
|
|
Winding_Clone
|
|
==================
|
|
*/
|
|
winding_t *Winding_Clone(winding_t *w)
|
|
{
|
|
int size;
|
|
winding_t *c;
|
|
|
|
// size = (int)((winding_t *)0)->points[w->numpoints];
|
|
size = WINDING_SIZE(w->numpoints);
|
|
c = (winding_t*)qmalloc (size);
|
|
memcpy (c, w, size);
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
ReverseWinding
|
|
==================
|
|
*/
|
|
winding_t *Winding_Reverse(winding_t *w)
|
|
{
|
|
int i;
|
|
winding_t *c;
|
|
|
|
c = Winding_Alloc(w->numpoints);
|
|
for (i = 0; i < w->numpoints; i++)
|
|
{
|
|
VectorCopy (w->points[w->numpoints-1-i], c->points[i]);
|
|
}
|
|
c->numpoints = w->numpoints;
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
==============
|
|
Winding_RemovePoint
|
|
==============
|
|
*/
|
|
void Winding_RemovePoint(winding_t *w, int point)
|
|
{
|
|
if (point < 0 || point >= w->numpoints)
|
|
Error("Winding_RemovePoint: point out of range");
|
|
|
|
if (point < w->numpoints-1)
|
|
{
|
|
memmove(&w->points[point], &w->points[point+1], (int)((winding_t *)0)->points[w->numpoints - point - 1]);
|
|
}
|
|
w->numpoints--;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_InsertPoint
|
|
=============
|
|
*/
|
|
winding_t *Winding_InsertPoint(winding_t *w, vec3_t point, int spot)
|
|
{
|
|
int i, j;
|
|
winding_t *neww;
|
|
|
|
if (spot > w->numpoints)
|
|
{
|
|
Error("Winding_InsertPoint: spot > w->numpoints");
|
|
} //end if
|
|
if (spot < 0)
|
|
{
|
|
Error("Winding_InsertPoint: spot < 0");
|
|
} //end if
|
|
neww = Winding_Alloc(w->numpoints + 1);
|
|
neww->numpoints = w->numpoints + 1;
|
|
for (i = 0, j = 0; i < neww->numpoints; i++)
|
|
{
|
|
if (i == spot)
|
|
{
|
|
VectorCopy(point, neww->points[i]);
|
|
}
|
|
else
|
|
{
|
|
VectorCopy(w->points[j], neww->points[i]);
|
|
j++;
|
|
}
|
|
}
|
|
return neww;
|
|
}
|
|
|
|
/*
|
|
==============
|
|
Winding_IsTiny
|
|
==============
|
|
*/
|
|
#define EDGE_LENGTH 0.2
|
|
|
|
int Winding_IsTiny (winding_t *w)
|
|
{
|
|
int i, j;
|
|
vec_t len;
|
|
vec3_t delta;
|
|
int edges;
|
|
|
|
edges = 0;
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
{
|
|
j = i == w->numpoints - 1 ? 0 : i+1;
|
|
VectorSubtract (w->points[j], w->points[i], delta);
|
|
len = VectorLength (delta);
|
|
if (len > EDGE_LENGTH)
|
|
{
|
|
if (++edges == 3)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
==============
|
|
Winding_IsHuge
|
|
==============
|
|
*/
|
|
int Winding_IsHuge(winding_t *w)
|
|
{
|
|
int i, j;
|
|
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
{
|
|
for (j=0 ; j<3 ; j++)
|
|
if (w->points[i][j] < -BOGUS_RANGE+1 || w->points[i][j] > BOGUS_RANGE-1)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_PlanesConcave
|
|
=============
|
|
*/
|
|
#define WCONVEX_EPSILON 0.2
|
|
|
|
int Winding_PlanesConcave(winding_t *w1, winding_t *w2,
|
|
vec3_t normal1, vec3_t normal2,
|
|
float dist1, float dist2)
|
|
{
|
|
int i;
|
|
|
|
if (!w1 || !w2) return false;
|
|
|
|
// check if one of the points of winding 1 is at the back of the plane of winding 2
|
|
for (i = 0; i < w1->numpoints; i++)
|
|
{
|
|
if (DotProduct(normal2, w1->points[i]) - dist2 > WCONVEX_EPSILON) return true;
|
|
}
|
|
// check if one of the points of winding 2 is at the back of the plane of winding 1
|
|
for (i = 0; i < w2->numpoints; i++)
|
|
{
|
|
if (DotProduct(normal1, w2->points[i]) - dist1 > WCONVEX_EPSILON) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
Winding_Clip
|
|
|
|
Clips the winding to the plane, returning the new winding on the positive side
|
|
Frees the input winding.
|
|
If keepon is true, an exactly on-plane winding will be saved, otherwise
|
|
it will be clipped away.
|
|
==================
|
|
*/
|
|
winding_t *Winding_Clip (winding_t *in, plane_t *split, qboolean keepon)
|
|
{
|
|
vec_t dists[MAX_POINTS_ON_WINDING];
|
|
int sides[MAX_POINTS_ON_WINDING];
|
|
int counts[3];
|
|
vec_t dot;
|
|
int i, j;
|
|
vec_t *p1, *p2;
|
|
vec3_t mid;
|
|
winding_t *neww;
|
|
int maxpts;
|
|
|
|
counts[0] = counts[1] = counts[2] = 0;
|
|
|
|
// determine sides for each point
|
|
for (i=0 ; i<in->numpoints ; i++)
|
|
{
|
|
dot = DotProduct (in->points[i], split->normal);
|
|
dot -= split->dist;
|
|
dists[i] = dot;
|
|
if (dot > ON_EPSILON)
|
|
sides[i] = SIDE_FRONT;
|
|
else if (dot < -ON_EPSILON)
|
|
sides[i] = SIDE_BACK;
|
|
else
|
|
{
|
|
sides[i] = SIDE_ON;
|
|
}
|
|
counts[sides[i]]++;
|
|
}
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
|
|
if (keepon && !counts[0] && !counts[1])
|
|
return in;
|
|
|
|
if (!counts[0])
|
|
{
|
|
Winding_Free (in);
|
|
return NULL;
|
|
}
|
|
if (!counts[1])
|
|
return in;
|
|
|
|
maxpts = in->numpoints+4; // can't use counts[0]+2 because
|
|
// of fp grouping errors
|
|
neww = Winding_Alloc (maxpts);
|
|
|
|
for (i=0 ; i<in->numpoints ; i++)
|
|
{
|
|
p1 = in->points[i];
|
|
|
|
if (sides[i] == SIDE_ON)
|
|
{
|
|
VectorCopy (p1, neww->points[neww->numpoints]);
|
|
neww->numpoints++;
|
|
continue;
|
|
}
|
|
|
|
if (sides[i] == SIDE_FRONT)
|
|
{
|
|
VectorCopy (p1, neww->points[neww->numpoints]);
|
|
neww->numpoints++;
|
|
}
|
|
|
|
if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
|
|
continue;
|
|
|
|
// generate a split point
|
|
p2 = in->points[(i+1)%in->numpoints];
|
|
|
|
dot = dists[i] / (dists[i]-dists[i+1]);
|
|
for (j=0 ; j<3 ; j++)
|
|
{ // avoid round off error when possible
|
|
if (split->normal[j] == 1)
|
|
mid[j] = split->dist;
|
|
else if (split->normal[j] == -1)
|
|
mid[j] = -split->dist;
|
|
else
|
|
mid[j] = p1[j] + dot*(p2[j]-p1[j]);
|
|
}
|
|
|
|
VectorCopy (mid, neww->points[neww->numpoints]);
|
|
neww->numpoints++;
|
|
}
|
|
|
|
if (neww->numpoints > maxpts)
|
|
Error ("Winding_Clip: points exceeded estimate");
|
|
|
|
// free the original winding
|
|
Winding_Free (in);
|
|
|
|
return neww;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_SplitEpsilon
|
|
|
|
split the input winding with the plane
|
|
the input winding stays untouched
|
|
=============
|
|
*/
|
|
void Winding_SplitEpsilon (winding_t *in, vec3_t normal, double dist,
|
|
vec_t epsilon, winding_t **front, winding_t **back)
|
|
{
|
|
vec_t dists[MAX_POINTS_ON_WINDING+4];
|
|
int sides[MAX_POINTS_ON_WINDING+4];
|
|
int counts[3];
|
|
vec_t dot;
|
|
int i, j;
|
|
vec_t *p1, *p2;
|
|
vec3_t mid;
|
|
winding_t *f, *b;
|
|
int maxpts;
|
|
|
|
counts[0] = counts[1] = counts[2] = 0;
|
|
|
|
// determine sides for each point
|
|
for (i = 0; i < in->numpoints; i++)
|
|
{
|
|
dot = DotProduct (in->points[i], normal);
|
|
dot -= dist;
|
|
dists[i] = dot;
|
|
if (dot > epsilon)
|
|
sides[i] = SIDE_FRONT;
|
|
else if (dot < -epsilon)
|
|
sides[i] = SIDE_BACK;
|
|
else
|
|
{
|
|
sides[i] = SIDE_ON;
|
|
}
|
|
counts[sides[i]]++;
|
|
}
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
|
|
*front = *back = NULL;
|
|
|
|
if (!counts[0])
|
|
{
|
|
*back = Winding_Clone(in);
|
|
return;
|
|
}
|
|
if (!counts[1])
|
|
{
|
|
*front = Winding_Clone(in);
|
|
return;
|
|
}
|
|
|
|
maxpts = in->numpoints+4; // cant use counts[0]+2 because
|
|
// of fp grouping errors
|
|
|
|
*front = f = Winding_Alloc (maxpts);
|
|
*back = b = Winding_Alloc (maxpts);
|
|
|
|
for (i = 0; i < in->numpoints; i++)
|
|
{
|
|
p1 = in->points[i];
|
|
|
|
if (sides[i] == SIDE_ON)
|
|
{
|
|
VectorCopy (p1, f->points[f->numpoints]);
|
|
f->numpoints++;
|
|
VectorCopy (p1, b->points[b->numpoints]);
|
|
b->numpoints++;
|
|
continue;
|
|
}
|
|
|
|
if (sides[i] == SIDE_FRONT)
|
|
{
|
|
VectorCopy (p1, f->points[f->numpoints]);
|
|
f->numpoints++;
|
|
}
|
|
if (sides[i] == SIDE_BACK)
|
|
{
|
|
VectorCopy (p1, b->points[b->numpoints]);
|
|
b->numpoints++;
|
|
}
|
|
|
|
if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
|
|
continue;
|
|
|
|
// generate a split point
|
|
p2 = in->points[(i+1)%in->numpoints];
|
|
|
|
dot = dists[i] / (dists[i]-dists[i+1]);
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
// avoid round off error when possible
|
|
if (normal[j] == 1)
|
|
mid[j] = dist;
|
|
else if (normal[j] == -1)
|
|
mid[j] = -dist;
|
|
else
|
|
mid[j] = p1[j] + dot*(p2[j]-p1[j]);
|
|
}
|
|
|
|
VectorCopy (mid, f->points[f->numpoints]);
|
|
f->numpoints++;
|
|
VectorCopy (mid, b->points[b->numpoints]);
|
|
b->numpoints++;
|
|
}
|
|
|
|
if (f->numpoints > maxpts || b->numpoints > maxpts)
|
|
Error ("Winding_Clip: points exceeded estimate");
|
|
if (f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING)
|
|
Error ("Winding_Clip: MAX_POINTS_ON_WINDING");
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_TryMerge
|
|
|
|
If two windings share a common edge and the edges that meet at the
|
|
common points are both inside the other polygons, merge them
|
|
|
|
Returns NULL if the windings couldn't be merged, or the new winding.
|
|
The originals will NOT be freed.
|
|
|
|
if keep is true no points are ever removed
|
|
=============
|
|
*/
|
|
#define CONTINUOUS_EPSILON 0.005
|
|
|
|
winding_t *Winding_TryMerge(winding_t *f1, winding_t *f2, vec3_t planenormal, int keep)
|
|
{
|
|
vec_t *p1, *p2, *p3, *p4, *back;
|
|
winding_t *newf;
|
|
int i, j, k, l;
|
|
vec3_t normal, delta;
|
|
vec_t dot;
|
|
qboolean keep1, keep2;
|
|
|
|
|
|
//
|
|
// find a common edge
|
|
//
|
|
p1 = p2 = NULL; // stop compiler warning
|
|
j = 0; //
|
|
|
|
for (i = 0; i < f1->numpoints; i++)
|
|
{
|
|
p1 = f1->points[i];
|
|
p2 = f1->points[(i+1) % f1->numpoints];
|
|
for (j = 0; j < f2->numpoints; j++)
|
|
{
|
|
p3 = f2->points[j];
|
|
p4 = f2->points[(j+1) % f2->numpoints];
|
|
for (k = 0; k < 3; k++)
|
|
{
|
|
if (fabs(p1[k] - p4[k]) > 0.1)//EQUAL_EPSILON) //ME
|
|
break;
|
|
if (fabs(p2[k] - p3[k]) > 0.1)//EQUAL_EPSILON) //ME
|
|
break;
|
|
} //end for
|
|
if (k==3)
|
|
break;
|
|
} //end for
|
|
if (j < f2->numpoints)
|
|
break;
|
|
} //end for
|
|
|
|
if (i == f1->numpoints)
|
|
return NULL; // no matching edges
|
|
|
|
//
|
|
// check slope of connected lines
|
|
// if the slopes are colinear, the point can be removed
|
|
//
|
|
back = f1->points[(i+f1->numpoints-1)%f1->numpoints];
|
|
VectorSubtract (p1, back, delta);
|
|
CrossProduct (planenormal, delta, normal);
|
|
VectorNormalize (normal, normal);
|
|
|
|
back = f2->points[(j+2)%f2->numpoints];
|
|
VectorSubtract (back, p1, delta);
|
|
dot = DotProduct (delta, normal);
|
|
if (dot > CONTINUOUS_EPSILON)
|
|
return NULL; // not a convex polygon
|
|
keep1 = (qboolean)(dot < -CONTINUOUS_EPSILON);
|
|
|
|
back = f1->points[(i+2)%f1->numpoints];
|
|
VectorSubtract (back, p2, delta);
|
|
CrossProduct (planenormal, delta, normal);
|
|
VectorNormalize (normal, normal);
|
|
|
|
back = f2->points[(j+f2->numpoints-1)%f2->numpoints];
|
|
VectorSubtract (back, p2, delta);
|
|
dot = DotProduct (delta, normal);
|
|
if (dot > CONTINUOUS_EPSILON)
|
|
return NULL; // not a convex polygon
|
|
keep2 = (qboolean)(dot < -CONTINUOUS_EPSILON);
|
|
|
|
//
|
|
// build the new polygon
|
|
//
|
|
newf = Winding_Alloc (f1->numpoints + f2->numpoints);
|
|
|
|
// copy first polygon
|
|
for (k=(i+1)%f1->numpoints ; k != i ; k=(k+1)%f1->numpoints)
|
|
{
|
|
if (!keep && k==(i+1)%f1->numpoints && !keep2)
|
|
continue;
|
|
|
|
VectorCopy (f1->points[k], newf->points[newf->numpoints]);
|
|
newf->numpoints++;
|
|
}
|
|
|
|
// copy second polygon
|
|
for (l= (j+1)%f2->numpoints ; l != j ; l=(l+1)%f2->numpoints)
|
|
{
|
|
if (!keep && l==(j+1)%f2->numpoints && !keep1)
|
|
continue;
|
|
VectorCopy (f2->points[l], newf->points[newf->numpoints]);
|
|
newf->numpoints++;
|
|
}
|
|
|
|
return newf;
|
|
}
|
|
|
|
/*
|
|
============
|
|
Winding_Plane
|
|
============
|
|
*/
|
|
void Winding_Plane (winding_t *w, vec3_t normal, double *dist)
|
|
{
|
|
vec3_t v1, v2;
|
|
int i;
|
|
|
|
//find two vectors each longer than 0.5 units
|
|
for (i = 0; i < w->numpoints; i++)
|
|
{
|
|
VectorSubtract(w->points[(i+1) % w->numpoints], w->points[i], v1);
|
|
VectorSubtract(w->points[(i+2) % w->numpoints], w->points[i], v2);
|
|
if (VectorLength(v1) > 0.5 && VectorLength(v2) > 0.5) break;
|
|
}
|
|
CrossProduct(v2, v1, normal);
|
|
VectorNormalize(normal, normal);
|
|
*dist = DotProduct(w->points[0], normal);
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_Area
|
|
=============
|
|
*/
|
|
float Winding_Area (winding_t *w)
|
|
{
|
|
int i;
|
|
vec3_t d1, d2, cross;
|
|
float total;
|
|
|
|
total = 0;
|
|
for (i=2 ; i<w->numpoints ; i++)
|
|
{
|
|
VectorSubtract (w->points[i-1], w->points[0], d1);
|
|
VectorSubtract (w->points[i], w->points[0], d2);
|
|
CrossProduct (d1, d2, cross);
|
|
total += 0.5 * VectorLength ( cross );
|
|
}
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
Winding_Bounds
|
|
=============
|
|
*/
|
|
void Winding_Bounds (winding_t *w, vec3_t mins, vec3_t maxs)
|
|
{
|
|
vec_t v;
|
|
int i,j;
|
|
|
|
mins[0] = mins[1] = mins[2] = 99999;
|
|
maxs[0] = maxs[1] = maxs[2] = -99999;
|
|
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
{
|
|
for (j=0 ; j<3 ; j++)
|
|
{
|
|
v = w->points[i][j];
|
|
if (v < mins[j])
|
|
mins[j] = v;
|
|
if (v > maxs[j])
|
|
maxs[j] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
Winding_PointInside
|
|
=================
|
|
*/
|
|
int Winding_PointInside(winding_t *w, plane_t *plane, vec3_t point, float epsilon)
|
|
{
|
|
int i;
|
|
vec3_t dir, normal, pointvec;
|
|
|
|
for (i = 0; i < w->numpoints; i++)
|
|
{
|
|
VectorSubtract(w->points[(i+1) % w->numpoints], w->points[i], dir);
|
|
VectorSubtract(point, w->points[i], pointvec);
|
|
//
|
|
CrossProduct(dir, plane->normal, normal);
|
|
//
|
|
if (DotProduct(pointvec, normal) < -epsilon) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
Winding_VectorIntersect
|
|
=================
|
|
*/
|
|
int Winding_VectorIntersect(winding_t *w, plane_t *plane, vec3_t p1, vec3_t p2, float epsilon)
|
|
{
|
|
float front, back, frac;
|
|
vec3_t mid;
|
|
|
|
front = DotProduct(p1, plane->normal) - plane->dist;
|
|
back = DotProduct(p2, plane->normal) - plane->dist;
|
|
//if both points at the same side of the plane
|
|
if (front < -epsilon && back < -epsilon) return false;
|
|
if (front > epsilon && back > epsilon) return false;
|
|
//get point of intersection with winding plane
|
|
if (fabs(front-back) < 0.001)
|
|
{
|
|
VectorCopy(p2, mid);
|
|
}
|
|
else
|
|
{
|
|
frac = front/(front-back);
|
|
mid[0] = p1[0] + (p2[0] - p1[0]) * frac;
|
|
mid[1] = p1[1] + (p2[1] - p1[1]) * frac;
|
|
mid[2] = p1[2] + (p2[2] - p1[2]) * frac;
|
|
}
|
|
return Winding_PointInside(w, plane, mid, epsilon);
|
|
}
|
|
|