gtkradiant/radiant/brush_primit.cpp
TTimo 33efc90892 more eol-style
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/branches/ZeroRadiant@185 8a3a26a2-13c4-0310-b231-cf6edde360e5
2007-11-04 03:51:54 +00:00

600 lines
24 KiB
C++

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "stdafx.h"
// compute a determinant using Sarrus rule
//++timo "inline" this with a macro
// NOTE : the three vec3_t are understood as columns of the matrix
vec_t SarrusDet(vec3_t a, vec3_t b, vec3_t c)
{
return a[0]*b[1]*c[2]+b[0]*c[1]*a[2]+c[0]*a[1]*b[2]
-c[0]*b[1]*a[2]-a[1]*b[0]*c[2]-a[0]*b[2]*c[1];
}
// in many case we know three points A,B,C in two axis base B1 and B2
// and we want the matrix M so that A(B1) = T * A(B2)
// NOTE: 2D homogeneous space stuff
// NOTE: we don't do any check to see if there's a solution or we have a particular case .. need to make sure before calling
// NOTE: the third coord of the A,B,C point is ignored
// NOTE: see the commented out section to fill M and D
//++timo TODO: update the other members to use this when possible
void MatrixForPoints( vec3_t M[3], vec3_t D[2], brushprimit_texdef_t *T )
{
// vec3_t M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way)
vec_t det;
// vec3_t D[2];
M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f;
#if 0
// fill the data vectors
M[0][0]=A2[0]; M[0][1]=B2[0]; M[0][2]=C2[0];
M[1][0]=A2[1]; M[1][1]=B2[1]; M[1][2]=C2[1];
M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f;
D[0][0]=A1[0];
D[0][1]=B1[0];
D[0][2]=C1[0];
D[1][0]=A1[1];
D[1][1]=B1[1];
D[1][2]=C1[1];
#endif
// solve
det = SarrusDet( M[0], M[1], M[2] );
T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}
//++timo replace everywhere texX by texS etc. ( ----> and in q3map !)
// NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME !
// WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0
// rotation by (0,RotY,RotZ) assigns X to normal
void ComputeAxisBase(vec3_t normal,vec3_t texS,vec3_t texT )
{
vec_t RotY,RotZ;
// do some cleaning
if (fabs(normal[0])<1e-6)
normal[0]=0.0f;
if (fabs(normal[1])<1e-6)
normal[1]=0.0f;
if (fabs(normal[2])<1e-6)
normal[2]=0.0f;
RotY=-atan2(normal[2],sqrt(normal[1]*normal[1]+normal[0]*normal[0]));
RotZ=atan2(normal[1],normal[0]);
// rotate (0,1,0) and (0,0,1) to compute texS and texT
texS[0]=-sin(RotZ);
texS[1]=cos(RotZ);
texS[2]=0;
// the texT vector is along -Z ( T texture coorinates axis )
texT[0]=-sin(RotY)*cos(RotZ);
texT[1]=-sin(RotY)*sin(RotZ);
texT[2]=-cos(RotY);
}
void FaceToBrushPrimitFace(face_t *f)
{
vec3_t texX,texY;
vec3_t proj;
// ST of (0,0) (1,0) (0,1)
vec_t ST[3][5]; // [ point index ] [ xyz ST ]
//++timo not used as long as brushprimit_texdef and texdef are static
/* f->brushprimit_texdef.contents=f->texdef.contents;
f->brushprimit_texdef.flags=f->texdef.flags;
f->brushprimit_texdef.value=f->texdef.value;
strcpy(f->brushprimit_texdef.name,f->texdef.name); */
#ifdef DBG_BP
if ( f->plane.normal[0]==0.0f && f->plane.normal[1]==0.0f && f->plane.normal[2]==0.0f )
{
Sys_Printf("Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n");
}
// check d_texture
if (!f->d_texture)
{
Sys_Printf("Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n");
return;
}
#endif
// compute axis base
ComputeAxisBase(f->plane.normal,texX,texY);
// compute projection vector
VectorCopy(f->plane.normal,proj);
VectorScale(proj,f->plane.dist,proj);
// (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane
// (1,0) in plane axis base is texX in world coordinates + projection on the affine plane
// (0,1) in plane axis base is texY in world coordinates + projection on the affine plane
// use old texture code to compute the ST coords of these points
VectorCopy(proj,ST[0]);
EmitTextureCoordinates(ST[0], f->d_texture, f);
VectorCopy(texX,ST[1]);
VectorAdd(ST[1],proj,ST[1]);
EmitTextureCoordinates(ST[1], f->d_texture, f);
VectorCopy(texY,ST[2]);
VectorAdd(ST[2],proj,ST[2]);
EmitTextureCoordinates(ST[2], f->d_texture, f);
// compute texture matrix
f->brushprimit_texdef.coords[0][2]=ST[0][3];
f->brushprimit_texdef.coords[1][2]=ST[0][4];
f->brushprimit_texdef.coords[0][0]=ST[1][3]-f->brushprimit_texdef.coords[0][2];
f->brushprimit_texdef.coords[1][0]=ST[1][4]-f->brushprimit_texdef.coords[1][2];
f->brushprimit_texdef.coords[0][1]=ST[2][3]-f->brushprimit_texdef.coords[0][2];
f->brushprimit_texdef.coords[1][1]=ST[2][4]-f->brushprimit_texdef.coords[1][2];
}
// compute texture coordinates for the winding points
void EmitBrushPrimitTextureCoordinates(face_t * f, winding_t * w)
{
vec3_t texX,texY;
vec_t x,y;
// compute axis base
ComputeAxisBase(f->plane.normal,texX,texY);
// in case the texcoords matrix is empty, build a default one
// same behaviour as if scale[0]==0 && scale[1]==0 in old code
if (f->brushprimit_texdef.coords[0][0]==0 && f->brushprimit_texdef.coords[1][0]==0 && f->brushprimit_texdef.coords[0][1]==0 && f->brushprimit_texdef.coords[1][1]==0)
{
f->brushprimit_texdef.coords[0][0] = 1.0f;
f->brushprimit_texdef.coords[1][1] = 1.0f;
ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture );
}
int i;
for (i=0 ; i<w->numpoints ; i++)
{
x=DotProduct(w->points[i],texX);
y=DotProduct(w->points[i],texY);
#ifdef DBG_BP
if (g_qeglobals.bNeedConvert)
{
// check we compute the same ST as the traditional texture computation used before
vec_t S=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2];
vec_t T=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2];
if ( fabs(S-w->points[i][3])>1e-2 || fabs(T-w->points[i][4])>1e-2 )
{
if ( fabs(S-w->points[i][3])>1e-4 || fabs(T-w->points[i][4])>1e-4 )
Sys_Printf("Warning : precision loss in brush -> brush primitive texture computation\n");
else
Sys_Printf("Warning : brush -> brush primitive texture computation bug detected\n");
}
}
#endif
w->points[i][3]=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2];
w->points[i][4]=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2];
}
}
// compute a fake shift scale rot representation from the texture matrix
// these shift scale rot values are to be understood in the local axis base
void TexMatToFakeTexCoords( vec_t texMat[2][3], float shift[2], float *rot, float scale[2] )
{
#ifdef DBG_BP
// check this matrix is orthogonal
if (fabs(texMat[0][0]*texMat[0][1]+texMat[1][0]*texMat[1][1])>ZERO_EPSILON)
Sys_Printf("Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n");
#endif
scale[0]=sqrt(texMat[0][0]*texMat[0][0]+texMat[1][0]*texMat[1][0]);
scale[1]=sqrt(texMat[0][1]*texMat[0][1]+texMat[1][1]*texMat[1][1]);
#ifdef DBG_BP
if (scale[0]<ZERO_EPSILON || scale[1]<ZERO_EPSILON)
Sys_Printf("Warning : unexpected scale==0 in TexMatToFakeTexCoords\n");
#endif
// compute rotate value
if (fabs(texMat[0][0])<ZERO_EPSILON)
{
#ifdef DBG_BP
// check brushprimit_texdef[1][0] is not zero
if (fabs(texMat[1][0])<ZERO_EPSILON)
Sys_Printf("Warning : unexpected texdef[1][0]==0 in TexMatToFakeTexCoords\n");
#endif
// rotate is +-90
if (texMat[1][0]>0)
*rot=90.0f;
else
*rot=-90.0f;
}
else
*rot = RAD2DEG( atan2( texMat[1][0], texMat[0][0] ) );
shift[0] = -texMat[0][2];
shift[1] = texMat[1][2];
}
// compute back the texture matrix from fake shift scale rot
// the matrix returned must be understood as a qtexture_t with width=2 height=2 ( the default one )
void FakeTexCoordsToTexMat( float shift[2], float rot, float scale[2], vec_t texMat[2][3] )
{
texMat[0][0] = scale[0] * cos( DEG2RAD( rot ) );
texMat[1][0] = scale[0] * sin( DEG2RAD( rot ) );
texMat[0][1] = -1.0f * scale[1] * sin( DEG2RAD( rot ) );
texMat[1][1] = scale[1] * cos( DEG2RAD( rot ) );
texMat[0][2] = -shift[0];
texMat[1][2] = shift[1];
}
// convert a texture matrix between two qtexture_t
// if NULL for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates )
void ConvertTexMatWithQTexture( vec_t texMat1[2][3], qtexture_t *qtex1, vec_t texMat2[2][3], qtexture_t *qtex2 )
{
float s1,s2;
s1 = ( qtex1 ? static_cast<float>( qtex1->width ) : 2.0f ) / ( qtex2 ? static_cast<float>( qtex2->width ) : 2.0f );
s2 = ( qtex1 ? static_cast<float>( qtex1->height ) : 2.0f ) / ( qtex2 ? static_cast<float>( qtex2->height ) : 2.0f );
texMat2[0][0]=s1*texMat1[0][0];
texMat2[0][1]=s1*texMat1[0][1];
texMat2[0][2]=s1*texMat1[0][2];
texMat2[1][0]=s2*texMat1[1][0];
texMat2[1][1]=s2*texMat1[1][1];
texMat2[1][2]=s2*texMat1[1][2];
}
void ConvertTexMatWithQTexture( brushprimit_texdef_t *texMat1, qtexture_t *qtex1, brushprimit_texdef_t *texMat2, qtexture_t *qtex2 )
{
ConvertTexMatWithQTexture(texMat1->coords, qtex1, texMat2->coords, qtex2);
}
// used for texture locking
// will move the texture according to a geometric vector
void ShiftTextureGeometric_BrushPrimit(face_t *f, vec3_t delta)
{
vec3_t texS,texT;
vec_t tx,ty;
vec3_t M[3]; // columns of the matrix .. easier that way
vec_t det;
vec3_t D[2];
// compute plane axis base ( doesn't change with translation )
ComputeAxisBase( f->plane.normal, texS, texT );
// compute translation vector in plane axis base
tx = DotProduct( delta, texS );
ty = DotProduct( delta, texT );
// fill the data vectors
M[0][0]=tx; M[0][1]=1.0f+tx; M[0][2]=tx;
M[1][0]=ty; M[1][1]=ty; M[1][2]=1.0f+ty;
M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f;
D[0][0]=f->brushprimit_texdef.coords[0][2];
D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2];
D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2];
D[1][0]=f->brushprimit_texdef.coords[1][2];
D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2];
D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2];
// solve
det = SarrusDet( M[0], M[1], M[2] );
f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}
// shift a texture (texture adjustments) along it's current texture axes
// x and y are geometric values, which we must compute as ST increments
// this depends on the texture size and the pixel/texel ratio
void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y)
{
float s,t;
// as a ratio against texture size
// the scale of the texture is not relevant here (we work directly on a transformation from the base vectors)
s = (x * 2.0) / (float)f->d_texture->width;
t = (y * 2.0) / (float)f->d_texture->height;
f->brushprimit_texdef.coords[0][2] -= s;
f->brushprimit_texdef.coords[1][2] -= t;
}
// TTimo: FIXME: I don't like that, it feels broken
// (and it's likely that it's not used anymore)
// best fitted 2D vector is x.X+y.Y
void ComputeBest2DVector( vec3_t v, vec3_t X, vec3_t Y, int &x, int &y )
{
double sx,sy;
sx = DotProduct( v, X );
sy = DotProduct( v, Y );
if ( fabs(sy) > fabs(sx) )
{
x = 0;
if ( sy > 0.0 )
y = 1;
else
y = -1;
}
else
{
y = 0;
if ( sx > 0.0 )
x = 1;
else
x = -1;
}
}
//++timo FIXME quick'n dirty hack, doesn't care about current texture settings (angle)
// can be improved .. bug #107311
// mins and maxs are the face bounding box
//++timo fixme: we use the face info, mins and maxs are irrelevant
void Face_FitTexture_BrushPrimit( face_t *f, vec3_t mins, vec3_t maxs, int nHeight, int nWidth )
{
vec3_t BBoxSTMin, BBoxSTMax;
winding_t *w;
int i,j;
vec_t val;
vec3_t M[3],D[2];
// vec3_t N[2],Mf[2];
brushprimit_texdef_t N;
vec3_t Mf[2];
// we'll be working on a standardized texture size
// ConvertTexMatWithQTexture( &f->brushprimit_texdef, f->d_texture, &f->brushprimit_texdef, NULL );
// compute the BBox in ST coords
EmitBrushPrimitTextureCoordinates( f, f->face_winding );
ClearBounds( BBoxSTMin, BBoxSTMax );
w = f->face_winding;
for (i=0 ; i<w->numpoints ; i++)
{
// AddPointToBounds in 2D on (S,T) coordinates
for (j=0 ; j<2 ; j++)
{
val = w->points[i][j+3];
if (val < BBoxSTMin[j])
BBoxSTMin[j] = val;
if (val > BBoxSTMax[j])
BBoxSTMax[j] = val;
}
}
// we have the three points of the BBox (BBoxSTMin[0].BBoxSTMin[1]) (BBoxSTMax[0],BBoxSTMin[1]) (BBoxSTMin[0],BBoxSTMax[1]) in ST space
// the BP matrix we are looking for gives (0,0) (nwidth,0) (0,nHeight) coordinates in (Sfit,Tfit) space to these three points
// we have A(Sfit,Tfit) = (0,0) = Mf * A(TexS,TexT) = N * M * A(TexS,TexT) = N * A(S,T)
// so we solve the system for N and then Mf = N * M
M[0][0] = BBoxSTMin[0]; M[0][1] = BBoxSTMax[0]; M[0][2] = BBoxSTMin[0];
M[1][0] = BBoxSTMin[1]; M[1][1] = BBoxSTMin[1]; M[1][2] = BBoxSTMax[1];
D[0][0] = 0.0f; D[0][1] = nWidth; D[0][2] = 0.0f;
D[1][0] = 0.0f; D[1][1] = 0.0f; D[1][2] = nHeight;
MatrixForPoints( M, D, &N );
#if 0
// FIT operation gives coordinates of three points of the bounding box in (S',T'), our target axis base
// A(S',T')=(0,0) B(S',T')=(nWidth,0) C(S',T')=(0,nHeight)
// and we have them in (S,T) axis base: A(S,T)=(BBoxSTMin[0],BBoxSTMin[1]) B(S,T)=(BBoxSTMax[0],BBoxSTMin[1]) C(S,T)=(BBoxSTMin[0],BBoxSTMax[1])
// we compute the N transformation so that: A(S',T') = N * A(S,T)
VectorSet( N[0], (BBoxSTMax[0]-BBoxSTMin[0])/(float)nWidth, 0.0f, BBoxSTMin[0] );
VectorSet( N[1], 0.0f, (BBoxSTMax[1]-BBoxSTMin[1])/(float)nHeight, BBoxSTMin[1] );
#endif
// the final matrix is the product (Mf stands for Mfit)
Mf[0][0] = N.coords[0][0] * f->brushprimit_texdef.coords[0][0] + N.coords[0][1] * f->brushprimit_texdef.coords[1][0];
Mf[0][1] = N.coords[0][0] * f->brushprimit_texdef.coords[0][1] + N.coords[0][1] * f->brushprimit_texdef.coords[1][1];
Mf[0][2] = N.coords[0][0] * f->brushprimit_texdef.coords[0][2] + N.coords[0][1] * f->brushprimit_texdef.coords[1][2] + N.coords[0][2];
Mf[1][0] = N.coords[1][0] * f->brushprimit_texdef.coords[0][0] + N.coords[1][1] * f->brushprimit_texdef.coords[1][0];
Mf[1][1] = N.coords[1][0] * f->brushprimit_texdef.coords[0][1] + N.coords[1][1] * f->brushprimit_texdef.coords[1][1];
Mf[1][2] = N.coords[1][0] * f->brushprimit_texdef.coords[0][2] + N.coords[1][1] * f->brushprimit_texdef.coords[1][2] + N.coords[1][2];
// copy back
VectorCopy( Mf[0], f->brushprimit_texdef.coords[0] );
VectorCopy( Mf[1], f->brushprimit_texdef.coords[1] );
// handle the texture size
// ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture );
}
void BrushPrimitFaceToFace(face_t *face)
{
// we have parsed brush primitives and need conversion back to standard format
// NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it
// FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling
// I tried various tweaks, no luck .. seems shifting is lost
brushprimit_texdef_t aux;
ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->d_texture, &aux, NULL );
TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale );
face->texdef.scale[0]/=2.0;
face->texdef.scale[1]/=2.0;
}
// TEXTURE LOCKING -----------------------------------------------------------------------------------------------------
// (Relevant to the editor only?)
// internally used for texture locking on rotation and flipping
// the general algorithm is the same for both lockings, it's only the geometric transformation part that changes
// so I wanted to keep it in a single function
// if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best
// (but right now I want to keep brush_primit.cpp striclty C)
qboolean txlock_bRotation;
// rotation locking params
int txl_nAxis;
float txl_fDeg;
vec3_t txl_vOrigin;
// flip locking params
vec3_t txl_matrix[3];
vec3_t txl_origin;
void TextureLockTransformation_BrushPrimit(face_t *f)
{
vec3_t Orig,texS,texT; // axis base of initial plane
// used by transformation algo
vec3_t temp; int j;
vec3_t vRotate; // rotation vector
vec3_t rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base }
vec3_t rNormal,rtexS,rtexT; // axis base for the transformed plane
vec3_t lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging )
vec3_t M[3];
vec_t det;
vec3_t D[2];
// compute plane axis base
ComputeAxisBase( f->plane.normal, texS, texT );
VectorSet(Orig, 0.0f, 0.0f, 0.0f);
// compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation
// (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base )
// input: Orig, texS, texT (and the global locking params)
// ouput: rOrig, rvecS, rvecT, rNormal
if (txlock_bRotation) {
// rotation vector
VectorSet( vRotate, 0.0f, 0.0f, 0.0f );
vRotate[txl_nAxis]=txl_fDeg;
VectorRotateOrigin ( Orig, vRotate, txl_vOrigin, rOrig );
VectorRotateOrigin ( texS, vRotate, txl_vOrigin, rvecS );
VectorRotateOrigin ( texT, vRotate, txl_vOrigin, rvecT );
// compute normal of plane after rotation
VectorRotate ( f->plane.normal, vRotate, rNormal );
}
else
{
VectorSubtract (Orig, txl_origin, temp);
for (j=0 ; j<3 ; j++)
rOrig[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j];
VectorSubtract (texS, txl_origin, temp);
for (j=0 ; j<3 ; j++)
rvecS[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j];
VectorSubtract (texT, txl_origin, temp);
for (j=0 ; j<3 ; j++)
rvecT[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j];
// we also need the axis base of the target plane, apply the transformation matrix to the normal too..
for (j=0 ; j<3 ; j++)
rNormal[j] = DotProduct(f->plane.normal, txl_matrix[j]);
}
// compute rotated plane axis base
ComputeAxisBase( rNormal, rtexS, rtexT );
// compute S/T coordinates of the three points in rotated axis base ( in M matrix )
lOrig[0] = DotProduct( rOrig, rtexS );
lOrig[1] = DotProduct( rOrig, rtexT );
lvecS[0] = DotProduct( rvecS, rtexS );
lvecS[1] = DotProduct( rvecS, rtexT );
lvecT[0] = DotProduct( rvecT, rtexS );
lvecT[1] = DotProduct( rvecT, rtexT );
M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f;
M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f;
M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f;
// fill data vector
D[0][0]=f->brushprimit_texdef.coords[0][2];
D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2];
D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2];
D[1][0]=f->brushprimit_texdef.coords[1][2];
D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2];
D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2];
// solve
det = SarrusDet( M[0], M[1], M[2] );
f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}
// texture locking
// called before the points on the face are actually rotated
void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, vec3_t vOrigin )
{
// this is a placeholder to call the general texture locking algorithm
txlock_bRotation = true;
txl_nAxis = nAxis;
txl_fDeg = fDeg;
VectorCopy(vOrigin, txl_vOrigin);
TextureLockTransformation_BrushPrimit(f);
}
// compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation)
// this matches the select_matrix algo used in select.cpp
// this needs to be called on the face BEFORE any geometric transformation
// it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done
void ApplyMatrix_BrushPrimit(face_t *f, vec3_t matrix[3], vec3_t origin)
{
// this is a placeholder to call the general texture locking algorithm
txlock_bRotation = false;
VectorCopy(matrix[0], txl_matrix[0]);
VectorCopy(matrix[1], txl_matrix[1]);
VectorCopy(matrix[2], txl_matrix[2]);
VectorCopy(origin, txl_origin);
TextureLockTransformation_BrushPrimit(f);
}
// don't do C==A!
void BPMatMul(vec_t A[2][3], vec_t B[2][3], vec_t C[2][3])
{
C[0][0] = A[0][0]*B[0][0]+A[0][1]*B[1][0];
C[1][0] = A[1][0]*B[0][0]+A[1][1]*B[1][0];
C[0][1] = A[0][0]*B[0][1]+A[0][1]*B[1][1];
C[1][1] = A[1][0]*B[0][1]+A[1][1]*B[1][1];
C[0][2] = A[0][0]*B[0][2]+A[0][1]*B[1][2]+A[0][2];
C[1][2] = A[1][0]*B[0][2]+A[1][1]*B[1][2]+A[1][2];
}
void BPMatDump(vec_t A[2][3])
{
Sys_Printf("%g %g %g\n%g %g %g\n0 0 1\n", A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2]);
}
void BPMatRotate(vec_t A[2][3], float theta)
{
vec_t m[2][3];
vec_t aux[2][3];
memset(&m, 0, sizeof(vec_t)*6);
m[0][0] = cos(theta*Q_PI/180.0);
m[0][1] = -sin(theta*Q_PI/180.0);
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
BPMatMul(A, m, aux);
BPMatCopy(aux,A);
}
// get the relative axes of the current texturing
void BrushPrimit_GetRelativeAxes(face_t *f, vec3_t vecS, vec3_t vecT)
{
vec_t vS[2],vT[2];
// first we compute them as expressed in plane axis base
// BP matrix has coordinates of plane axis base expressed in geometric axis base
// so we use the line vectors
vS[0] = f->brushprimit_texdef.coords[0][0];
vS[1] = f->brushprimit_texdef.coords[0][1];
vT[0] = f->brushprimit_texdef.coords[1][0];
vT[1] = f->brushprimit_texdef.coords[1][1];
// now compute those vectors in geometric space
vec3_t texS, texT; // axis base of the plane (geometric)
ComputeAxisBase(f->plane.normal, texS, texT);
// vecS[] = vS[0].texS[] + vS[1].texT[]
// vecT[] = vT[0].texS[] + vT[1].texT[]
vecS[0] = vS[0]*texS[0] + vS[1]*texT[0];
vecS[1] = vS[0]*texS[1] + vS[1]*texT[1];
vecS[2] = vS[0]*texS[2] + vS[1]*texT[2];
vecT[0] = vT[0]*texS[0] + vT[1]*texT[0];
vecT[1] = vT[0]*texS[1] + vT[1]*texT[1];
vecT[2] = vT[0]*texS[2] + vT[1]*texT[2];
}
// GL matrix 4x4 product (3D homogeneous matrix)
// NOTE: the crappy thing is that GL doesn't follow the standard convention [line][column]
// otherwise it's all good
void GLMatMul(vec_t M[4][4], vec_t A[4], vec_t B[4])
{
unsigned short i,j;
for (i=0;i<4;i++)
{
B[i] = 0.0;
for (j=0;j<4;j++)
{
B[i] += M[j][i]*A[j];
}
}
}
qboolean IsBrushPrimitMode()
{
return(g_qeglobals.m_bBrushPrimitMode);
}