mirror of
https://github.com/TTimo/GtkRadiant.git
synced 2025-01-10 20:10:56 +00:00
143 lines
5 KiB
C
143 lines
5 KiB
C
/*
|
|
This code provided under the terms of the Id Software
|
|
LIMITED USE SOFTWARE LICENSE AGREEMENT, a copy of which is included with the
|
|
GtkRadiant sources (see LICENSE_ID). If you did not receive a copy of
|
|
LICENSE_ID, please contact Id Software immediately at info@idsoftware.com.
|
|
|
|
All changes and additions to the original source which have been developed by
|
|
other contributors (see CONTRIBUTORS) are provided under the terms of the
|
|
license the contributors choose (see LICENSE), to the extent permitted by the
|
|
LICENSE_ID. If you did not receive a copy of the contributor license,
|
|
please contact the GtkRadiant maintainers at info@gtkradiant.com immediately.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
|
|
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "mathlib.h"
|
|
#include <float.h>
|
|
|
|
vec3_t identity = { 0,0,0 };
|
|
|
|
void ray_construct_for_vec3(ray_t *ray, const vec3_t origin, const vec3_t direction)
|
|
{
|
|
VectorCopy(origin, ray->origin);
|
|
VectorCopy(direction, ray->direction);
|
|
}
|
|
|
|
void ray_transform(ray_t *ray, const m4x4_t matrix)
|
|
{
|
|
m4x4_transform_point(matrix, ray->origin);
|
|
m4x4_transform_normal(matrix, ray->direction);
|
|
}
|
|
|
|
vec_t ray_intersect_point(const ray_t *ray, const vec3_t point, vec_t epsilon, vec_t divergence)
|
|
{
|
|
vec3_t displacement;
|
|
vec_t depth;
|
|
|
|
// calc displacement of test point from ray origin
|
|
VectorSubtract(point, ray->origin, displacement);
|
|
// calc length of displacement vector along ray direction
|
|
depth = DotProduct(displacement, ray->direction);
|
|
if(depth < 0.0f) return (vec_t)FLT_MAX;
|
|
// calc position of closest point on ray to test point
|
|
VectorMA (ray->origin, depth, ray->direction, displacement);
|
|
// calc displacement of test point from closest point
|
|
VectorSubtract(point, displacement, displacement);
|
|
// calc length of displacement, subtract depth-dependant epsilon
|
|
if (VectorLength(displacement) - (epsilon + (depth * divergence)) > 0.0f) return (vec_t)FLT_MAX;
|
|
return depth;
|
|
}
|
|
|
|
// Tomas Moller and Ben Trumbore. Fast, minimum storage ray-triangle intersection. Journal of graphics tools, 2(1):21-28, 1997
|
|
|
|
#define EPSILON 0.000001
|
|
|
|
vec_t ray_intersect_triangle(const ray_t *ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2)
|
|
{
|
|
float edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
|
|
float det,inv_det;
|
|
float u, v;
|
|
vec_t depth = (vec_t)FLT_MAX;
|
|
|
|
/* find vectors for two edges sharing vert0 */
|
|
VectorSubtract(vert1, vert0, edge1);
|
|
VectorSubtract(vert2, vert0, edge2);
|
|
|
|
/* begin calculating determinant - also used to calculate U parameter */
|
|
CrossProduct(ray->direction, edge2, pvec);
|
|
|
|
/* if determinant is near zero, ray lies in plane of triangle */
|
|
det = DotProduct(edge1, pvec);
|
|
|
|
if (bCullBack == qtrue)
|
|
{
|
|
if (det < EPSILON)
|
|
return depth;
|
|
|
|
// calculate distance from vert0 to ray origin
|
|
VectorSubtract(ray->origin, vert0, tvec);
|
|
|
|
// calculate U parameter and test bounds
|
|
u = DotProduct(tvec, pvec);
|
|
if (u < 0.0 || u > det)
|
|
return depth;
|
|
|
|
// prepare to test V parameter
|
|
CrossProduct(tvec, edge1, qvec);
|
|
|
|
// calculate V parameter and test bounds
|
|
v = DotProduct(ray->direction, qvec);
|
|
if (v < 0.0 || u + v > det)
|
|
return depth;
|
|
|
|
// calculate t, scale parameters, ray intersects triangle
|
|
depth = DotProduct(edge2, qvec);
|
|
inv_det = 1.0f / det;
|
|
depth *= inv_det;
|
|
//u *= inv_det;
|
|
//v *= inv_det;
|
|
}
|
|
else
|
|
{
|
|
/* the non-culling branch */
|
|
if (det > -EPSILON && det < EPSILON)
|
|
return depth;
|
|
inv_det = 1.0f / det;
|
|
|
|
/* calculate distance from vert0 to ray origin */
|
|
VectorSubtract(ray->origin, vert0, tvec);
|
|
|
|
/* calculate U parameter and test bounds */
|
|
u = DotProduct(tvec, pvec) * inv_det;
|
|
if (u < 0.0 || u > 1.0)
|
|
return depth;
|
|
|
|
/* prepare to test V parameter */
|
|
CrossProduct(tvec, edge1, qvec);
|
|
|
|
/* calculate V parameter and test bounds */
|
|
v = DotProduct(ray->direction, qvec) * inv_det;
|
|
if (v < 0.0 || u + v > 1.0)
|
|
return depth;
|
|
|
|
/* calculate t, ray intersects triangle */
|
|
depth = DotProduct(edge2, qvec) * inv_det;
|
|
}
|
|
return depth;
|
|
}
|
|
|
|
vec_t ray_intersect_plane(const ray_t* ray, const vec3_t normal, vec_t dist)
|
|
{
|
|
return -(DotProduct(normal, ray->origin) - dist) / DotProduct(ray->direction, normal);
|
|
}
|
|
|