gtkradiant/tools/quake2/q2map/patches.c
2012-03-17 15:01:54 -05:00

603 lines
13 KiB
C

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "qrad.h"
vec3_t texture_reflectivity[MAX_MAP_TEXINFO];
/*
===================================================================
TEXTURE LIGHT VALUES
===================================================================
*/
/*
======================
CalcTextureReflectivity_Quake2
======================
*/
void CalcTextureReflectivity_Quake2( void ){
int i;
int j, k, texels;
int color[3];
int texel;
byte *palette;
char path[1024];
float r, scale;
miptex_t *mt;
sprintf( path, "%spics/colormap.pcx", gamedir );
// get the game palette
Load256Image( path, NULL, &palette, NULL, NULL );
// allways set index 0 even if no textures
texture_reflectivity[0][0] = 0.5;
texture_reflectivity[0][1] = 0.5;
texture_reflectivity[0][2] = 0.5;
for ( i = 0 ; i < numtexinfo ; i++ )
{
// see if an earlier texinfo allready got the value
for ( j = 0 ; j < i ; j++ )
{
if ( !strcmp( texinfo[i].texture, texinfo[j].texture ) ) {
VectorCopy( texture_reflectivity[j], texture_reflectivity[i] );
break;
}
}
if ( j != i ) {
continue;
}
// load the wal file
sprintf( path, "%stextures/%s.wal", gamedir, texinfo[i].texture );
if ( TryLoadFile( path, (void **)&mt ) == -1 ) {
Sys_Printf( "Couldn't load %s\n", path );
texture_reflectivity[i][0] = 0.5;
texture_reflectivity[i][1] = 0.5;
texture_reflectivity[i][2] = 0.5;
continue;
}
texels = LittleLong( mt->width ) * LittleLong( mt->height );
color[0] = color[1] = color[2] = 0;
for ( j = 0 ; j < texels ; j++ )
{
texel = ( (byte *)mt )[LittleLong( mt->offsets[0] ) + j];
for ( k = 0 ; k < 3 ; k++ )
color[k] += palette[texel * 3 + k];
}
for ( j = 0 ; j < 3 ; j++ )
{
r = color[j] / texels / 255.0;
texture_reflectivity[i][j] = r;
}
// scale the reflectivity up, because the textures are
// so dim
scale = ColorNormalize( texture_reflectivity[i],
texture_reflectivity[i] );
if ( scale < 0.5 ) {
scale *= 2;
VectorScale( texture_reflectivity[i], scale, texture_reflectivity[i] );
}
#if 0
texture_reflectivity[i][0] = 0.5;
texture_reflectivity[i][1] = 0.5;
texture_reflectivity[i][2] = 0.5;
#endif
}
}
/*
======================
CalcTextureReflectivity_Heretic2
======================
*/
void CalcTextureReflectivity_Heretic2( void ){
int i;
int j, texels;
int color[3];
int texel;
char path[1024];
float r;
miptex_m8_t *mt;
miptex_m32_t *mt32;
byte *pos;
// allways set index 0 even if no textures
texture_reflectivity[0][0] = 0.5;
texture_reflectivity[0][1] = 0.5;
texture_reflectivity[0][2] = 0.5;
for ( i = 0 ; i < numtexinfo ; i++ )
{
// see if an earlier texinfo allready got the value
for ( j = 0 ; j < i ; j++ )
{
if ( !strcmp( texinfo[i].texture, texinfo[j].texture ) ) {
VectorCopy( texture_reflectivity[j], texture_reflectivity[i] );
break;
}
}
if ( j != i ) {
continue;
}
// load the wal file
sprintf( path, "%stextures/%s.m32", gamedir, texinfo[i].texture );
if ( TryLoadFile( path, (void **)&mt32 ) == -1 ) {
sprintf( path, "%stextures/%s.m8", gamedir, texinfo[i].texture );
if ( TryLoadFile( path, (void **)&mt ) == -1 ) {
Sys_Printf( "Couldn't load %s\n", path );
texture_reflectivity[i][0] = 0.5;
texture_reflectivity[i][1] = 0.5;
texture_reflectivity[i][2] = 0.5;
continue;
}
texels = LittleLong( mt->width[0] ) * LittleLong( mt->height[0] );
color[0] = color[1] = color[2] = 0;
for ( j = 0 ; j < texels ; j++ )
{
texel = ( (byte *)mt )[LittleLong( mt->offsets[0] ) + j];
color[0] += mt->palette[texel].r;
color[1] += mt->palette[texel].g;
color[2] += mt->palette[texel].b;
}
free( mt );
}
else
{
texels = LittleLong( mt32->width[0] ) * LittleLong( mt32->height[0] );
color[0] = color[1] = color[2] = 0;
for ( j = 0 ; j < texels ; j++ )
{
pos = (byte *)mt32 + mt32->offsets[0] + ( j << 2 );
color[0] += *pos++; // r
color[1] += *pos++; // g
color[2] += *pos++; // b
}
free( mt32 );
}
for ( j = 0 ; j < 3 ; j++ )
{
r = color[j] / ( (float) texels * 255.0 );
texture_reflectivity[i][j] = r;
}
}
}
/*
=======================================================================
MAKE FACES
=======================================================================
*/
/*
=============
WindingFromFace
=============
*/
winding_t *WindingFromFace( dface_t *f ){
int i;
int se;
dvertex_t *dv;
int v;
winding_t *w;
w = AllocWinding( f->numedges );
w->numpoints = f->numedges;
for ( i = 0 ; i < f->numedges ; i++ )
{
se = dsurfedges[f->firstedge + i];
if ( se < 0 ) {
v = dedges[-se].v[1];
}
else{
v = dedges[se].v[0];
}
dv = &dvertexes[v];
VectorCopy( dv->point, w->p[i] );
}
RemoveColinearPoints( w );
return w;
}
/*
=============
BaseLightForFace
=============
*/
void BaseLightForFace( dface_t *f, vec3_t color ){
texinfo_t *tx;
//
// check for light emited by texture
//
tx = &texinfo[f->texinfo];
if ( !( tx->flags & SURF_LIGHT ) || tx->value == 0 ) {
VectorClear( color );
return;
}
VectorScale( texture_reflectivity[f->texinfo], tx->value, color );
}
qboolean IsSky( dface_t *f ){
texinfo_t *tx;
tx = &texinfo[f->texinfo];
if ( tx->flags & SURF_SKY ) {
return true;
}
return false;
}
/*
=============
MakePatchForFace
=============
*/
float totalarea;
void MakePatchForFace( int fn, winding_t *w ){
dface_t *f;
float area;
patch_t *patch;
dplane_t *pl;
int i;
vec3_t color;
dleaf_t *leaf;
f = &dfaces[fn];
area = WindingArea( w );
totalarea += area;
patch = &patches[num_patches];
if ( num_patches == MAX_PATCHES ) {
Error( "num_patches == MAX_PATCHES" );
}
patch->next = face_patches[fn];
face_patches[fn] = patch;
patch->winding = w;
if ( f->side ) {
patch->plane = &backplanes[f->planenum];
}
else{
patch->plane = &dplanes[f->planenum];
}
if ( face_offset[fn][0] || face_offset[fn][1] || face_offset[fn][2] ) { // origin offset faces must create new planes
if ( numplanes + fakeplanes >= MAX_MAP_PLANES ) {
Error( "numplanes + fakeplanes >= MAX_MAP_PLANES" );
}
pl = &dplanes[numplanes + fakeplanes];
fakeplanes++;
*pl = *( patch->plane );
pl->dist += DotProduct( face_offset[fn], pl->normal );
patch->plane = pl;
}
WindingCenter( w, patch->origin );
VectorAdd( patch->origin, patch->plane->normal, patch->origin );
leaf = Rad_PointInLeaf( patch->origin );
patch->cluster = leaf->cluster;
if ( patch->cluster == -1 ) {
Sys_FPrintf( SYS_VRB, "patch->cluster == -1\n" );
}
patch->area = area;
if ( patch->area <= 1 ) {
patch->area = 1;
}
patch->sky = IsSky( f );
VectorCopy( texture_reflectivity[f->texinfo], patch->reflectivity );
// non-bmodel patches can emit light
if ( fn < dmodels[0].numfaces ) {
BaseLightForFace( f, patch->baselight );
ColorNormalize( patch->reflectivity, color );
for ( i = 0 ; i < 3 ; i++ )
patch->baselight[i] *= color[i];
VectorCopy( patch->baselight, patch->totallight );
}
num_patches++;
}
entity_t *EntityForModel( int modnum ){
int i;
char *s;
char name[16];
sprintf( name, "*%i", modnum );
// search the entities for one using modnum
for ( i = 0 ; i < num_entities ; i++ )
{
s = ValueForKey( &entities[i], "model" );
if ( !strcmp( s, name ) ) {
return &entities[i];
}
}
return &entities[0];
}
/*
=============
MakePatches
=============
*/
void MakePatches( void ){
int i, j, k;
dface_t *f;
int fn;
winding_t *w;
dmodel_t *mod;
vec3_t origin;
entity_t *ent;
Sys_FPrintf( SYS_VRB, "%i faces\n", numfaces );
for ( i = 0 ; i < nummodels ; i++ )
{
mod = &dmodels[i];
ent = EntityForModel( i );
// bmodels with origin brushes need to be offset into their
// in-use position
GetVectorForKey( ent, "origin", origin );
//VectorCopy (vec3_origin, origin);
for ( j = 0 ; j < mod->numfaces ; j++ )
{
fn = mod->firstface + j;
face_entity[fn] = ent;
VectorCopy( origin, face_offset[fn] );
f = &dfaces[fn];
w = WindingFromFace( f );
for ( k = 0 ; k < w->numpoints ; k++ )
{
VectorAdd( w->p[k], origin, w->p[k] );
}
MakePatchForFace( fn, w );
}
}
Sys_FPrintf( SYS_VRB, "%i sqaure feet\n", (int)( totalarea / 64 ) );
}
/*
=======================================================================
SUBDIVIDE
=======================================================================
*/
void FinishSplit( patch_t *patch, patch_t *newp ){
dleaf_t *leaf;
VectorCopy( patch->baselight, newp->baselight );
VectorCopy( patch->totallight, newp->totallight );
VectorCopy( patch->reflectivity, newp->reflectivity );
newp->plane = patch->plane;
newp->sky = patch->sky;
patch->area = WindingArea( patch->winding );
newp->area = WindingArea( newp->winding );
if ( patch->area <= 1 ) {
patch->area = 1;
}
if ( newp->area <= 1 ) {
newp->area = 1;
}
WindingCenter( patch->winding, patch->origin );
VectorAdd( patch->origin, patch->plane->normal, patch->origin );
leaf = Rad_PointInLeaf( patch->origin );
patch->cluster = leaf->cluster;
if ( patch->cluster == -1 ) {
Sys_FPrintf( SYS_VRB, "patch->cluster == -1\n" );
}
WindingCenter( newp->winding, newp->origin );
VectorAdd( newp->origin, newp->plane->normal, newp->origin );
leaf = Rad_PointInLeaf( newp->origin );
newp->cluster = leaf->cluster;
if ( newp->cluster == -1 ) {
Sys_FPrintf( SYS_VRB, "patch->cluster == -1\n" );
}
}
/*
=============
SubdividePatch
Chops the patch only if its local bounds exceed the max size
=============
*/
void SubdividePatch( patch_t *patch ){
winding_t *w, *o1, *o2;
vec3_t mins, maxs, total;
vec3_t split;
vec_t dist;
int i, j;
vec_t v;
patch_t *newp;
w = patch->winding;
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
for ( i = 0 ; i < w->numpoints ; i++ )
{
for ( j = 0 ; j < 3 ; j++ )
{
v = w->p[i][j];
if ( v < mins[j] ) {
mins[j] = v;
}
if ( v > maxs[j] ) {
maxs[j] = v;
}
}
}
VectorSubtract( maxs, mins, total );
for ( i = 0 ; i < 3 ; i++ )
if ( total[i] > ( subdiv + 1 ) ) {
break;
}
if ( i == 3 ) {
// no splitting needed
return;
}
//
// split the winding
//
VectorCopy( vec3_origin, split );
split[i] = 1;
dist = ( mins[i] + maxs[i] ) * 0.5;
ClipWindingEpsilon( w, split, dist, ON_EPSILON, &o1, &o2 );
//
// create a new patch
//
if ( num_patches == MAX_PATCHES ) {
Error( "MAX_PATCHES" );
}
newp = &patches[num_patches];
num_patches++;
newp->next = patch->next;
patch->next = newp;
patch->winding = o1;
newp->winding = o2;
FinishSplit( patch, newp );
SubdividePatch( patch );
SubdividePatch( newp );
}
/*
=============
DicePatch
Chops the patch by a global grid
=============
*/
void DicePatch( patch_t *patch ){
winding_t *w, *o1, *o2;
vec3_t mins, maxs;
vec3_t split;
vec_t dist;
int i;
patch_t *newp;
w = patch->winding;
WindingBounds( w, mins, maxs );
for ( i = 0 ; i < 3 ; i++ )
if ( floor( ( mins[i] + 1 ) / subdiv ) < floor( ( maxs[i] - 1 ) / subdiv ) ) {
break;
}
if ( i == 3 ) {
// no splitting needed
return;
}
//
// split the winding
//
VectorCopy( vec3_origin, split );
split[i] = 1;
dist = subdiv * ( 1 + floor( ( mins[i] + 1 ) / subdiv ) );
ClipWindingEpsilon( w, split, dist, ON_EPSILON, &o1, &o2 );
//
// create a new patch
//
if ( num_patches == MAX_PATCHES ) {
Error( "MAX_PATCHES" );
}
newp = &patches[num_patches];
num_patches++;
newp->next = patch->next;
patch->next = newp;
patch->winding = o1;
newp->winding = o2;
FinishSplit( patch, newp );
DicePatch( patch );
DicePatch( newp );
}
/*
=============
SubdividePatches
=============
*/
void SubdividePatches( void ){
int i, num;
if ( subdiv < 1 ) {
return;
}
num = num_patches; // because the list will grow
for ( i = 0 ; i < num ; i++ )
{
// SubdividePatch (&patches[i]);
DicePatch( &patches[i] );
}
Sys_FPrintf( SYS_VRB, "%i patches after subdivision\n", num_patches );
}
//=====================================================================