mirror of
https://github.com/TTimo/GtkRadiant.git
synced 2025-01-25 10:51:36 +00:00
537 lines
8.5 KiB
C++
537 lines
8.5 KiB
C++
/*
|
|
|
|
* jddctmgr.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 1994-1995, Thomas G. Lane.
|
|
|
|
* This file is part of the Independent JPEG Group's software.
|
|
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
|
|
*
|
|
|
|
* This file contains the inverse-DCT management logic.
|
|
|
|
* This code selects a particular IDCT implementation to be used,
|
|
|
|
* and it performs related housekeeping chores. No code in this file
|
|
|
|
* is executed per IDCT step, only during output pass setup.
|
|
|
|
*
|
|
|
|
* Note that the IDCT routines are responsible for performing coefficient
|
|
|
|
* dequantization as well as the IDCT proper. This module sets up the
|
|
|
|
* dequantization multiplier table needed by the IDCT routine.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define JPEG_INTERNALS
|
|
|
|
#include "jinclude.h"
|
|
|
|
#include "radiant_jpeglib.h"
|
|
|
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The decompressor input side (jdinput.c) saves away the appropriate
|
|
|
|
* quantization table for each component at the start of the first scan
|
|
|
|
* involving that component. (This is necessary in order to correctly
|
|
|
|
* decode files that reuse Q-table slots.)
|
|
|
|
* When we are ready to make an output pass, the saved Q-table is converted
|
|
|
|
* to a multiplier table that will actually be used by the IDCT routine.
|
|
|
|
* The multiplier table contents are IDCT-method-dependent. To support
|
|
|
|
* application changes in IDCT method between scans, we can remake the
|
|
|
|
* multiplier tables if necessary.
|
|
|
|
* In buffered-image mode, the first output pass may occur before any data
|
|
|
|
* has been seen for some components, and thus before their Q-tables have
|
|
|
|
* been saved away. To handle this case, multiplier tables are preset
|
|
|
|
* to zeroes; the result of the IDCT will be a neutral gray level.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/* Private subobject for this module */
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
struct jpeg_inverse_dct pub; /* public fields */
|
|
|
|
|
|
|
|
/* This array contains the IDCT method code that each multiplier table
|
|
|
|
* is currently set up for, or -1 if it's not yet set up.
|
|
|
|
* The actual multiplier tables are pointed to by dct_table in the
|
|
|
|
* per-component comp_info structures.
|
|
|
|
*/
|
|
|
|
int cur_method[MAX_COMPONENTS];
|
|
|
|
} my_idct_controller;
|
|
|
|
|
|
|
|
typedef my_idct_controller * my_idct_ptr;
|
|
|
|
|
|
|
|
|
|
|
|
/* Allocated multiplier tables: big enough for any supported variant */
|
|
|
|
|
|
|
|
typedef union {
|
|
|
|
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
|
|
|
|
#ifdef DCT_IFAST_SUPPORTED
|
|
|
|
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
|
|
|
|
#endif
|
|
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
|
|
FLOAT_MULT_TYPE float_array[DCTSIZE2];
|
|
|
|
#endif
|
|
|
|
} multiplier_table;
|
|
|
|
|
|
|
|
|
|
|
|
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
|
|
|
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
|
|
|
*/
|
|
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
|
|
#define PROVIDE_ISLOW_TABLES
|
|
|
|
#else
|
|
|
|
#ifdef IDCT_SCALING_SUPPORTED
|
|
|
|
#define PROVIDE_ISLOW_TABLES
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Prepare for an output pass.
|
|
|
|
* Here we select the proper IDCT routine for each component and build
|
|
|
|
* a matching multiplier table.
|
|
|
|
*/
|
|
|
|
|
|
|
|
METHODDEF void
|
|
|
|
start_pass( j_decompress_ptr cinfo ){
|
|
|
|
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
|
|
|
|
int ci, i;
|
|
|
|
jpeg_component_info *compptr;
|
|
|
|
int method = 0;
|
|
|
|
inverse_DCT_method_ptr method_ptr = NULL;
|
|
|
|
JQUANT_TBL * qtbl;
|
|
|
|
|
|
|
|
for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
|
|
ci++, compptr++ ) {
|
|
|
|
/* Select the proper IDCT routine for this component's scaling */
|
|
|
|
switch ( compptr->DCT_scaled_size ) {
|
|
|
|
#ifdef IDCT_SCALING_SUPPORTED
|
|
|
|
case 1:
|
|
|
|
method_ptr = jpeg_idct_1x1;
|
|
|
|
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
method_ptr = jpeg_idct_2x2;
|
|
|
|
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
method_ptr = jpeg_idct_4x4;
|
|
|
|
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
case DCTSIZE:
|
|
|
|
switch ( cinfo->dct_method ) {
|
|
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
|
|
case JDCT_ISLOW:
|
|
|
|
method_ptr = jpeg_idct_islow;
|
|
|
|
method = JDCT_ISLOW;
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
#ifdef DCT_IFAST_SUPPORTED
|
|
|
|
case JDCT_IFAST:
|
|
|
|
method_ptr = jpeg_idct_ifast;
|
|
|
|
method = JDCT_IFAST;
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
|
|
case JDCT_FLOAT:
|
|
|
|
method_ptr = jpeg_idct_float;
|
|
|
|
method = JDCT_FLOAT;
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
default:
|
|
|
|
ERREXIT( cinfo, JERR_NOT_COMPILED );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ERREXIT1( cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
idct->pub.inverse_DCT[ci] = method_ptr;
|
|
|
|
/* Create multiplier table from quant table.
|
|
|
|
* However, we can skip this if the component is uninteresting
|
|
|
|
* or if we already built the table. Also, if no quant table
|
|
|
|
* has yet been saved for the component, we leave the
|
|
|
|
* multiplier table all-zero; we'll be reading zeroes from the
|
|
|
|
* coefficient controller's buffer anyway.
|
|
|
|
*/
|
|
|
|
if ( !compptr->component_needed || idct->cur_method[ci] == method ) {
|
|
|
|
continue;
|
|
}
|
|
|
|
qtbl = compptr->quant_table;
|
|
|
|
if ( qtbl == NULL ) { /* happens if no data yet for component */
|
|
|
|
continue;
|
|
}
|
|
|
|
idct->cur_method[ci] = method;
|
|
|
|
switch ( method ) {
|
|
|
|
#ifdef PROVIDE_ISLOW_TABLES
|
|
|
|
case JDCT_ISLOW:
|
|
|
|
{
|
|
|
|
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
|
|
|
* coefficients, but are stored in natural order as ints.
|
|
|
|
*/
|
|
|
|
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
|
|
for ( i = 0; i < DCTSIZE2; i++ ) {
|
|
|
|
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[jpeg_zigzag_order[i]];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
#ifdef DCT_IFAST_SUPPORTED
|
|
|
|
case JDCT_IFAST:
|
|
|
|
{
|
|
|
|
/* For AA&N IDCT method, multipliers are equal to quantization
|
|
|
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
|
|
|
* scalefactor[0] = 1
|
|
|
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
|
|
|
* For integer operation, the multiplier table is to be scaled by
|
|
|
|
* IFAST_SCALE_BITS. The multipliers are stored in natural order.
|
|
|
|
*/
|
|
|
|
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
|
|
|
|
#define CONST_BITS 14
|
|
|
|
static const INT16 aanscales[DCTSIZE2] = {
|
|
|
|
/* precomputed values scaled up by 14 bits */
|
|
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
|
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
|
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
|
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
|
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
|
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
|
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
|
|
};
|
|
|
|
SHIFT_TEMPS
|
|
|
|
|
|
|
|
for ( i = 0; i < DCTSIZE2; i++ ) {
|
|
|
|
ifmtbl[i] = (IFAST_MULT_TYPE)
|
|
|
|
DESCALE( MULTIPLY16V16( (INT32) qtbl->quantval[jpeg_zigzag_order[i]],
|
|
|
|
(INT32) aanscales[i] ),
|
|
|
|
CONST_BITS - IFAST_SCALE_BITS );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
|
|
case JDCT_FLOAT:
|
|
|
|
{
|
|
|
|
/* For float AA&N IDCT method, multipliers are equal to quantization
|
|
|
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
|
|
|
* scalefactor[0] = 1
|
|
|
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
|
|
|
* The multipliers are stored in natural order.
|
|
|
|
*/
|
|
|
|
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
|
|
|
int row, col;
|
|
|
|
static const double aanscalefactor[DCTSIZE] = {
|
|
|
|
1.0, 1.387039845, 1.306562965, 1.175875602,
|
|
|
|
1.0, 0.785694958, 0.541196100, 0.275899379
|
|
|
|
};
|
|
|
|
|
|
|
|
i = 0;
|
|
|
|
for ( row = 0; row < DCTSIZE; row++ ) {
|
|
|
|
for ( col = 0; col < DCTSIZE; col++ ) {
|
|
|
|
fmtbl[i] = (FLOAT_MULT_TYPE)
|
|
|
|
( (double) qtbl->quantval[jpeg_zigzag_order[i]] *
|
|
|
|
aanscalefactor[row] * aanscalefactor[col] );
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
default:
|
|
|
|
ERREXIT( cinfo, JERR_NOT_COMPILED );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize IDCT manager.
|
|
|
|
*/
|
|
|
|
|
|
|
|
GLOBAL void
|
|
|
|
jinit_inverse_dct( j_decompress_ptr cinfo ){
|
|
|
|
my_idct_ptr idct;
|
|
|
|
int ci;
|
|
|
|
jpeg_component_info *compptr;
|
|
|
|
|
|
|
|
idct = (my_idct_ptr)
|
|
|
|
( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
|
|
SIZEOF( my_idct_controller ) );
|
|
|
|
cinfo->idct = (struct jpeg_inverse_dct *) idct;
|
|
|
|
idct->pub.start_pass = start_pass;
|
|
|
|
|
|
|
|
for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
|
|
ci++, compptr++ ) {
|
|
|
|
/* Allocate and pre-zero a multiplier table for each component */
|
|
|
|
compptr->dct_table =
|
|
|
|
( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
|
|
SIZEOF( multiplier_table ) );
|
|
|
|
MEMZERO( compptr->dct_table, SIZEOF( multiplier_table ) );
|
|
|
|
/* Mark multiplier table not yet set up for any method */
|
|
|
|
idct->cur_method[ci] = -1;
|
|
|
|
}
|
|
|
|
}
|